123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 |
- #include "edge-coloring.h"
- #include <cstdlib>
- #include <cmath>
- #include <cstring>
- #include <cfloat>
- #include <vector>
- #include <queue>
- #include "arithmetics.hpp"
- namespace msdfgen {
- /**
- * For each position < n, this function will return -1, 0, or 1,
- * depending on whether the position is closer to the beginning, middle, or end, respectively.
- * It is guaranteed that the output will be balanced in that the total for positions 0 through n-1 will be zero.
- */
- static int symmetricalTrichotomy(int position, int n) {
- return int(3+2.875*position/(n-1)-1.4375+.5)-3;
- }
- static bool isCorner(const Vector2 &aDir, const Vector2 &bDir, double crossThreshold) {
- return dotProduct(aDir, bDir) <= 0 || fabs(crossProduct(aDir, bDir)) > crossThreshold;
- }
- static double estimateEdgeLength(const EdgeSegment *edge) {
- double len = 0;
- Point2 prev = edge->point(0);
- for (int i = 1; i <= MSDFGEN_EDGE_LENGTH_PRECISION; ++i) {
- Point2 cur = edge->point(1./MSDFGEN_EDGE_LENGTH_PRECISION*i);
- len += (cur-prev).length();
- prev = cur;
- }
- return len;
- }
- static int seedExtract2(unsigned long long &seed) {
- int v = int(seed)&1;
- seed >>= 1;
- return v;
- }
- static int seedExtract3(unsigned long long &seed) {
- int v = int(seed%3);
- seed /= 3;
- return v;
- }
- static EdgeColor initColor(unsigned long long &seed) {
- static const EdgeColor colors[3] = { CYAN, MAGENTA, YELLOW };
- return colors[seedExtract3(seed)];
- }
- static void switchColor(EdgeColor &color, unsigned long long &seed) {
- int shifted = color<<(1+seedExtract2(seed));
- color = EdgeColor((shifted|shifted>>3)&WHITE);
- }
- static void switchColor(EdgeColor &color, unsigned long long &seed, EdgeColor banned) {
- EdgeColor combined = EdgeColor(color&banned);
- if (combined == RED || combined == GREEN || combined == BLUE)
- color = EdgeColor(combined^WHITE);
- else
- switchColor(color, seed);
- }
- void edgeColoringSimple(Shape &shape, double angleThreshold, unsigned long long seed) {
- double crossThreshold = sin(angleThreshold);
- EdgeColor color = initColor(seed);
- std::vector<int> corners;
- for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
- if (contour->edges.empty())
- continue;
- { // Identify corners
- corners.clear();
- Vector2 prevDirection = contour->edges.back()->direction(1);
- int index = 0;
- for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
- if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
- corners.push_back(index);
- prevDirection = (*edge)->direction(1);
- }
- }
- // Smooth contour
- if (corners.empty()) {
- switchColor(color, seed);
- for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
- (*edge)->color = color;
- }
- // "Teardrop" case
- else if (corners.size() == 1) {
- EdgeColor colors[3];
- switchColor(color, seed);
- colors[0] = color;
- colors[1] = WHITE;
- switchColor(color, seed);
- colors[2] = color;
- int corner = corners[0];
- if (contour->edges.size() >= 3) {
- int m = (int) contour->edges.size();
- for (int i = 0; i < m; ++i)
- contour->edges[(corner+i)%m]->color = colors[1+symmetricalTrichotomy(i, m)];
- } else if (contour->edges.size() >= 1) {
- // Less than three edge segments for three colors => edges must be split
- EdgeSegment *parts[7] = { };
- contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
- if (contour->edges.size() >= 2) {
- contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
- parts[0]->color = parts[1]->color = colors[0];
- parts[2]->color = parts[3]->color = colors[1];
- parts[4]->color = parts[5]->color = colors[2];
- } else {
- parts[0]->color = colors[0];
- parts[1]->color = colors[1];
- parts[2]->color = colors[2];
- }
- contour->edges.clear();
- for (int i = 0; parts[i]; ++i)
- contour->edges.push_back(EdgeHolder(parts[i]));
- }
- }
- // Multiple corners
- else {
- int cornerCount = (int) corners.size();
- int spline = 0;
- int start = corners[0];
- int m = (int) contour->edges.size();
- switchColor(color, seed);
- EdgeColor initialColor = color;
- for (int i = 0; i < m; ++i) {
- int index = (start+i)%m;
- if (spline+1 < cornerCount && corners[spline+1] == index) {
- ++spline;
- switchColor(color, seed, EdgeColor((spline == cornerCount-1)*initialColor));
- }
- contour->edges[index]->color = color;
- }
- }
- }
- }
- struct EdgeColoringInkTrapCorner {
- int index;
- double prevEdgeLengthEstimate;
- bool minor;
- EdgeColor color;
- };
- void edgeColoringInkTrap(Shape &shape, double angleThreshold, unsigned long long seed) {
- typedef EdgeColoringInkTrapCorner Corner;
- double crossThreshold = sin(angleThreshold);
- EdgeColor color = initColor(seed);
- std::vector<Corner> corners;
- for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
- if (contour->edges.empty())
- continue;
- double splineLength = 0;
- { // Identify corners
- corners.clear();
- Vector2 prevDirection = contour->edges.back()->direction(1);
- int index = 0;
- for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
- if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold)) {
- Corner corner = { index, splineLength };
- corners.push_back(corner);
- splineLength = 0;
- }
- splineLength += estimateEdgeLength(*edge);
- prevDirection = (*edge)->direction(1);
- }
- }
- // Smooth contour
- if (corners.empty()) {
- switchColor(color, seed);
- for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
- (*edge)->color = color;
- }
- // "Teardrop" case
- else if (corners.size() == 1) {
- EdgeColor colors[3];
- switchColor(color, seed);
- colors[0] = color;
- colors[1] = WHITE;
- switchColor(color, seed);
- colors[2] = color;
- int corner = corners[0].index;
- if (contour->edges.size() >= 3) {
- int m = (int) contour->edges.size();
- for (int i = 0; i < m; ++i)
- contour->edges[(corner+i)%m]->color = colors[1+symmetricalTrichotomy(i, m)];
- } else if (contour->edges.size() >= 1) {
- // Less than three edge segments for three colors => edges must be split
- EdgeSegment *parts[7] = { };
- contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
- if (contour->edges.size() >= 2) {
- contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
- parts[0]->color = parts[1]->color = colors[0];
- parts[2]->color = parts[3]->color = colors[1];
- parts[4]->color = parts[5]->color = colors[2];
- } else {
- parts[0]->color = colors[0];
- parts[1]->color = colors[1];
- parts[2]->color = colors[2];
- }
- contour->edges.clear();
- for (int i = 0; parts[i]; ++i)
- contour->edges.push_back(EdgeHolder(parts[i]));
- }
- }
- // Multiple corners
- else {
- int cornerCount = (int) corners.size();
- int majorCornerCount = cornerCount;
- if (cornerCount > 3) {
- corners.begin()->prevEdgeLengthEstimate += splineLength;
- for (int i = 0; i < cornerCount; ++i) {
- if (
- corners[i].prevEdgeLengthEstimate > corners[(i+1)%cornerCount].prevEdgeLengthEstimate &&
- corners[(i+1)%cornerCount].prevEdgeLengthEstimate < corners[(i+2)%cornerCount].prevEdgeLengthEstimate
- ) {
- corners[i].minor = true;
- --majorCornerCount;
- }
- }
- }
- EdgeColor initialColor = BLACK;
- for (int i = 0; i < cornerCount; ++i) {
- if (!corners[i].minor) {
- --majorCornerCount;
- switchColor(color, seed, EdgeColor(!majorCornerCount*initialColor));
- corners[i].color = color;
- if (!initialColor)
- initialColor = color;
- }
- }
- for (int i = 0; i < cornerCount; ++i) {
- if (corners[i].minor) {
- EdgeColor nextColor = corners[(i+1)%cornerCount].color;
- corners[i].color = EdgeColor((color&nextColor)^WHITE);
- } else
- color = corners[i].color;
- }
- int spline = 0;
- int start = corners[0].index;
- color = corners[0].color;
- int m = (int) contour->edges.size();
- for (int i = 0; i < m; ++i) {
- int index = (start+i)%m;
- if (spline+1 < cornerCount && corners[spline+1].index == index)
- color = corners[++spline].color;
- contour->edges[index]->color = color;
- }
- }
- }
- }
- // EDGE COLORING BY DISTANCE - EXPERIMENTAL IMPLEMENTATION - WORK IN PROGRESS
- #define MAX_RECOLOR_STEPS 16
- #define EDGE_DISTANCE_PRECISION 16
- static double edgeToEdgeDistance(const EdgeSegment &a, const EdgeSegment &b, int precision) {
- if (a.point(0) == b.point(0) || a.point(0) == b.point(1) || a.point(1) == b.point(0) || a.point(1) == b.point(1))
- return 0;
- double iFac = 1./precision;
- double minDistance = (b.point(0)-a.point(0)).length();
- for (int i = 0; i <= precision; ++i) {
- double t = iFac*i;
- double d = fabs(a.signedDistance(b.point(t), t).distance);
- minDistance = min(minDistance, d);
- }
- for (int i = 0; i <= precision; ++i) {
- double t = iFac*i;
- double d = fabs(b.signedDistance(a.point(t), t).distance);
- minDistance = min(minDistance, d);
- }
- return minDistance;
- }
- static double splineToSplineDistance(EdgeSegment *const *edgeSegments, int aStart, int aEnd, int bStart, int bEnd, int precision) {
- double minDistance = DBL_MAX;
- for (int ai = aStart; ai < aEnd; ++ai)
- for (int bi = bStart; bi < bEnd && minDistance; ++bi) {
- double d = edgeToEdgeDistance(*edgeSegments[ai], *edgeSegments[bi], precision);
- minDistance = min(minDistance, d);
- }
- return minDistance;
- }
- static void colorSecondDegreeGraph(int *coloring, const int *const *edgeMatrix, int vertexCount, unsigned long long seed) {
- for (int i = 0; i < vertexCount; ++i) {
- int possibleColors = 7;
- for (int j = 0; j < i; ++j) {
- if (edgeMatrix[i][j])
- possibleColors &= ~(1<<coloring[j]);
- }
- int color = 0;
- switch (possibleColors) {
- case 1:
- color = 0;
- break;
- case 2:
- color = 1;
- break;
- case 3:
- color = seedExtract2(seed); // 0 or 1
- break;
- case 4:
- color = 2;
- break;
- case 5:
- color = (int) !seedExtract2(seed)<<1; // 2 or 0
- break;
- case 6:
- color = seedExtract2(seed)+1; // 1 or 2
- break;
- case 7:
- color = (seedExtract3(seed)+i)%3; // 0 or 1 or 2
- break;
- }
- coloring[i] = color;
- }
- }
- static int vertexPossibleColors(const int *coloring, const int *edgeVector, int vertexCount) {
- int usedColors = 0;
- for (int i = 0; i < vertexCount; ++i)
- if (edgeVector[i])
- usedColors |= 1<<coloring[i];
- return 7&~usedColors;
- }
- static void uncolorSameNeighbors(std::queue<int> &uncolored, int *coloring, const int *const *edgeMatrix, int vertex, int vertexCount) {
- for (int i = vertex+1; i < vertexCount; ++i) {
- if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
- coloring[i] = -1;
- uncolored.push(i);
- }
- }
- for (int i = 0; i < vertex; ++i) {
- if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
- coloring[i] = -1;
- uncolored.push(i);
- }
- }
- }
- static bool tryAddEdge(int *coloring, int *const *edgeMatrix, int vertexCount, int vertexA, int vertexB, int *coloringBuffer) {
- static const int FIRST_POSSIBLE_COLOR[8] = { -1, 0, 1, 0, 2, 2, 1, 0 };
- edgeMatrix[vertexA][vertexB] = 1;
- edgeMatrix[vertexB][vertexA] = 1;
- if (coloring[vertexA] != coloring[vertexB])
- return true;
- int bPossibleColors = vertexPossibleColors(coloring, edgeMatrix[vertexB], vertexCount);
- if (bPossibleColors) {
- coloring[vertexB] = FIRST_POSSIBLE_COLOR[bPossibleColors];
- return true;
- }
- memcpy(coloringBuffer, coloring, sizeof(int)*vertexCount);
- std::queue<int> uncolored;
- {
- int *coloring = coloringBuffer;
- coloring[vertexB] = FIRST_POSSIBLE_COLOR[7&~(1<<coloring[vertexA])];
- uncolorSameNeighbors(uncolored, coloring, edgeMatrix, vertexB, vertexCount);
- int step = 0;
- while (!uncolored.empty() && step < MAX_RECOLOR_STEPS) {
- int i = uncolored.front();
- uncolored.pop();
- int possibleColors = vertexPossibleColors(coloring, edgeMatrix[i], vertexCount);
- if (possibleColors) {
- coloring[i] = FIRST_POSSIBLE_COLOR[possibleColors];
- continue;
- }
- do {
- coloring[i] = step++%3;
- } while (edgeMatrix[i][vertexA] && coloring[i] == coloring[vertexA]);
- uncolorSameNeighbors(uncolored, coloring, edgeMatrix, i, vertexCount);
- }
- }
- if (!uncolored.empty()) {
- edgeMatrix[vertexA][vertexB] = 0;
- edgeMatrix[vertexB][vertexA] = 0;
- return false;
- }
- memcpy(coloring, coloringBuffer, sizeof(int)*vertexCount);
- return true;
- }
- static int cmpDoublePtr(const void *a, const void *b) {
- return sign(**reinterpret_cast<const double *const *>(a)-**reinterpret_cast<const double *const *>(b));
- }
- void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long long seed) {
- std::vector<EdgeSegment *> edgeSegments;
- std::vector<int> splineStarts;
- double crossThreshold = sin(angleThreshold);
- std::vector<int> corners;
- for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour)
- if (!contour->edges.empty()) {
- // Identify corners
- corners.clear();
- Vector2 prevDirection = contour->edges.back()->direction(1);
- int index = 0;
- for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
- if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
- corners.push_back(index);
- prevDirection = (*edge)->direction(1);
- }
- splineStarts.push_back((int) edgeSegments.size());
- // Smooth contour
- if (corners.empty())
- for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
- edgeSegments.push_back(&**edge);
- // "Teardrop" case
- else if (corners.size() == 1) {
- int corner = corners[0];
- if (contour->edges.size() >= 3) {
- int m = (int) contour->edges.size();
- for (int i = 0; i < m; ++i) {
- if (i == m/2)
- splineStarts.push_back((int) edgeSegments.size());
- if (symmetricalTrichotomy(i, m))
- edgeSegments.push_back(&*contour->edges[(corner+i)%m]);
- else
- contour->edges[(corner+i)%m]->color = WHITE;
- }
- } else if (contour->edges.size() >= 1) {
- // Less than three edge segments for three colors => edges must be split
- EdgeSegment *parts[7] = { };
- contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
- if (contour->edges.size() >= 2) {
- contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
- edgeSegments.push_back(parts[0]);
- edgeSegments.push_back(parts[1]);
- parts[2]->color = parts[3]->color = WHITE;
- splineStarts.push_back((int) edgeSegments.size());
- edgeSegments.push_back(parts[4]);
- edgeSegments.push_back(parts[5]);
- } else {
- edgeSegments.push_back(parts[0]);
- parts[1]->color = WHITE;
- splineStarts.push_back((int) edgeSegments.size());
- edgeSegments.push_back(parts[2]);
- }
- contour->edges.clear();
- for (int i = 0; parts[i]; ++i)
- contour->edges.push_back(EdgeHolder(parts[i]));
- }
- }
- // Multiple corners
- else {
- int cornerCount = (int) corners.size();
- int spline = 0;
- int start = corners[0];
- int m = (int) contour->edges.size();
- for (int i = 0; i < m; ++i) {
- int index = (start+i)%m;
- if (spline+1 < cornerCount && corners[spline+1] == index) {
- splineStarts.push_back((int) edgeSegments.size());
- ++spline;
- }
- edgeSegments.push_back(&*contour->edges[index]);
- }
- }
- }
- splineStarts.push_back((int) edgeSegments.size());
- int segmentCount = (int) edgeSegments.size();
- int splineCount = (int) splineStarts.size()-1;
- if (!splineCount)
- return;
- std::vector<double> distanceMatrixStorage(splineCount*splineCount);
- std::vector<double *> distanceMatrix(splineCount);
- for (int i = 0; i < splineCount; ++i)
- distanceMatrix[i] = &distanceMatrixStorage[i*splineCount];
- const double *distanceMatrixBase = &distanceMatrixStorage[0];
- for (int i = 0; i < splineCount; ++i) {
- distanceMatrix[i][i] = -1;
- for (int j = i+1; j < splineCount; ++j) {
- double dist = splineToSplineDistance(&edgeSegments[0], splineStarts[i], splineStarts[i+1], splineStarts[j], splineStarts[j+1], EDGE_DISTANCE_PRECISION);
- distanceMatrix[i][j] = dist;
- distanceMatrix[j][i] = dist;
- }
- }
- std::vector<const double *> graphEdgeDistances;
- graphEdgeDistances.reserve(splineCount*(splineCount-1)/2);
- for (int i = 0; i < splineCount; ++i)
- for (int j = i+1; j < splineCount; ++j)
- graphEdgeDistances.push_back(&distanceMatrix[i][j]);
- int graphEdgeCount = (int) graphEdgeDistances.size();
- if (!graphEdgeDistances.empty())
- qsort(&graphEdgeDistances[0], graphEdgeDistances.size(), sizeof(const double *), &cmpDoublePtr);
- std::vector<int> edgeMatrixStorage(splineCount*splineCount);
- std::vector<int *> edgeMatrix(splineCount);
- for (int i = 0; i < splineCount; ++i)
- edgeMatrix[i] = &edgeMatrixStorage[i*splineCount];
- int nextEdge = 0;
- for (; nextEdge < graphEdgeCount && !*graphEdgeDistances[nextEdge]; ++nextEdge) {
- int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
- int row = elem/splineCount;
- int col = elem%splineCount;
- edgeMatrix[row][col] = 1;
- edgeMatrix[col][row] = 1;
- }
- std::vector<int> coloring(2*splineCount);
- colorSecondDegreeGraph(&coloring[0], &edgeMatrix[0], splineCount, seed);
- for (; nextEdge < graphEdgeCount; ++nextEdge) {
- int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
- tryAddEdge(&coloring[0], &edgeMatrix[0], splineCount, elem/splineCount, elem%splineCount, &coloring[splineCount]);
- }
- const EdgeColor colors[3] = { YELLOW, CYAN, MAGENTA };
- int spline = -1;
- for (int i = 0; i < segmentCount; ++i) {
- if (splineStarts[spline+1] == i)
- ++spline;
- edgeSegments[i]->color = colors[coloring[spline]];
- }
- }
- }
|