2
0

edge-coloring.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501
  1. #include "edge-coloring.h"
  2. #include <cstdlib>
  3. #include <cmath>
  4. #include <cstring>
  5. #include <cfloat>
  6. #include <vector>
  7. #include <queue>
  8. #include "arithmetics.hpp"
  9. namespace msdfgen {
  10. static bool isCorner(const Vector2 &aDir, const Vector2 &bDir, double crossThreshold) {
  11. return dotProduct(aDir, bDir) <= 0 || fabs(crossProduct(aDir, bDir)) > crossThreshold;
  12. }
  13. static double estimateEdgeLength(const EdgeSegment *edge) {
  14. double len = 0;
  15. Point2 prev = edge->point(0);
  16. for (int i = 1; i <= MSDFGEN_EDGE_LENGTH_PRECISION; ++i) {
  17. Point2 cur = edge->point(1./MSDFGEN_EDGE_LENGTH_PRECISION*i);
  18. len += (cur-prev).length();
  19. prev = cur;
  20. }
  21. return len;
  22. }
  23. static void switchColor(EdgeColor &color, unsigned long long &seed, EdgeColor banned = BLACK) {
  24. EdgeColor combined = EdgeColor(color&banned);
  25. if (combined == RED || combined == GREEN || combined == BLUE) {
  26. color = EdgeColor(combined^WHITE);
  27. return;
  28. }
  29. if (color == BLACK || color == WHITE) {
  30. static const EdgeColor start[3] = { CYAN, MAGENTA, YELLOW };
  31. color = start[seed%3];
  32. seed /= 3;
  33. return;
  34. }
  35. int shifted = color<<(1+(seed&1));
  36. color = EdgeColor((shifted|shifted>>3)&WHITE);
  37. seed >>= 1;
  38. }
  39. void edgeColoringSimple(Shape &shape, double angleThreshold, unsigned long long seed) {
  40. double crossThreshold = sin(angleThreshold);
  41. std::vector<int> corners;
  42. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
  43. // Identify corners
  44. corners.clear();
  45. if (!contour->edges.empty()) {
  46. Vector2 prevDirection = contour->edges.back()->direction(1);
  47. int index = 0;
  48. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  49. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
  50. corners.push_back(index);
  51. prevDirection = (*edge)->direction(1);
  52. }
  53. }
  54. // Smooth contour
  55. if (corners.empty())
  56. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  57. (*edge)->color = WHITE;
  58. // "Teardrop" case
  59. else if (corners.size() == 1) {
  60. EdgeColor colors[3] = { WHITE, WHITE };
  61. switchColor(colors[0], seed);
  62. switchColor(colors[2] = colors[0], seed);
  63. int corner = corners[0];
  64. if (contour->edges.size() >= 3) {
  65. int m = (int) contour->edges.size();
  66. for (int i = 0; i < m; ++i)
  67. contour->edges[(corner+i)%m]->color = (colors+1)[int(3+2.875*i/(m-1)-1.4375+.5)-3];
  68. } else if (contour->edges.size() >= 1) {
  69. // Less than three edge segments for three colors => edges must be split
  70. EdgeSegment *parts[7] = { };
  71. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  72. if (contour->edges.size() >= 2) {
  73. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  74. parts[0]->color = parts[1]->color = colors[0];
  75. parts[2]->color = parts[3]->color = colors[1];
  76. parts[4]->color = parts[5]->color = colors[2];
  77. } else {
  78. parts[0]->color = colors[0];
  79. parts[1]->color = colors[1];
  80. parts[2]->color = colors[2];
  81. }
  82. contour->edges.clear();
  83. for (int i = 0; parts[i]; ++i)
  84. contour->edges.push_back(EdgeHolder(parts[i]));
  85. }
  86. }
  87. // Multiple corners
  88. else {
  89. int cornerCount = (int) corners.size();
  90. int spline = 0;
  91. int start = corners[0];
  92. int m = (int) contour->edges.size();
  93. EdgeColor color = WHITE;
  94. switchColor(color, seed);
  95. EdgeColor initialColor = color;
  96. for (int i = 0; i < m; ++i) {
  97. int index = (start+i)%m;
  98. if (spline+1 < cornerCount && corners[spline+1] == index) {
  99. ++spline;
  100. switchColor(color, seed, EdgeColor((spline == cornerCount-1)*initialColor));
  101. }
  102. contour->edges[index]->color = color;
  103. }
  104. }
  105. }
  106. }
  107. struct EdgeColoringInkTrapCorner {
  108. int index;
  109. double prevEdgeLengthEstimate;
  110. bool minor;
  111. EdgeColor color;
  112. };
  113. void edgeColoringInkTrap(Shape &shape, double angleThreshold, unsigned long long seed) {
  114. typedef EdgeColoringInkTrapCorner Corner;
  115. double crossThreshold = sin(angleThreshold);
  116. std::vector<Corner> corners;
  117. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
  118. // Identify corners
  119. double splineLength = 0;
  120. corners.clear();
  121. if (!contour->edges.empty()) {
  122. Vector2 prevDirection = contour->edges.back()->direction(1);
  123. int index = 0;
  124. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  125. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold)) {
  126. Corner corner = { index, splineLength };
  127. corners.push_back(corner);
  128. splineLength = 0;
  129. }
  130. splineLength += estimateEdgeLength(*edge);
  131. prevDirection = (*edge)->direction(1);
  132. }
  133. }
  134. // Smooth contour
  135. if (corners.empty())
  136. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  137. (*edge)->color = WHITE;
  138. // "Teardrop" case
  139. else if (corners.size() == 1) {
  140. EdgeColor colors[3] = { WHITE, WHITE };
  141. switchColor(colors[0], seed);
  142. switchColor(colors[2] = colors[0], seed);
  143. int corner = corners[0].index;
  144. if (contour->edges.size() >= 3) {
  145. int m = (int) contour->edges.size();
  146. for (int i = 0; i < m; ++i)
  147. contour->edges[(corner+i)%m]->color = (colors+1)[int(3+2.875*i/(m-1)-1.4375+.5)-3];
  148. } else if (contour->edges.size() >= 1) {
  149. // Less than three edge segments for three colors => edges must be split
  150. EdgeSegment *parts[7] = { };
  151. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  152. if (contour->edges.size() >= 2) {
  153. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  154. parts[0]->color = parts[1]->color = colors[0];
  155. parts[2]->color = parts[3]->color = colors[1];
  156. parts[4]->color = parts[5]->color = colors[2];
  157. } else {
  158. parts[0]->color = colors[0];
  159. parts[1]->color = colors[1];
  160. parts[2]->color = colors[2];
  161. }
  162. contour->edges.clear();
  163. for (int i = 0; parts[i]; ++i)
  164. contour->edges.push_back(EdgeHolder(parts[i]));
  165. }
  166. }
  167. // Multiple corners
  168. else {
  169. int cornerCount = (int) corners.size();
  170. int majorCornerCount = cornerCount;
  171. if (cornerCount > 3) {
  172. corners.begin()->prevEdgeLengthEstimate += splineLength;
  173. for (int i = 0; i < cornerCount; ++i) {
  174. if (
  175. corners[i].prevEdgeLengthEstimate > corners[(i+1)%cornerCount].prevEdgeLengthEstimate &&
  176. corners[(i+1)%cornerCount].prevEdgeLengthEstimate < corners[(i+2)%cornerCount].prevEdgeLengthEstimate
  177. ) {
  178. corners[i].minor = true;
  179. --majorCornerCount;
  180. }
  181. }
  182. }
  183. EdgeColor color = WHITE;
  184. EdgeColor initialColor = BLACK;
  185. for (int i = 0; i < cornerCount; ++i) {
  186. if (!corners[i].minor) {
  187. --majorCornerCount;
  188. switchColor(color, seed, EdgeColor(!majorCornerCount*initialColor));
  189. corners[i].color = color;
  190. if (!initialColor)
  191. initialColor = color;
  192. }
  193. }
  194. for (int i = 0; i < cornerCount; ++i) {
  195. if (corners[i].minor) {
  196. EdgeColor nextColor = corners[(i+1)%cornerCount].color;
  197. corners[i].color = EdgeColor((color&nextColor)^WHITE);
  198. } else
  199. color = corners[i].color;
  200. }
  201. int spline = 0;
  202. int start = corners[0].index;
  203. color = corners[0].color;
  204. int m = (int) contour->edges.size();
  205. for (int i = 0; i < m; ++i) {
  206. int index = (start+i)%m;
  207. if (spline+1 < cornerCount && corners[spline+1].index == index)
  208. color = corners[++spline].color;
  209. contour->edges[index]->color = color;
  210. }
  211. }
  212. }
  213. }
  214. // EDGE COLORING BY DISTANCE - EXPERIMENTAL IMPLEMENTATION - WORK IN PROGRESS
  215. #define MAX_RECOLOR_STEPS 16
  216. #define EDGE_DISTANCE_PRECISION 16
  217. static double edgeToEdgeDistance(const EdgeSegment &a, const EdgeSegment &b, int precision) {
  218. if (a.point(0) == b.point(0) || a.point(0) == b.point(1) || a.point(1) == b.point(0) || a.point(1) == b.point(1))
  219. return 0;
  220. double iFac = 1./precision;
  221. double minDistance = (b.point(0)-a.point(0)).length();
  222. for (int i = 0; i <= precision; ++i) {
  223. double t = iFac*i;
  224. double d = fabs(a.signedDistance(b.point(t), t).distance);
  225. minDistance = min(minDistance, d);
  226. }
  227. for (int i = 0; i <= precision; ++i) {
  228. double t = iFac*i;
  229. double d = fabs(b.signedDistance(a.point(t), t).distance);
  230. minDistance = min(minDistance, d);
  231. }
  232. return minDistance;
  233. }
  234. static double splineToSplineDistance(EdgeSegment *const *edgeSegments, int aStart, int aEnd, int bStart, int bEnd, int precision) {
  235. double minDistance = DBL_MAX;
  236. for (int ai = aStart; ai < aEnd; ++ai)
  237. for (int bi = bStart; bi < bEnd && minDistance; ++bi) {
  238. double d = edgeToEdgeDistance(*edgeSegments[ai], *edgeSegments[bi], precision);
  239. minDistance = min(minDistance, d);
  240. }
  241. return minDistance;
  242. }
  243. static void colorSecondDegreeGraph(int *coloring, const int *const *edgeMatrix, int vertexCount, unsigned long long seed) {
  244. for (int i = 0; i < vertexCount; ++i) {
  245. int possibleColors = 7;
  246. for (int j = 0; j < i; ++j) {
  247. if (edgeMatrix[i][j])
  248. possibleColors &= ~(1<<coloring[j]);
  249. }
  250. int color = 0;
  251. switch (possibleColors) {
  252. case 1:
  253. color = 0;
  254. break;
  255. case 2:
  256. color = 1;
  257. break;
  258. case 3:
  259. color = (int) seed&1;
  260. seed >>= 1;
  261. break;
  262. case 4:
  263. color = 2;
  264. break;
  265. case 5:
  266. color = ((int) seed+1&1)<<1;
  267. seed >>= 1;
  268. break;
  269. case 6:
  270. color = ((int) seed&1)+1;
  271. seed >>= 1;
  272. break;
  273. case 7:
  274. color = int((seed+i)%3);
  275. seed /= 3;
  276. break;
  277. }
  278. coloring[i] = color;
  279. }
  280. }
  281. static int vertexPossibleColors(const int *coloring, const int *edgeVector, int vertexCount) {
  282. int usedColors = 0;
  283. for (int i = 0; i < vertexCount; ++i)
  284. if (edgeVector[i])
  285. usedColors |= 1<<coloring[i];
  286. return 7&~usedColors;
  287. }
  288. static void uncolorSameNeighbors(std::queue<int> &uncolored, int *coloring, const int *const *edgeMatrix, int vertex, int vertexCount) {
  289. for (int i = vertex+1; i < vertexCount; ++i) {
  290. if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
  291. coloring[i] = -1;
  292. uncolored.push(i);
  293. }
  294. }
  295. for (int i = 0; i < vertex; ++i) {
  296. if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
  297. coloring[i] = -1;
  298. uncolored.push(i);
  299. }
  300. }
  301. }
  302. static bool tryAddEdge(int *coloring, int *const *edgeMatrix, int vertexCount, int vertexA, int vertexB, int *coloringBuffer) {
  303. static const int FIRST_POSSIBLE_COLOR[8] = { -1, 0, 1, 0, 2, 2, 1, 0 };
  304. edgeMatrix[vertexA][vertexB] = 1;
  305. edgeMatrix[vertexB][vertexA] = 1;
  306. if (coloring[vertexA] != coloring[vertexB])
  307. return true;
  308. int bPossibleColors = vertexPossibleColors(coloring, edgeMatrix[vertexB], vertexCount);
  309. if (bPossibleColors) {
  310. coloring[vertexB] = FIRST_POSSIBLE_COLOR[bPossibleColors];
  311. return true;
  312. }
  313. memcpy(coloringBuffer, coloring, sizeof(int)*vertexCount);
  314. std::queue<int> uncolored;
  315. {
  316. int *coloring = coloringBuffer;
  317. coloring[vertexB] = FIRST_POSSIBLE_COLOR[7&~(1<<coloring[vertexA])];
  318. uncolorSameNeighbors(uncolored, coloring, edgeMatrix, vertexB, vertexCount);
  319. int step = 0;
  320. while (!uncolored.empty() && step < MAX_RECOLOR_STEPS) {
  321. int i = uncolored.front();
  322. uncolored.pop();
  323. int possibleColors = vertexPossibleColors(coloring, edgeMatrix[i], vertexCount);
  324. if (possibleColors) {
  325. coloring[i] = FIRST_POSSIBLE_COLOR[possibleColors];
  326. continue;
  327. }
  328. do {
  329. coloring[i] = step++%3;
  330. } while (edgeMatrix[i][vertexA] && coloring[i] == coloring[vertexA]);
  331. uncolorSameNeighbors(uncolored, coloring, edgeMatrix, i, vertexCount);
  332. }
  333. }
  334. if (!uncolored.empty()) {
  335. edgeMatrix[vertexA][vertexB] = 0;
  336. edgeMatrix[vertexB][vertexA] = 0;
  337. return false;
  338. }
  339. memcpy(coloring, coloringBuffer, sizeof(int)*vertexCount);
  340. return true;
  341. }
  342. static int cmpDoublePtr(const void *a, const void *b) {
  343. return sign(**reinterpret_cast<const double *const *>(a)-**reinterpret_cast<const double *const *>(b));
  344. }
  345. void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long long seed) {
  346. std::vector<EdgeSegment *> edgeSegments;
  347. std::vector<int> splineStarts;
  348. double crossThreshold = sin(angleThreshold);
  349. std::vector<int> corners;
  350. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour)
  351. if (!contour->edges.empty()) {
  352. // Identify corners
  353. corners.clear();
  354. Vector2 prevDirection = contour->edges.back()->direction(1);
  355. int index = 0;
  356. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  357. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
  358. corners.push_back(index);
  359. prevDirection = (*edge)->direction(1);
  360. }
  361. splineStarts.push_back((int) edgeSegments.size());
  362. // Smooth contour
  363. if (corners.empty())
  364. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  365. edgeSegments.push_back(&**edge);
  366. // "Teardrop" case
  367. else if (corners.size() == 1) {
  368. int corner = corners[0];
  369. if (contour->edges.size() >= 3) {
  370. int m = (int) contour->edges.size();
  371. for (int i = 0; i < m; ++i) {
  372. if (i == m/2)
  373. splineStarts.push_back((int) edgeSegments.size());
  374. if (int(3+2.875*i/(m-1)-1.4375+.5)-3)
  375. edgeSegments.push_back(&*contour->edges[(corner+i)%m]);
  376. else
  377. contour->edges[(corner+i)%m]->color = WHITE;
  378. }
  379. } else if (contour->edges.size() >= 1) {
  380. // Less than three edge segments for three colors => edges must be split
  381. EdgeSegment *parts[7] = { };
  382. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  383. if (contour->edges.size() >= 2) {
  384. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  385. edgeSegments.push_back(parts[0]);
  386. edgeSegments.push_back(parts[1]);
  387. parts[2]->color = parts[3]->color = WHITE;
  388. splineStarts.push_back((int) edgeSegments.size());
  389. edgeSegments.push_back(parts[4]);
  390. edgeSegments.push_back(parts[5]);
  391. } else {
  392. edgeSegments.push_back(parts[0]);
  393. parts[1]->color = WHITE;
  394. splineStarts.push_back((int) edgeSegments.size());
  395. edgeSegments.push_back(parts[2]);
  396. }
  397. contour->edges.clear();
  398. for (int i = 0; parts[i]; ++i)
  399. contour->edges.push_back(EdgeHolder(parts[i]));
  400. }
  401. }
  402. // Multiple corners
  403. else {
  404. int cornerCount = (int) corners.size();
  405. int spline = 0;
  406. int start = corners[0];
  407. int m = (int) contour->edges.size();
  408. for (int i = 0; i < m; ++i) {
  409. int index = (start+i)%m;
  410. if (spline+1 < cornerCount && corners[spline+1] == index) {
  411. splineStarts.push_back((int) edgeSegments.size());
  412. ++spline;
  413. }
  414. edgeSegments.push_back(&*contour->edges[index]);
  415. }
  416. }
  417. }
  418. splineStarts.push_back((int) edgeSegments.size());
  419. int segmentCount = (int) edgeSegments.size();
  420. int splineCount = (int) splineStarts.size()-1;
  421. if (!splineCount)
  422. return;
  423. std::vector<double> distanceMatrixStorage(splineCount*splineCount);
  424. std::vector<double *> distanceMatrix(splineCount);
  425. for (int i = 0; i < splineCount; ++i)
  426. distanceMatrix[i] = &distanceMatrixStorage[i*splineCount];
  427. const double *distanceMatrixBase = &distanceMatrixStorage[0];
  428. for (int i = 0; i < splineCount; ++i) {
  429. distanceMatrix[i][i] = -1;
  430. for (int j = i+1; j < splineCount; ++j) {
  431. double dist = splineToSplineDistance(&edgeSegments[0], splineStarts[i], splineStarts[i+1], splineStarts[j], splineStarts[j+1], EDGE_DISTANCE_PRECISION);
  432. distanceMatrix[i][j] = dist;
  433. distanceMatrix[j][i] = dist;
  434. }
  435. }
  436. std::vector<const double *> graphEdgeDistances;
  437. graphEdgeDistances.reserve(splineCount*(splineCount-1)/2);
  438. for (int i = 0; i < splineCount; ++i)
  439. for (int j = i+1; j < splineCount; ++j)
  440. graphEdgeDistances.push_back(&distanceMatrix[i][j]);
  441. int graphEdgeCount = (int) graphEdgeDistances.size();
  442. if (!graphEdgeDistances.empty())
  443. qsort(&graphEdgeDistances[0], graphEdgeDistances.size(), sizeof(const double *), &cmpDoublePtr);
  444. std::vector<int> edgeMatrixStorage(splineCount*splineCount);
  445. std::vector<int *> edgeMatrix(splineCount);
  446. for (int i = 0; i < splineCount; ++i)
  447. edgeMatrix[i] = &edgeMatrixStorage[i*splineCount];
  448. int nextEdge = 0;
  449. for (; nextEdge < graphEdgeCount && !*graphEdgeDistances[nextEdge]; ++nextEdge) {
  450. int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
  451. int row = elem/splineCount;
  452. int col = elem%splineCount;
  453. edgeMatrix[row][col] = 1;
  454. edgeMatrix[col][row] = 1;
  455. }
  456. std::vector<int> coloring(2*splineCount);
  457. colorSecondDegreeGraph(&coloring[0], &edgeMatrix[0], splineCount, seed);
  458. for (; nextEdge < graphEdgeCount; ++nextEdge) {
  459. int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
  460. tryAddEdge(&coloring[0], &edgeMatrix[0], splineCount, elem/splineCount, elem%splineCount, &coloring[splineCount]);
  461. }
  462. const EdgeColor colors[3] = { YELLOW, CYAN, MAGENTA };
  463. int spline = -1;
  464. for (int i = 0; i < segmentCount; ++i) {
  465. if (splineStarts[spline+1] == i)
  466. ++spline;
  467. edgeSegments[i]->color = colors[coloring[spline]];
  468. }
  469. }
  470. }