edge-coloring.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. #include "edge-coloring.h"
  2. #include <cstdlib>
  3. #include <cmath>
  4. #include <cstring>
  5. #include <cfloat>
  6. #include <vector>
  7. #include <queue>
  8. #include "arithmetics.hpp"
  9. namespace msdfgen {
  10. /**
  11. * For each position < n, this function will return -1, 0, or 1,
  12. * depending on whether the position is closer to the beginning, middle, or end, respectively.
  13. * It is guaranteed that the output will be balanced in that the total for positions 0 through n-1 will be zero.
  14. */
  15. static int symmetricalTrichotomy(int position, int n) {
  16. return int(3+2.875*position/(n-1)-1.4375+.5)-3;
  17. }
  18. static bool isCorner(const Vector2 &aDir, const Vector2 &bDir, double crossThreshold) {
  19. return dotProduct(aDir, bDir) <= 0 || fabs(crossProduct(aDir, bDir)) > crossThreshold;
  20. }
  21. static double estimateEdgeLength(const EdgeSegment *edge) {
  22. double len = 0;
  23. Point2 prev = edge->point(0);
  24. for (int i = 1; i <= MSDFGEN_EDGE_LENGTH_PRECISION; ++i) {
  25. Point2 cur = edge->point(1./MSDFGEN_EDGE_LENGTH_PRECISION*i);
  26. len += (cur-prev).length();
  27. prev = cur;
  28. }
  29. return len;
  30. }
  31. static int seedExtract2(unsigned long long &seed) {
  32. int v = int(seed)&1;
  33. seed >>= 1;
  34. return v;
  35. }
  36. static int seedExtract3(unsigned long long &seed) {
  37. int v = int(seed%3);
  38. seed /= 3;
  39. return v;
  40. }
  41. static EdgeColor initColor(unsigned long long &seed) {
  42. static const EdgeColor colors[3] = { CYAN, MAGENTA, YELLOW };
  43. return colors[seedExtract3(seed)];
  44. }
  45. static void switchColor(EdgeColor &color, unsigned long long &seed) {
  46. int shifted = color<<(1+seedExtract2(seed));
  47. color = EdgeColor((shifted|shifted>>3)&WHITE);
  48. }
  49. static void switchColor(EdgeColor &color, unsigned long long &seed, EdgeColor banned) {
  50. EdgeColor combined = EdgeColor(color&banned);
  51. if (combined == RED || combined == GREEN || combined == BLUE)
  52. color = EdgeColor(combined^WHITE);
  53. else
  54. switchColor(color, seed);
  55. }
  56. void edgeColoringSimple(Shape &shape, double angleThreshold, unsigned long long seed) {
  57. double crossThreshold = sin(angleThreshold);
  58. EdgeColor color = initColor(seed);
  59. std::vector<int> corners;
  60. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
  61. if (contour->edges.empty())
  62. continue;
  63. { // Identify corners
  64. corners.clear();
  65. Vector2 prevDirection = contour->edges.back()->direction(1);
  66. int index = 0;
  67. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  68. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
  69. corners.push_back(index);
  70. prevDirection = (*edge)->direction(1);
  71. }
  72. }
  73. // Smooth contour
  74. if (corners.empty()) {
  75. switchColor(color, seed);
  76. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  77. (*edge)->color = color;
  78. }
  79. // "Teardrop" case
  80. else if (corners.size() == 1) {
  81. EdgeColor colors[3];
  82. switchColor(color, seed);
  83. colors[0] = color;
  84. colors[1] = WHITE;
  85. switchColor(color, seed);
  86. colors[2] = color;
  87. int corner = corners[0];
  88. if (contour->edges.size() >= 3) {
  89. int m = (int) contour->edges.size();
  90. for (int i = 0; i < m; ++i)
  91. contour->edges[(corner+i)%m]->color = colors[1+symmetricalTrichotomy(i, m)];
  92. } else if (contour->edges.size() >= 1) {
  93. // Less than three edge segments for three colors => edges must be split
  94. EdgeSegment *parts[7] = { };
  95. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  96. if (contour->edges.size() >= 2) {
  97. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  98. parts[0]->color = parts[1]->color = colors[0];
  99. parts[2]->color = parts[3]->color = colors[1];
  100. parts[4]->color = parts[5]->color = colors[2];
  101. } else {
  102. parts[0]->color = colors[0];
  103. parts[1]->color = colors[1];
  104. parts[2]->color = colors[2];
  105. }
  106. contour->edges.clear();
  107. for (int i = 0; parts[i]; ++i)
  108. contour->edges.push_back(EdgeHolder(parts[i]));
  109. }
  110. }
  111. // Multiple corners
  112. else {
  113. int cornerCount = (int) corners.size();
  114. int spline = 0;
  115. int start = corners[0];
  116. int m = (int) contour->edges.size();
  117. switchColor(color, seed);
  118. EdgeColor initialColor = color;
  119. for (int i = 0; i < m; ++i) {
  120. int index = (start+i)%m;
  121. if (spline+1 < cornerCount && corners[spline+1] == index) {
  122. ++spline;
  123. switchColor(color, seed, EdgeColor((spline == cornerCount-1)*initialColor));
  124. }
  125. contour->edges[index]->color = color;
  126. }
  127. }
  128. }
  129. }
  130. struct EdgeColoringInkTrapCorner {
  131. int index;
  132. double prevEdgeLengthEstimate;
  133. bool minor;
  134. EdgeColor color;
  135. };
  136. void edgeColoringInkTrap(Shape &shape, double angleThreshold, unsigned long long seed) {
  137. typedef EdgeColoringInkTrapCorner Corner;
  138. double crossThreshold = sin(angleThreshold);
  139. EdgeColor color = initColor(seed);
  140. std::vector<Corner> corners;
  141. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
  142. if (contour->edges.empty())
  143. continue;
  144. double splineLength = 0;
  145. { // Identify corners
  146. corners.clear();
  147. Vector2 prevDirection = contour->edges.back()->direction(1);
  148. int index = 0;
  149. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  150. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold)) {
  151. Corner corner = { index, splineLength };
  152. corners.push_back(corner);
  153. splineLength = 0;
  154. }
  155. splineLength += estimateEdgeLength(*edge);
  156. prevDirection = (*edge)->direction(1);
  157. }
  158. }
  159. // Smooth contour
  160. if (corners.empty()) {
  161. switchColor(color, seed);
  162. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  163. (*edge)->color = color;
  164. }
  165. // "Teardrop" case
  166. else if (corners.size() == 1) {
  167. EdgeColor colors[3];
  168. switchColor(color, seed);
  169. colors[0] = color;
  170. colors[1] = WHITE;
  171. switchColor(color, seed);
  172. colors[2] = color;
  173. int corner = corners[0].index;
  174. if (contour->edges.size() >= 3) {
  175. int m = (int) contour->edges.size();
  176. for (int i = 0; i < m; ++i)
  177. contour->edges[(corner+i)%m]->color = colors[1+symmetricalTrichotomy(i, m)];
  178. } else if (contour->edges.size() >= 1) {
  179. // Less than three edge segments for three colors => edges must be split
  180. EdgeSegment *parts[7] = { };
  181. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  182. if (contour->edges.size() >= 2) {
  183. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  184. parts[0]->color = parts[1]->color = colors[0];
  185. parts[2]->color = parts[3]->color = colors[1];
  186. parts[4]->color = parts[5]->color = colors[2];
  187. } else {
  188. parts[0]->color = colors[0];
  189. parts[1]->color = colors[1];
  190. parts[2]->color = colors[2];
  191. }
  192. contour->edges.clear();
  193. for (int i = 0; parts[i]; ++i)
  194. contour->edges.push_back(EdgeHolder(parts[i]));
  195. }
  196. }
  197. // Multiple corners
  198. else {
  199. int cornerCount = (int) corners.size();
  200. int majorCornerCount = cornerCount;
  201. if (cornerCount > 3) {
  202. corners.begin()->prevEdgeLengthEstimate += splineLength;
  203. for (int i = 0; i < cornerCount; ++i) {
  204. if (
  205. corners[i].prevEdgeLengthEstimate > corners[(i+1)%cornerCount].prevEdgeLengthEstimate &&
  206. corners[(i+1)%cornerCount].prevEdgeLengthEstimate < corners[(i+2)%cornerCount].prevEdgeLengthEstimate
  207. ) {
  208. corners[i].minor = true;
  209. --majorCornerCount;
  210. }
  211. }
  212. }
  213. EdgeColor initialColor = BLACK;
  214. for (int i = 0; i < cornerCount; ++i) {
  215. if (!corners[i].minor) {
  216. --majorCornerCount;
  217. switchColor(color, seed, EdgeColor(!majorCornerCount*initialColor));
  218. corners[i].color = color;
  219. if (!initialColor)
  220. initialColor = color;
  221. }
  222. }
  223. for (int i = 0; i < cornerCount; ++i) {
  224. if (corners[i].minor) {
  225. EdgeColor nextColor = corners[(i+1)%cornerCount].color;
  226. corners[i].color = EdgeColor((color&nextColor)^WHITE);
  227. } else
  228. color = corners[i].color;
  229. }
  230. int spline = 0;
  231. int start = corners[0].index;
  232. color = corners[0].color;
  233. int m = (int) contour->edges.size();
  234. for (int i = 0; i < m; ++i) {
  235. int index = (start+i)%m;
  236. if (spline+1 < cornerCount && corners[spline+1].index == index)
  237. color = corners[++spline].color;
  238. contour->edges[index]->color = color;
  239. }
  240. }
  241. }
  242. }
  243. // EDGE COLORING BY DISTANCE - EXPERIMENTAL IMPLEMENTATION - WORK IN PROGRESS
  244. #define MAX_RECOLOR_STEPS 16
  245. #define EDGE_DISTANCE_PRECISION 16
  246. static double edgeToEdgeDistance(const EdgeSegment &a, const EdgeSegment &b, int precision) {
  247. if (a.point(0) == b.point(0) || a.point(0) == b.point(1) || a.point(1) == b.point(0) || a.point(1) == b.point(1))
  248. return 0;
  249. double iFac = 1./precision;
  250. double minDistance = (b.point(0)-a.point(0)).length();
  251. for (int i = 0; i <= precision; ++i) {
  252. double t = iFac*i;
  253. double d = fabs(a.signedDistance(b.point(t), t).distance);
  254. minDistance = min(minDistance, d);
  255. }
  256. for (int i = 0; i <= precision; ++i) {
  257. double t = iFac*i;
  258. double d = fabs(b.signedDistance(a.point(t), t).distance);
  259. minDistance = min(minDistance, d);
  260. }
  261. return minDistance;
  262. }
  263. static double splineToSplineDistance(EdgeSegment *const *edgeSegments, int aStart, int aEnd, int bStart, int bEnd, int precision) {
  264. double minDistance = DBL_MAX;
  265. for (int ai = aStart; ai < aEnd; ++ai)
  266. for (int bi = bStart; bi < bEnd && minDistance; ++bi) {
  267. double d = edgeToEdgeDistance(*edgeSegments[ai], *edgeSegments[bi], precision);
  268. minDistance = min(minDistance, d);
  269. }
  270. return minDistance;
  271. }
  272. static void colorSecondDegreeGraph(int *coloring, const int *const *edgeMatrix, int vertexCount, unsigned long long seed) {
  273. for (int i = 0; i < vertexCount; ++i) {
  274. int possibleColors = 7;
  275. for (int j = 0; j < i; ++j) {
  276. if (edgeMatrix[i][j])
  277. possibleColors &= ~(1<<coloring[j]);
  278. }
  279. int color = 0;
  280. switch (possibleColors) {
  281. case 1:
  282. color = 0;
  283. break;
  284. case 2:
  285. color = 1;
  286. break;
  287. case 3:
  288. color = seedExtract2(seed); // 0 or 1
  289. break;
  290. case 4:
  291. color = 2;
  292. break;
  293. case 5:
  294. color = (int) !seedExtract2(seed)<<1; // 2 or 0
  295. break;
  296. case 6:
  297. color = seedExtract2(seed)+1; // 1 or 2
  298. break;
  299. case 7:
  300. color = (seedExtract3(seed)+i)%3; // 0 or 1 or 2
  301. break;
  302. }
  303. coloring[i] = color;
  304. }
  305. }
  306. static int vertexPossibleColors(const int *coloring, const int *edgeVector, int vertexCount) {
  307. int usedColors = 0;
  308. for (int i = 0; i < vertexCount; ++i)
  309. if (edgeVector[i])
  310. usedColors |= 1<<coloring[i];
  311. return 7&~usedColors;
  312. }
  313. static void uncolorSameNeighbors(std::queue<int> &uncolored, int *coloring, const int *const *edgeMatrix, int vertex, int vertexCount) {
  314. for (int i = vertex+1; i < vertexCount; ++i) {
  315. if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
  316. coloring[i] = -1;
  317. uncolored.push(i);
  318. }
  319. }
  320. for (int i = 0; i < vertex; ++i) {
  321. if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
  322. coloring[i] = -1;
  323. uncolored.push(i);
  324. }
  325. }
  326. }
  327. static bool tryAddEdge(int *coloring, int *const *edgeMatrix, int vertexCount, int vertexA, int vertexB, int *coloringBuffer) {
  328. static const int FIRST_POSSIBLE_COLOR[8] = { -1, 0, 1, 0, 2, 2, 1, 0 };
  329. edgeMatrix[vertexA][vertexB] = 1;
  330. edgeMatrix[vertexB][vertexA] = 1;
  331. if (coloring[vertexA] != coloring[vertexB])
  332. return true;
  333. int bPossibleColors = vertexPossibleColors(coloring, edgeMatrix[vertexB], vertexCount);
  334. if (bPossibleColors) {
  335. coloring[vertexB] = FIRST_POSSIBLE_COLOR[bPossibleColors];
  336. return true;
  337. }
  338. memcpy(coloringBuffer, coloring, sizeof(int)*vertexCount);
  339. std::queue<int> uncolored;
  340. {
  341. int *coloring = coloringBuffer;
  342. coloring[vertexB] = FIRST_POSSIBLE_COLOR[7&~(1<<coloring[vertexA])];
  343. uncolorSameNeighbors(uncolored, coloring, edgeMatrix, vertexB, vertexCount);
  344. int step = 0;
  345. while (!uncolored.empty() && step < MAX_RECOLOR_STEPS) {
  346. int i = uncolored.front();
  347. uncolored.pop();
  348. int possibleColors = vertexPossibleColors(coloring, edgeMatrix[i], vertexCount);
  349. if (possibleColors) {
  350. coloring[i] = FIRST_POSSIBLE_COLOR[possibleColors];
  351. continue;
  352. }
  353. do {
  354. coloring[i] = step++%3;
  355. } while (edgeMatrix[i][vertexA] && coloring[i] == coloring[vertexA]);
  356. uncolorSameNeighbors(uncolored, coloring, edgeMatrix, i, vertexCount);
  357. }
  358. }
  359. if (!uncolored.empty()) {
  360. edgeMatrix[vertexA][vertexB] = 0;
  361. edgeMatrix[vertexB][vertexA] = 0;
  362. return false;
  363. }
  364. memcpy(coloring, coloringBuffer, sizeof(int)*vertexCount);
  365. return true;
  366. }
  367. static int cmpDoublePtr(const void *a, const void *b) {
  368. return sign(**reinterpret_cast<const double *const *>(a)-**reinterpret_cast<const double *const *>(b));
  369. }
  370. void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long long seed) {
  371. std::vector<EdgeSegment *> edgeSegments;
  372. std::vector<int> splineStarts;
  373. double crossThreshold = sin(angleThreshold);
  374. std::vector<int> corners;
  375. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour)
  376. if (!contour->edges.empty()) {
  377. // Identify corners
  378. corners.clear();
  379. Vector2 prevDirection = contour->edges.back()->direction(1);
  380. int index = 0;
  381. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  382. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
  383. corners.push_back(index);
  384. prevDirection = (*edge)->direction(1);
  385. }
  386. splineStarts.push_back((int) edgeSegments.size());
  387. // Smooth contour
  388. if (corners.empty())
  389. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  390. edgeSegments.push_back(&**edge);
  391. // "Teardrop" case
  392. else if (corners.size() == 1) {
  393. int corner = corners[0];
  394. if (contour->edges.size() >= 3) {
  395. int m = (int) contour->edges.size();
  396. for (int i = 0; i < m; ++i) {
  397. if (i == m/2)
  398. splineStarts.push_back((int) edgeSegments.size());
  399. if (symmetricalTrichotomy(i, m))
  400. edgeSegments.push_back(&*contour->edges[(corner+i)%m]);
  401. else
  402. contour->edges[(corner+i)%m]->color = WHITE;
  403. }
  404. } else if (contour->edges.size() >= 1) {
  405. // Less than three edge segments for three colors => edges must be split
  406. EdgeSegment *parts[7] = { };
  407. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  408. if (contour->edges.size() >= 2) {
  409. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  410. edgeSegments.push_back(parts[0]);
  411. edgeSegments.push_back(parts[1]);
  412. parts[2]->color = parts[3]->color = WHITE;
  413. splineStarts.push_back((int) edgeSegments.size());
  414. edgeSegments.push_back(parts[4]);
  415. edgeSegments.push_back(parts[5]);
  416. } else {
  417. edgeSegments.push_back(parts[0]);
  418. parts[1]->color = WHITE;
  419. splineStarts.push_back((int) edgeSegments.size());
  420. edgeSegments.push_back(parts[2]);
  421. }
  422. contour->edges.clear();
  423. for (int i = 0; parts[i]; ++i)
  424. contour->edges.push_back(EdgeHolder(parts[i]));
  425. }
  426. }
  427. // Multiple corners
  428. else {
  429. int cornerCount = (int) corners.size();
  430. int spline = 0;
  431. int start = corners[0];
  432. int m = (int) contour->edges.size();
  433. for (int i = 0; i < m; ++i) {
  434. int index = (start+i)%m;
  435. if (spline+1 < cornerCount && corners[spline+1] == index) {
  436. splineStarts.push_back((int) edgeSegments.size());
  437. ++spline;
  438. }
  439. edgeSegments.push_back(&*contour->edges[index]);
  440. }
  441. }
  442. }
  443. splineStarts.push_back((int) edgeSegments.size());
  444. int segmentCount = (int) edgeSegments.size();
  445. int splineCount = (int) splineStarts.size()-1;
  446. if (!splineCount)
  447. return;
  448. std::vector<double> distanceMatrixStorage(splineCount*splineCount);
  449. std::vector<double *> distanceMatrix(splineCount);
  450. for (int i = 0; i < splineCount; ++i)
  451. distanceMatrix[i] = &distanceMatrixStorage[i*splineCount];
  452. const double *distanceMatrixBase = &distanceMatrixStorage[0];
  453. for (int i = 0; i < splineCount; ++i) {
  454. distanceMatrix[i][i] = -1;
  455. for (int j = i+1; j < splineCount; ++j) {
  456. double dist = splineToSplineDistance(&edgeSegments[0], splineStarts[i], splineStarts[i+1], splineStarts[j], splineStarts[j+1], EDGE_DISTANCE_PRECISION);
  457. distanceMatrix[i][j] = dist;
  458. distanceMatrix[j][i] = dist;
  459. }
  460. }
  461. std::vector<const double *> graphEdgeDistances;
  462. graphEdgeDistances.reserve(splineCount*(splineCount-1)/2);
  463. for (int i = 0; i < splineCount; ++i)
  464. for (int j = i+1; j < splineCount; ++j)
  465. graphEdgeDistances.push_back(&distanceMatrix[i][j]);
  466. int graphEdgeCount = (int) graphEdgeDistances.size();
  467. if (!graphEdgeDistances.empty())
  468. qsort(&graphEdgeDistances[0], graphEdgeDistances.size(), sizeof(const double *), &cmpDoublePtr);
  469. std::vector<int> edgeMatrixStorage(splineCount*splineCount);
  470. std::vector<int *> edgeMatrix(splineCount);
  471. for (int i = 0; i < splineCount; ++i)
  472. edgeMatrix[i] = &edgeMatrixStorage[i*splineCount];
  473. int nextEdge = 0;
  474. for (; nextEdge < graphEdgeCount && !*graphEdgeDistances[nextEdge]; ++nextEdge) {
  475. int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
  476. int row = elem/splineCount;
  477. int col = elem%splineCount;
  478. edgeMatrix[row][col] = 1;
  479. edgeMatrix[col][row] = 1;
  480. }
  481. std::vector<int> coloring(2*splineCount);
  482. colorSecondDegreeGraph(&coloring[0], &edgeMatrix[0], splineCount, seed);
  483. for (; nextEdge < graphEdgeCount; ++nextEdge) {
  484. int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
  485. tryAddEdge(&coloring[0], &edgeMatrix[0], splineCount, elem/splineCount, elem%splineCount, &coloring[splineCount]);
  486. }
  487. const EdgeColor colors[3] = { YELLOW, CYAN, MAGENTA };
  488. int spline = -1;
  489. for (int i = 0; i < segmentCount; ++i) {
  490. if (splineStarts[spline+1] == i)
  491. ++spline;
  492. edgeSegments[i]->color = colors[coloring[spline]];
  493. }
  494. }
  495. }