#include "../msdfgen.h" #include "edge-selectors.h" #include "contour-combiners.h" namespace msdfgen { template class SquaredDistancePixelConversion; template <> class SquaredDistancePixelConversion { public: typedef float PixelType; inline static PixelType convert(double sqDistance, double range) { return PixelType(sign(sqDistance)*sqrt(fabs(sqDistance))/range+.5); } }; template <> class SquaredDistancePixelConversion { public: typedef FloatRGB PixelType; inline static PixelType convert(const MultiDistance &sqDistance, double range) { PixelType pixel; pixel.r = float(sign(sqDistance.r)*sqrt(fabs(sqDistance.r))/range+.5); pixel.g = float(sign(sqDistance.g)*sqrt(fabs(sqDistance.g))/range+.5); pixel.b = float(sign(sqDistance.b)*sqrt(fabs(sqDistance.b))/range+.5); return pixel; } }; template void generateDistanceField(Bitmap::PixelType> &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { int w = output.width(), h = output.height(); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel #endif { ContourCombiner contourCombiner(shape); Point2 p; #ifdef MSDFGEN_USE_OPENMP #pragma omp for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; p.y = (y+.5)/scale.y-translate.y; for (int x = 0; x < w; ++x) { p.x = (x+.5)/scale.x-translate.x; contourCombiner.reset(p); for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) { if (!contour->edges.empty()) { ContourCombiner::EdgeSelectorType edgeSelector(p); const EdgeSegment *prevEdge = contour->edges.size() >= 2 ? *(contour->edges.end()-2) : *contour->edges.begin(); const EdgeSegment *curEdge = contour->edges.back(); for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { const EdgeSegment *nextEdge = *edge; edgeSelector.addEdge(prevEdge, curEdge, nextEdge); prevEdge = curEdge; curEdge = nextEdge; } contourCombiner.setContourEdgeSelection(int(contour-shape.contours.begin()), edgeSelector); } } ContourCombiner::DistanceType sqDistance = contourCombiner.squaredDistance(); output(x, row) = SquaredDistancePixelConversion::convert(sqDistance, range); } } } } void generateSDF(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, bool overlapSupport) { if (overlapSupport) generateDistanceField >(output, shape, range, scale, translate); else generateDistanceField >(output, shape, range, scale, translate); } void generatePseudoSDF(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, bool overlapSupport) { if (overlapSupport) generateDistanceField >(output, shape, range, scale, translate); else generateDistanceField >(output, shape, range, scale, translate); } void generateMSDF(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, double edgeThreshold, bool overlapSupport) { if (overlapSupport) generateDistanceField >(output, shape, range, scale, translate); else generateDistanceField >(output, shape, range, scale, translate); if (edgeThreshold > 0) msdfErrorCorrection(output, edgeThreshold/(scale*range)); } inline static bool detectClash(const FloatRGB &a, const FloatRGB &b, double threshold) { // Sort channels so that pairs (a0, b0), (a1, b1), (a2, b2) go from biggest to smallest absolute difference float a0 = a.r, a1 = a.g, a2 = a.b; float b0 = b.r, b1 = b.g, b2 = b.b; float tmp; if (fabsf(b0-a0) < fabsf(b1-a1)) { tmp = a0, a0 = a1, a1 = tmp; tmp = b0, b0 = b1, b1 = tmp; } if (fabsf(b1-a1) < fabsf(b2-a2)) { tmp = a1, a1 = a2, a2 = tmp; tmp = b1, b1 = b2, b2 = tmp; if (fabsf(b0-a0) < fabsf(b1-a1)) { tmp = a0, a0 = a1, a1 = tmp; tmp = b0, b0 = b1, b1 = tmp; } } return (fabsf(b1-a1) >= threshold) && !(b0 == b1 && b0 == b2) && // Ignore if other pixel has been equalized fabsf(a2-.5f) >= fabsf(b2-.5f); // Out of the pair, only flag the pixel farther from a shape edge } void msdfErrorCorrection(Bitmap &output, const Vector2 &threshold) { std::vector > clashes; int w = output.width(), h = output.height(); for (int y = 0; y < h; ++y) for (int x = 0; x < w; ++x) { if ( (x > 0 && detectClash(output(x, y), output(x-1, y), threshold.x)) || (x < w-1 && detectClash(output(x, y), output(x+1, y), threshold.x)) || (y > 0 && detectClash(output(x, y), output(x, y-1), threshold.y)) || (y < h-1 && detectClash(output(x, y), output(x, y+1), threshold.y)) ) clashes.push_back(std::make_pair(x, y)); } for (std::vector >::const_iterator clash = clashes.begin(); clash != clashes.end(); ++clash) { FloatRGB &pixel = output(clash->first, clash->second); float med = median(pixel.r, pixel.g, pixel.b); pixel.r = med, pixel.g = med, pixel.b = med; } #ifndef MSDFGEN_NO_DIAGONAL_CLASH_DETECTION clashes.clear(); for (int y = 0; y < h; ++y) for (int x = 0; x < w; ++x) { if ( (x > 0 && y > 0 && detectClash(output(x, y), output(x-1, y-1), threshold.x+threshold.y)) || (x < w-1 && y > 0 && detectClash(output(x, y), output(x+1, y-1), threshold.x+threshold.y)) || (x > 0 && y < h-1 && detectClash(output(x, y), output(x-1, y+1), threshold.x+threshold.y)) || (x < w-1 && y < h-1 && detectClash(output(x, y), output(x+1, y+1), threshold.x+threshold.y)) ) clashes.push_back(std::make_pair(x, y)); } for (std::vector >::const_iterator clash = clashes.begin(); clash != clashes.end(); ++clash) { FloatRGB &pixel = output(clash->first, clash->second); float med = median(pixel.r, pixel.g, pixel.b); pixel.r = med, pixel.g = med, pixel.b = med; } #endif } // Legacy version void generateSDF_legacy(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { int w = output.width(), h = output.height(); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; for (int x = 0; x < w; ++x) { double dummy; Point2 p = Vector2(x+.5, y+.5)/scale-translate; SignedDistance minDistance; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { SignedDistance distance = (*edge)->signedDistance(p, dummy); if (distance < minDistance) minDistance = distance; } output(x, row) = float(minDistance.distance()/range+.5); } } } void generatePseudoSDF_legacy(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate) { int w = output.width(), h = output.height(); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; for (int x = 0; x < w; ++x) { Point2 p = Vector2(x+.5, y+.5)/scale-translate; SignedDistance minDistance; const EdgeHolder *nearEdge = NULL; double nearParam = 0; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { double param; SignedDistance distance = (*edge)->signedDistance(p, param); if (distance < minDistance) { minDistance = distance; nearEdge = &*edge; nearParam = param; } } if (nearEdge) (*nearEdge)->distanceToPseudoDistance(minDistance, p, nearParam); output(x, row) = float(minDistance.distance()/range+.5); } } } void generateMSDF_legacy(Bitmap &output, const Shape &shape, double range, const Vector2 &scale, const Vector2 &translate, double edgeThreshold) { int w = output.width(), h = output.height(); #ifdef MSDFGEN_USE_OPENMP #pragma omp parallel for #endif for (int y = 0; y < h; ++y) { int row = shape.inverseYAxis ? h-y-1 : y; for (int x = 0; x < w; ++x) { Point2 p = Vector2(x+.5, y+.5)/scale-translate; struct { SignedDistance minDistance; const EdgeHolder *nearEdge; double nearParam; } r, g, b; r.nearEdge = g.nearEdge = b.nearEdge = NULL; r.nearParam = g.nearParam = b.nearParam = 0; for (std::vector::const_iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { double param; SignedDistance distance = (*edge)->signedDistance(p, param); if ((*edge)->color&RED && distance < r.minDistance) { r.minDistance = distance; r.nearEdge = &*edge; r.nearParam = param; } if ((*edge)->color&GREEN && distance < g.minDistance) { g.minDistance = distance; g.nearEdge = &*edge; g.nearParam = param; } if ((*edge)->color&BLUE && distance < b.minDistance) { b.minDistance = distance; b.nearEdge = &*edge; b.nearParam = param; } } if (r.nearEdge) (*r.nearEdge)->distanceToPseudoDistance(r.minDistance, p, r.nearParam); if (g.nearEdge) (*g.nearEdge)->distanceToPseudoDistance(g.minDistance, p, g.nearParam); if (b.nearEdge) (*b.nearEdge)->distanceToPseudoDistance(b.minDistance, p, b.nearParam); output(x, row).r = float(r.minDistance.distance()/range+.5); output(x, row).g = float(g.minDistance.distance()/range+.5); output(x, row).b = float(b.minDistance.distance()/range+.5); } } if (edgeThreshold > 0) msdfErrorCorrection(output, edgeThreshold/(scale*range)); } }