#include "../msdfgen.h" #include #include "edge-selectors.h" #include "contour-combiners.h" namespace msdfgen { template class DistancePixelConversion; template <> class DistancePixelConversion { public: typedef BitmapRef BitmapRefType; inline static void convert(float *pixels, double distance, double range) { *pixels = float(distance/range+.5); } }; template <> class DistancePixelConversion { public: typedef BitmapRef BitmapRefType; inline static void convert(float *pixels, const MultiDistance &distance, double range) { pixels[0] = float(distance.r/range+.5); pixels[1] = float(distance.g/range+.5); pixels[2] = float(distance.b/range+.5); } }; template <> class DistancePixelConversion { public: typedef BitmapRef BitmapRefType; inline static void convert(float *pixels, const MultiAndTrueDistance &distance, double range) { pixels[0] = float(distance.r/range+.5); pixels[1] = float(distance.g/range+.5); pixels[2] = float(distance.b/range+.5); pixels[3] = float(distance.a/range+.5); } }; template void generateDistanceField(const typename DistancePixelConversion::BitmapRefType &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { int edgeCount = shape.edgeCount(); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel #endif { ContourCombiner contourCombiner(shape); std::vector shapeEdgeCache(edgeCount); bool rightToLeft = false; Point2 p; #ifdef MSDFGEN_USE_OPENMP #pragma omp for #endif for (int y = 0; y < output.height; ++y) { int row = shape.inverseYAxis ? output.height-y-1 : y; p.y = (y+.5)/scale.y-translate.y; for (int col = 0; col < output.width; ++col) { int x = rightToLeft ? output.width-col-1 : col; p.x = (x+.5)/scale.x-translate.x; contourCombiner.reset(p); typename ContourCombiner::EdgeSelectorType::EdgeCache *edgeCache = &shapeEdgeCache[0]; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) { if (!contour->edges.empty()) { typename ContourCombiner::EdgeSelectorType &edgeSelector = contourCombiner.edgeSelector(int(contour-shape.contours.begin())); const EdgeSegment *prevEdge = contour->edges.size() >= 2 ? *(contour->edges.end()-2) : *contour->edges.begin(); const EdgeSegment *curEdge = contour->edges.back(); for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { const EdgeSegment *nextEdge = *edge; edgeSelector.addEdge(*edgeCache++, prevEdge, curEdge, nextEdge); prevEdge = curEdge; curEdge = nextEdge; } } } typename ContourCombiner::DistanceType distance = contourCombiner.distance(); DistancePixelConversion::convert(output(x, row), distance, range); } rightToLeft = !rightToLeft; } } } void generateSDF(const BitmapRef &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, bool overlapSupport) { if (overlapSupport) generateDistanceField >(output, shape, range, scale, translate); else generateDistanceField >(output, shape, range, scale, translate); } void generatePseudoSDF(const BitmapRef &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, bool overlapSupport) { if (overlapSupport) generateDistanceField >(output, shape, range, scale, translate); else generateDistanceField >(output, shape, range, scale, translate); } void generateMSDF(const BitmapRef &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, double edgeThreshold, bool overlapSupport) { if (overlapSupport) generateDistanceField >(output, shape, range, scale, translate); else generateDistanceField >(output, shape, range, scale, translate); if (edgeThreshold > 0) msdfErrorCorrection(output, edgeThreshold/(scale*range)); } void generateMTSDF(const BitmapRef &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, double edgeThreshold, bool overlapSupport) { if (overlapSupport) generateDistanceField >(output, shape, range, scale, translate); else generateDistanceField >(output, shape, range, scale, translate); if (edgeThreshold > 0) msdfErrorCorrection(output, edgeThreshold/(scale*range)); } inline static bool detectClash(const float *a, const float *b, double threshold) { // Sort channels so that pairs (a0, b0), (a1, b1), (a2, b2) go from biggest to smallest absolute difference float a0 = a[0], a1 = a[1], a2 = a[2]; float b0 = b[0], b1 = b[1], b2 = b[2]; float tmp; if (fabsf(b0-a0) < fabsf(b1-a1)) { tmp = a0, a0 = a1, a1 = tmp; tmp = b0, b0 = b1, b1 = tmp; } if (fabsf(b1-a1) < fabsf(b2-a2)) { tmp = a1, a1 = a2, a2 = tmp; tmp = b1, b1 = b2, b2 = tmp; if (fabsf(b0-a0) < fabsf(b1-a1)) { tmp = a0, a0 = a1, a1 = tmp; tmp = b0, b0 = b1, b1 = tmp; } } return (fabsf(b1-a1) >= threshold) && !(b0 == b1 && b0 == b2) && // Ignore if other pixel has been equalized fabsf(a2-.5f) >= fabsf(b2-.5f); // Out of the pair, only flag the pixel farther from a shape edge } template void msdfErrorCorrectionInner(const BitmapRef &output, const Vector2 &threshold) { std::vector > clashes; int w = output.width, h = output.height; for (int y = 0; y < h; ++y) for (int x = 0; x < w; ++x) { if ( (x > 0 && detectClash(output(x, y), output(x-1, y), threshold.x)) || (x < w-1 && detectClash(output(x, y), output(x+1, y), threshold.x)) || (y > 0 && detectClash(output(x, y), output(x, y-1), threshold.y)) || (y < h-1 && detectClash(output(x, y), output(x, y+1), threshold.y)) ) clashes.push_back(std::make_pair(x, y)); } for (std::vector >::const_iterator clash = clashes.begin(); clash != clashes.end(); ++clash) { float *pixel = output(clash->first, clash->second); float med = median(pixel[0], pixel[1], pixel[2]); pixel[0] = med, pixel[1] = med, pixel[2] = med; } #ifndef MSDFGEN_NO_DIAGONAL_CLASH_DETECTION clashes.clear(); for (int y = 0; y < h; ++y) for (int x = 0; x < w; ++x) { if ( (x > 0 && y > 0 && detectClash(output(x, y), output(x-1, y-1), threshold.x+threshold.y)) || (x < w-1 && y > 0 && detectClash(output(x, y), output(x+1, y-1), threshold.x+threshold.y)) || (x > 0 && y < h-1 && detectClash(output(x, y), output(x-1, y+1), threshold.x+threshold.y)) || (x < w-1 && y < h-1 && detectClash(output(x, y), output(x+1, y+1), threshold.x+threshold.y)) ) clashes.push_back(std::make_pair(x, y)); } for (std::vector >::const_iterator clash = clashes.begin(); clash != clashes.end(); ++clash) { float *pixel = output(clash->first, clash->second); float med = median(pixel[0], pixel[1], pixel[2]); pixel[0] = med, pixel[1] = med, pixel[2] = med; } #endif } void msdfErrorCorrection(const BitmapRef &output, const Vector2 &threshold) { msdfErrorCorrectionInner(output, threshold); } void msdfErrorCorrection(const BitmapRef &output, const Vector2 &threshold) { msdfErrorCorrectionInner(output, threshold); } // Legacy version void generateSDF_legacy(const BitmapRef &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < output.height; ++y) { int row = shape.inverseYAxis ? output.height-y-1 : y; for (int x = 0; x < output.width; ++x) { double dummy; Point2 p = Vector2(x+.5, y+.5)/scale-translate; SignedDistance minDistance; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { SignedDistance distance = (*edge)->signedDistance(p, dummy); if (distance < minDistance) minDistance = distance; } *output(x, row) = float(minDistance.distance/range+.5); } } } void generatePseudoSDF_legacy(const BitmapRef &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < output.height; ++y) { int row = shape.inverseYAxis ? output.height-y-1 : y; for (int x = 0; x < output.width; ++x) { Point2 p = Vector2(x+.5, y+.5)/scale-translate; SignedDistance minDistance; const EdgeHolder *nearEdge = NULL; double nearParam = 0; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { double param; SignedDistance distance = (*edge)->signedDistance(p, param); if (distance < minDistance) { minDistance = distance; nearEdge = &*edge; nearParam = param; } } if (nearEdge) (*nearEdge)->distanceToPseudoDistance(minDistance, p, nearParam); *output(x, row) = float(minDistance.distance/range+.5); } } } void generateMSDF_legacy(const BitmapRef &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, double edgeThreshold) { #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < output.height; ++y) { int row = shape.inverseYAxis ? output.height-y-1 : y; for (int x = 0; x < output.width; ++x) { Point2 p = Vector2(x+.5, y+.5)/scale-translate; struct { SignedDistance minDistance; const EdgeHolder *nearEdge; double nearParam; } r, g, b; r.nearEdge = g.nearEdge = b.nearEdge = NULL; r.nearParam = g.nearParam = b.nearParam = 0; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { double param; SignedDistance distance = (*edge)->signedDistance(p, param); if ((*edge)->color&RED && distance < r.minDistance) { r.minDistance = distance; r.nearEdge = &*edge; r.nearParam = param; } if ((*edge)->color&GREEN && distance < g.minDistance) { g.minDistance = distance; g.nearEdge = &*edge; g.nearParam = param; } if ((*edge)->color&BLUE && distance < b.minDistance) { b.minDistance = distance; b.nearEdge = &*edge; b.nearParam = param; } } if (r.nearEdge) (*r.nearEdge)->distanceToPseudoDistance(r.minDistance, p, r.nearParam); if (g.nearEdge) (*g.nearEdge)->distanceToPseudoDistance(g.minDistance, p, g.nearParam); if (b.nearEdge) (*b.nearEdge)->distanceToPseudoDistance(b.minDistance, p, b.nearParam); output(x, row)[0] = float(r.minDistance.distance/range+.5); output(x, row)[1] = float(g.minDistance.distance/range+.5); output(x, row)[2] = float(b.minDistance.distance/range+.5); } } if (edgeThreshold > 0) msdfErrorCorrection(output, edgeThreshold/(scale*range)); } void generateMTSDF_legacy(const BitmapRef &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, double edgeThreshold) { #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < output.height; ++y) { int row = shape.inverseYAxis ? output.height-y-1 : y; for (int x = 0; x < output.width; ++x) { Point2 p = Vector2(x+.5, y+.5)/scale-translate; SignedDistance minDistance; struct { SignedDistance minDistance; const EdgeHolder *nearEdge; double nearParam; } r, g, b; r.nearEdge = g.nearEdge = b.nearEdge = NULL; r.nearParam = g.nearParam = b.nearParam = 0; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { double param; SignedDistance distance = (*edge)->signedDistance(p, param); if (distance < minDistance) minDistance = distance; if ((*edge)->color&RED && distance < r.minDistance) { r.minDistance = distance; r.nearEdge = &*edge; r.nearParam = param; } if ((*edge)->color&GREEN && distance < g.minDistance) { g.minDistance = distance; g.nearEdge = &*edge; g.nearParam = param; } if ((*edge)->color&BLUE && distance < b.minDistance) { b.minDistance = distance; b.nearEdge = &*edge; b.nearParam = param; } } if (r.nearEdge) (*r.nearEdge)->distanceToPseudoDistance(r.minDistance, p, r.nearParam); if (g.nearEdge) (*g.nearEdge)->distanceToPseudoDistance(g.minDistance, p, g.nearParam); if (b.nearEdge) (*b.nearEdge)->distanceToPseudoDistance(b.minDistance, p, b.nearParam); output(x, row)[0] = float(r.minDistance.distance/range+.5); output(x, row)[1] = float(g.minDistance.distance/range+.5); output(x, row)[2] = float(b.minDistance.distance/range+.5); output(x, row)[3] = float(minDistance.distance/range+.5); } } if (edgeThreshold > 0) msdfErrorCorrection(output, edgeThreshold/(scale*range)); } }