#include "edge-segments.h" #include "arithmetics.hpp" #include "equation-solver.h" #include "bezier-solver.hpp" #define MSDFGEN_USE_BEZIER_SOLVER namespace msdfgen { void EdgeSegment::distanceToPseudoDistance(SignedDistance &distance, Point2 origin, real param) const { if (param < real(0)) { Vector2 dir = direction(0).normalize(); Vector2 aq = origin-point(0); real ts = dotProduct(aq, dir); if (ts < real(0)) { real pseudoDistance = crossProduct(aq, dir); if (fabs(pseudoDistance) <= fabs(distance.distance)) { distance.distance = pseudoDistance; distance.dot = 0; } } } else if (param > real(1)) { Vector2 dir = direction(1).normalize(); Vector2 bq = origin-point(1); real ts = dotProduct(bq, dir); if (ts > real(0)) { real pseudoDistance = crossProduct(bq, dir); if (fabs(pseudoDistance) <= fabs(distance.distance)) { distance.distance = pseudoDistance; distance.dot = 0; } } } } LinearSegment::LinearSegment(Point2 p0, Point2 p1, EdgeColor edgeColor) : EdgeSegment(edgeColor) { p[0] = p0; p[1] = p1; } QuadraticSegment::QuadraticSegment(Point2 p0, Point2 p1, Point2 p2, EdgeColor edgeColor) : EdgeSegment(edgeColor) { if (p1 == p0 || p1 == p2) p1 = real(.5)*(p0+p2); p[0] = p0; p[1] = p1; p[2] = p2; } CubicSegment::CubicSegment(Point2 p0, Point2 p1, Point2 p2, Point2 p3, EdgeColor edgeColor) : EdgeSegment(edgeColor) { if ((p1 == p0 || p1 == p3) && (p2 == p0 || p2 == p3)) { p1 = mix(p0, p3, real(1)/real(3)); p2 = mix(p0, p3, real(2)/real(3)); } p[0] = p0; p[1] = p1; p[2] = p2; p[3] = p3; } LinearSegment *LinearSegment::clone() const { return new LinearSegment(p[0], p[1], color); } QuadraticSegment *QuadraticSegment::clone() const { return new QuadraticSegment(p[0], p[1], p[2], color); } CubicSegment *CubicSegment::clone() const { return new CubicSegment(p[0], p[1], p[2], p[3], color); } int LinearSegment::type() const { return (int) EDGE_TYPE; } int QuadraticSegment::type() const { return (int) EDGE_TYPE; } int CubicSegment::type() const { return (int) EDGE_TYPE; } const Point2 *LinearSegment::controlPoints() const { return p; } const Point2 *QuadraticSegment::controlPoints() const { return p; } const Point2 *CubicSegment::controlPoints() const { return p; } Point2 LinearSegment::point(real param) const { return mix(p[0], p[1], param); } Point2 QuadraticSegment::point(real param) const { return mix(mix(p[0], p[1], param), mix(p[1], p[2], param), param); } Point2 CubicSegment::point(real param) const { Vector2 p12 = mix(p[1], p[2], param); return mix(mix(mix(p[0], p[1], param), p12, param), mix(p12, mix(p[2], p[3], param), param), param); } Vector2 LinearSegment::direction(real param) const { return p[1]-p[0]; } Vector2 QuadraticSegment::direction(real param) const { Vector2 tangent = mix(p[1]-p[0], p[2]-p[1], param); if (!tangent) return p[2]-p[0]; return tangent; } Vector2 CubicSegment::direction(real param) const { Vector2 tangent = mix(mix(p[1]-p[0], p[2]-p[1], param), mix(p[2]-p[1], p[3]-p[2], param), param); if (!tangent) { if (param == 0) return p[2]-p[0]; if (param == 1) return p[3]-p[1]; } return tangent; } Vector2 LinearSegment::directionChange(real param) const { return Vector2(); } Vector2 QuadraticSegment::directionChange(real param) const { return (p[2]-p[1])-(p[1]-p[0]); } Vector2 CubicSegment::directionChange(real param) const { return mix((p[2]-p[1])-(p[1]-p[0]), (p[3]-p[2])-(p[2]-p[1]), param); } real LinearSegment::length() const { return (p[1]-p[0]).length(); } real QuadraticSegment::length() const { Vector2 ab = p[1]-p[0]; Vector2 br = p[2]-p[1]-ab; real abab = dotProduct(ab, ab); real abbr = dotProduct(ab, br); real brbr = dotProduct(br, br); real abLen = sqrt(abab); real brLen = sqrt(brbr); real crs = crossProduct(ab, br); real h = sqrt(abab+abbr+abbr+brbr); return ( brLen*((abbr+brbr)*h-abbr*abLen)+ crs*crs*log((brLen*h+abbr+brbr)/(brLen*abLen+abbr)) )/(brbr*brLen); } SignedDistance LinearSegment::signedDistance(Point2 origin, real ¶m) const { Vector2 aq = origin-p[0]; Vector2 ab = p[1]-p[0]; param = dotProduct(aq, ab)/dotProduct(ab, ab); Vector2 eq = p[param > real(.5)]-origin; real endpointDistance = eq.length(); if (param > real(0) && param < real(1)) { real orthoDistance = dotProduct(ab.getOrthonormal(false), aq); if (fabs(orthoDistance) < endpointDistance) return SignedDistance(orthoDistance, 0); } return SignedDistance(real(nonZeroSign(crossProduct(aq, ab)))*endpointDistance, fabs(dotProduct(ab.normalize(), eq.normalize()))); } #ifdef MSDFGEN_USE_BEZIER_SOLVER SignedDistance QuadraticSegment::signedDistance(Point2 origin, real ¶m) const { Vector2 ap = origin-p[0]; Vector2 bp = origin-p[2]; Vector2 q = real(2)*(p[1]-p[0]); Vector2 r = p[2]-2*p[1]+p[0]; real aSqD = ap.squaredLength(); real bSqD = bp.squaredLength(); real t = quadraticNearPoint(ap, q, r); if (t > real(0) && t < real(1)) { Vector2 tp = ap-(q+r*t)*t; real tSqD = tp.squaredLength(); if (tSqD < aSqD && tSqD < bSqD) { param = t; return SignedDistance(real(nonZeroSign(crossProduct(tp, q+real(2)*r*t)))*sqrt(tSqD), 0); } } if (bSqD < aSqD) { Vector2 d = q+r+r; if (!d) d = p[2]-p[0]; param = dotProduct(bp, d)/d.squaredLength()+real(1); return SignedDistance(real(nonZeroSign(crossProduct(bp, d)))*sqrt(bSqD), dotProduct(bp.normalize(), d.normalize())); } if (!q) q = p[2]-p[0]; param = dotProduct(ap, q)/q.squaredLength(); return SignedDistance(real(nonZeroSign(crossProduct(ap, q)))*sqrt(aSqD), -dotProduct(ap.normalize(), q.normalize())); } SignedDistance CubicSegment::signedDistance(Point2 origin, real ¶m) const { Vector2 ap = origin-p[0]; Vector2 bp = origin-p[3]; Vector2 q = real(3)*(p[1]-p[0]); Vector2 r = real(3)*(p[2]-p[1])-q; Vector2 s = p[3]-real(3)*(p[2]-p[1])-p[0]; real aSqD = ap.squaredLength(); real bSqD = bp.squaredLength(); real tSqD; real t = cubicNearPoint(ap, q, r, s, tSqD); if (t > real(0) && t < real(1)) { if (tSqD < aSqD && tSqD < bSqD) { param = t; return SignedDistance(real(nonZeroSign(crossProduct(ap-(q+(r+s*t)*t)*t, q+(r+r+real(3)*s*t)*t)))*sqrt(tSqD), 0); } } if (bSqD < aSqD) { Vector2 d = q+r+r+real(3)*s; if (!d) d = p[3]-p[1]; param = dotProduct(bp, d)/d.squaredLength()+real(1); return SignedDistance(real(nonZeroSign(crossProduct(bp, d)))*sqrt(bSqD), dotProduct(bp.normalize(), d.normalize())); } if (!q) q = p[2]-p[0]; param = dotProduct(ap, q)/q.squaredLength(); return SignedDistance(real(nonZeroSign(crossProduct(ap, q)))*sqrt(aSqD), -dotProduct(ap.normalize(), q.normalize())); } #else SignedDistance QuadraticSegment::signedDistance(Point2 origin, real ¶m) const { Vector2 qa = p[0]-origin; Vector2 ab = p[1]-p[0]; Vector2 br = p[2]-p[1]-ab; real a = dotProduct(br, br); real b = real(3)*dotProduct(ab, br); real c = real(2)*dotProduct(ab, ab)+dotProduct(qa, br); real d = dotProduct(qa, ab); real t[3]; int solutions = solveCubic(t, a, b, c, d); Vector2 epDir = direction(0); real minDistance = real(nonZeroSign(crossProduct(epDir, qa)))*qa.length(); // distance from A param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir); { epDir = direction(1); real distance = (p[2]-origin).length(); // distance from B if (distance < fabs(minDistance)) { minDistance = real(nonZeroSign(crossProduct(epDir, p[2]-origin)))*distance; param = dotProduct(origin-p[1], epDir)/dotProduct(epDir, epDir); } } for (int i = 0; i < solutions; ++i) { if (t[i] > real(0) && t[i] < real(1)) { Point2 qe = qa+real(2)*t[i]*ab+t[i]*t[i]*br; real distance = qe.length(); if (distance <= fabs(minDistance)) { minDistance = real(nonZeroSign(crossProduct(ab+t[i]*br, qe)))*distance; param = t[i]; } } } if (param >= real(0) && param <= real(1)) return SignedDistance(minDistance, 0); if (param < real(.5)) return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize()))); else return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[2]-origin).normalize()))); } SignedDistance CubicSegment::signedDistance(Point2 origin, real ¶m) const { Vector2 qa = p[0]-origin; Vector2 ab = p[1]-p[0]; Vector2 br = p[2]-p[1]-ab; Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br; Vector2 epDir = direction(0); real minDistance = real(nonZeroSign(crossProduct(epDir, qa)))*qa.length(); // distance from A param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir); { epDir = direction(1); real distance = (p[3]-origin).length(); // distance from B if (distance < fabs(minDistance)) { minDistance = real(nonZeroSign(crossProduct(epDir, p[3]-origin)))*distance; param = dotProduct(epDir-(p[3]-origin), epDir)/dotProduct(epDir, epDir); } } // Iterative minimum distance search for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) { real t = real(1)/real(MSDFGEN_CUBIC_SEARCH_STARTS)*real(i); Vector2 qe = qa+real(3)*t*ab+real(3)*t*t*br+t*t*t*as; for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) { // Improve t Vector2 d1 = real(3)*ab+real(6)*t*br+real(3)*t*t*as; Vector2 d2 = real(6)*br+real(6)*t*as; t -= dotProduct(qe, d1)/(dotProduct(d1, d1)+dotProduct(qe, d2)); if (t <= real(0) || t >= real(1)) break; qe = qa+real(3)*t*ab+real(3)*t*t*br+t*t*t*as; real distance = qe.length(); if (distance < fabs(minDistance)) { minDistance = real(nonZeroSign(crossProduct(d1, qe)))*distance; param = t; } } } if (param >= real(0) && param <= real(1)) return SignedDistance(minDistance, 0); if (param < real(.5)) return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize()))); else return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[3]-origin).normalize()))); } #endif int LinearSegment::scanlineIntersections(real x[3], int dy[3], real y) const { if ((y >= p[0].y && y < p[1].y) || (y >= p[1].y && y < p[0].y)) { real param = (y-p[0].y)/(p[1].y-p[0].y); x[0] = mix(p[0].x, p[1].x, param); dy[0] = sign(p[1].y-p[0].y); return 1; } return 0; } int QuadraticSegment::scanlineIntersections(real x[3], int dy[3], real y) const { int total = 0; int nextDY = y > p[0].y ? 1 : -1; x[total] = p[0].x; if (p[0].y == y) { if (p[0].y < p[1].y || (p[0].y == p[1].y && p[0].y < p[2].y)) dy[total++] = 1; else nextDY = 1; } { Vector2 ab = p[1]-p[0]; Vector2 br = p[2]-p[1]-ab; real t[2]; int solutions = solveQuadratic(t, br.y, 2*ab.y, p[0].y-y); // Sort solutions real tmp; if (solutions >= 2 && t[0] > t[1]) tmp = t[0], t[0] = t[1], t[1] = tmp; for (int i = 0; i < solutions && total < 2; ++i) { if (t[i] >= 0 && t[i] <= 1) { x[total] = p[0].x+2*t[i]*ab.x+t[i]*t[i]*br.x; if (real(nextDY)*(ab.y+t[i]*br.y) >= real(0)) { dy[total++] = nextDY; nextDY = -nextDY; } } } } if (p[2].y == y) { if (nextDY > 0 && total > 0) { --total; nextDY = -1; } if ((p[2].y < p[1].y || (p[2].y == p[1].y && p[2].y < p[0].y)) && total < 2) { x[total] = p[2].x; if (nextDY < 0) { dy[total++] = -1; nextDY = 1; } } } if (nextDY != (y >= p[2].y ? 1 : -1)) { if (total > 0) --total; else { if (fabs(p[2].y-y) < fabs(p[0].y-y)) x[total] = p[2].x; dy[total++] = nextDY; } } return total; } int CubicSegment::scanlineIntersections(real x[3], int dy[3], real y) const { int total = 0; int nextDY = y > p[0].y ? 1 : -1; x[total] = p[0].x; if (p[0].y == y) { if (p[0].y < p[1].y || (p[0].y == p[1].y && (p[0].y < p[2].y || (p[0].y == p[2].y && p[0].y < p[3].y)))) dy[total++] = 1; else nextDY = 1; } { Vector2 ab = p[1]-p[0]; Vector2 br = p[2]-p[1]-ab; Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br; real t[3]; int solutions = solveCubic(t, as.y, 3*br.y, 3*ab.y, p[0].y-y); // Sort solutions real tmp; if (solutions >= 2) { if (t[0] > t[1]) tmp = t[0], t[0] = t[1], t[1] = tmp; if (solutions >= 3 && t[1] > t[2]) { tmp = t[1], t[1] = t[2], t[2] = tmp; if (t[0] > t[1]) tmp = t[0], t[0] = t[1], t[1] = tmp; } } for (int i = 0; i < solutions && total < 3; ++i) { if (t[i] >= 0 && t[i] <= 1) { x[total] = p[0].x+real(3)*t[i]*ab.x+real(3)*t[i]*t[i]*br.x+t[i]*t[i]*t[i]*as.x; if (real(nextDY)*(ab.y+real(2)*t[i]*br.y+t[i]*t[i]*as.y) >= real(0)) { dy[total++] = nextDY; nextDY = -nextDY; } } } } if (p[3].y == y) { if (nextDY > 0 && total > 0) { --total; nextDY = -1; } if ((p[3].y < p[2].y || (p[3].y == p[2].y && (p[3].y < p[1].y || (p[3].y == p[1].y && p[3].y < p[0].y)))) && total < 3) { x[total] = p[3].x; if (nextDY < 0) { dy[total++] = -1; nextDY = 1; } } } if (nextDY != (y >= p[3].y ? 1 : -1)) { if (total > 0) --total; else { if (fabs(p[3].y-y) < fabs(p[0].y-y)) x[total] = p[3].x; dy[total++] = nextDY; } } return total; } static void pointBounds(Point2 p, real &l, real &b, real &r, real &t) { if (p.x < l) l = p.x; if (p.y < b) b = p.y; if (p.x > r) r = p.x; if (p.y > t) t = p.y; } void LinearSegment::bound(real &l, real &b, real &r, real &t) const { pointBounds(p[0], l, b, r, t); pointBounds(p[1], l, b, r, t); } void QuadraticSegment::bound(real &l, real &b, real &r, real &t) const { pointBounds(p[0], l, b, r, t); pointBounds(p[2], l, b, r, t); Vector2 bot = (p[1]-p[0])-(p[2]-p[1]); if (bot.x) { real param = (p[1].x-p[0].x)/bot.x; if (param > real(0) && param < real(1)) pointBounds(point(param), l, b, r, t); } if (bot.y) { real param = (p[1].y-p[0].y)/bot.y; if (param > real(0) && param < real(1)) pointBounds(point(param), l, b, r, t); } } void CubicSegment::bound(real &l, real &b, real &r, real &t) const { pointBounds(p[0], l, b, r, t); pointBounds(p[3], l, b, r, t); Vector2 a0 = p[1]-p[0]; Vector2 a1 = real(2)*(p[2]-p[1]-a0); Vector2 a2 = p[3]-real(3)*p[2]+real(3)*p[1]-p[0]; real params[2]; int solutions; solutions = solveQuadratic(params, a2.x, a1.x, a0.x); for (int i = 0; i < solutions; ++i) if (params[i] > real(0) && params[i] < real(1)) pointBounds(point(params[i]), l, b, r, t); solutions = solveQuadratic(params, a2.y, a1.y, a0.y); for (int i = 0; i < solutions; ++i) if (params[i] > real(0) && params[i] < real(1)) pointBounds(point(params[i]), l, b, r, t); } void LinearSegment::reverse() { Point2 tmp = p[0]; p[0] = p[1]; p[1] = tmp; } void QuadraticSegment::reverse() { Point2 tmp = p[0]; p[0] = p[2]; p[2] = tmp; } void CubicSegment::reverse() { Point2 tmp = p[0]; p[0] = p[3]; p[3] = tmp; tmp = p[1]; p[1] = p[2]; p[2] = tmp; } void LinearSegment::moveStartPoint(Point2 to) { p[0] = to; } void QuadraticSegment::moveStartPoint(Point2 to) { Vector2 origSDir = p[0]-p[1]; Point2 origP1 = p[1]; p[1] += crossProduct(p[0]-p[1], to-p[0])/crossProduct(p[0]-p[1], p[2]-p[1])*(p[2]-p[1]); p[0] = to; if (dotProduct(origSDir, p[0]-p[1]) < real(0)) p[1] = origP1; } void CubicSegment::moveStartPoint(Point2 to) { p[1] += to-p[0]; p[0] = to; } void LinearSegment::moveEndPoint(Point2 to) { p[1] = to; } void QuadraticSegment::moveEndPoint(Point2 to) { Vector2 origEDir = p[2]-p[1]; Point2 origP1 = p[1]; p[1] += crossProduct(p[2]-p[1], to-p[2])/crossProduct(p[2]-p[1], p[0]-p[1])*(p[0]-p[1]); p[2] = to; if (dotProduct(origEDir, p[2]-p[1]) < real(0)) p[1] = origP1; } void CubicSegment::moveEndPoint(Point2 to) { p[2] += to-p[3]; p[3] = to; } void LinearSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const { part1 = new LinearSegment(p[0], point(real(1)/real(3)), color); part2 = new LinearSegment(point(real(1)/real(3)), point(real(2)/real(3)), color); part3 = new LinearSegment(point(real(2)/real(3)), p[1], color); } void QuadraticSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const { part1 = new QuadraticSegment(p[0], mix(p[0], p[1], real(1)/real(3)), point(real(1)/real(3)), color); part2 = new QuadraticSegment(point(real(1)/real(3)), mix(mix(p[0], p[1], real(5)/real(9)), mix(p[1], p[2], real(4)/real(9)), real(.5)), point(real(2)/real(3)), color); part3 = new QuadraticSegment(point(real(2)/real(3)), mix(p[1], p[2], real(2)/real(3)), p[2], color); } void CubicSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const { part1 = new CubicSegment(p[0], p[0] == p[1] ? p[0] : mix(p[0], p[1], real(1)/real(3)), mix(mix(p[0], p[1], real(1)/real(3)), mix(p[1], p[2], real(1)/real(3)), real(1)/real(3)), point(real(1)/real(3)), color); part2 = new CubicSegment(point(real(1)/real(3)), mix(mix(mix(p[0], p[1], real(1)/real(3)), mix(p[1], p[2], real(1)/real(3)), real(1)/real(3)), mix(mix(p[1], p[2], real(1)/real(3)), mix(p[2], p[3], real(1)/real(3)), real(1)/real(3)), real(2)/real(3)), mix(mix(mix(p[0], p[1], real(2)/real(3)), mix(p[1], p[2], real(2)/real(3)), real(2)/real(3)), mix(mix(p[1], p[2], real(2)/real(3)), mix(p[2], p[3], real(2)/real(3)), real(2)/real(3)), real(1)/real(3)), point(real(2)/real(3)), color); part3 = new CubicSegment(point(real(2)/real(3)), mix(mix(p[1], p[2], real(2)/real(3)), mix(p[2], p[3], real(2)/real(3)), real(2)/real(3)), p[2] == p[3] ? p[3] : mix(p[2], p[3], real(2)/real(3)), p[3], color); } EdgeSegment *QuadraticSegment::convertToCubic() const { return new CubicSegment(p[0], mix(p[0], p[1], real(2)/real(3)), mix(p[1], p[2], real(1)/real(3)), p[2], color); } void CubicSegment::deconverge(int param, real amount) { Vector2 dir = direction(param); Vector2 normal = dir.getOrthonormal(); real h = dotProduct(directionChange(param)-dir, normal); switch (param) { case 0: p[1] += amount*(dir+real(sign(h))*sqrt(fabs(h))*normal); break; case 1: p[2] -= amount*(dir-real(sign(h))*sqrt(fabs(h))*normal); break; } } }