#pragma once #include #include "types.h" #include "Vector2.hpp" // Parameters for iterative search of closest point on a cubic Bezier curve. Increase for higher precision. #define MSDFGEN_CUBIC_SEARCH_STARTS 4 #define MSDFGEN_CUBIC_SEARCH_STEPS 4 #define MSDFGEN_QUADRATIC_RATIO_LIMIT ::msdfgen::real(1e8) #ifndef MSDFGEN_CUBE_ROOT #define MSDFGEN_CUBE_ROOT(x) pow((x), ::msdfgen::real(1)/::msdfgen::real(3)) #endif namespace msdfgen { /** * Returns the parameter for the quadratic Bezier curve (P0, P1, P2) for the point closest to point P. May be outside the (0, 1) range. * p = P-P0 * q = 2*P1-2*P0 * r = P2-2*P1+P0 */ inline real quadraticNearPoint(const Vector2 p, const Vector2 q, const Vector2 r) { real qq = q.squaredLength(); real rr = r.squaredLength(); if (qq >= MSDFGEN_QUADRATIC_RATIO_LIMIT*rr) return dotProduct(p, q)/qq; real norm = real(.5)/rr; real a = real(3)*norm*dotProduct(q, r); real b = norm*(qq-real(2)*dotProduct(p, r)); real c = norm*dotProduct(p, q); real aa = a*a; real g = real(1)/real(9)*(aa-real(3)*b); real h = real(1)/real(54)*(a*(aa+aa-real(9)*b)-real(27)*c); real hh = h*h; real ggg = g*g*g; a *= real(1)/real(3); if (hh < ggg) { real u = real(1)/real(3)*acos(h/sqrt(ggg)); g = real(-2)*sqrt(g); if (h >= real(0)) { real t = g*cos(u)-a; if (t >= real(0)) return t; return g*cos(u+real(2.0943951023931954923))-a; // 2.094 = PI*2/3 } else { real t = g*cos(u+real(2.0943951023931954923))-a; if (t <= real(1)) return t; return g*cos(u)-a; } } real s = (h < real(0) ? real(1) : real(-1))*MSDFGEN_CUBE_ROOT(fabs(h)+sqrt(hh-ggg)); return s+g/s-a; } /** * Returns the parameter for the cubic Bezier curve (P0, P1, P2, P3) for the point closest to point P. Squared distance is provided as optional output parameter. * p = P-P0 * q = 3*P1-3*P0 * r = 3*P2-6*P1+3*P0 * s = P3-3*P2+3*P1-P0 */ inline real cubicNearPoint(const Vector2 p, const Vector2 q, const Vector2 r, const Vector2 s, real &squaredDistance) { squaredDistance = p.squaredLength(); real bestT = 0; for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) { real t = real(1)/real(MSDFGEN_CUBIC_SEARCH_STARTS)*real(i); Vector2 curP = p-(q+(r+s*t)*t)*t; for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) { Vector2 d0 = q+(r+r+real(3)*s*t)*t; Vector2 d1 = r+r+real(6)*s*t; t += dotProduct(curP, d0)/(d0.squaredLength()-dotProduct(curP, d1)); if (t <= real(0) || t >= real(1)) break; curP = p-(q+(r+s*t)*t)*t; real curSquaredDistance = curP.squaredLength(); if (curSquaredDistance < squaredDistance) { squaredDistance = curSquaredDistance; bestT = t; } } } return bestT; } inline real cubicNearPoint(const Vector2 p, const Vector2 q, const Vector2 r, const Vector2 s) { real squaredDistance; return cubicNearPoint(p, q, r, s, squaredDistance); } }