edge-segments.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. #include "edge-segments.h"
  2. #include "arithmetics.hpp"
  3. #include "equation-solver.h"
  4. namespace msdfgen {
  5. EdgeSegment *EdgeSegment::create(Point2 p0, Point2 p1, EdgeColor edgeColor) {
  6. return new LinearSegment(p0, p1, edgeColor);
  7. }
  8. EdgeSegment *EdgeSegment::create(Point2 p0, Point2 p1, Point2 p2, EdgeColor edgeColor) {
  9. if (!crossProduct(p1-p0, p2-p1))
  10. return new LinearSegment(p0, p2, edgeColor);
  11. return new QuadraticSegment(p0, p1, p2, edgeColor);
  12. }
  13. EdgeSegment *EdgeSegment::create(Point2 p0, Point2 p1, Point2 p2, Point2 p3, EdgeColor edgeColor) {
  14. Vector2 p12 = p2-p1;
  15. if (!crossProduct(p1-p0, p12) && !crossProduct(p12, p3-p2))
  16. return new LinearSegment(p0, p3, edgeColor);
  17. if ((p12 = 1.5*p1-.5*p0) == 1.5*p2-.5*p3)
  18. return new QuadraticSegment(p0, p12, p3, edgeColor);
  19. return new CubicSegment(p0, p1, p2, p3, edgeColor);
  20. }
  21. void EdgeSegment::distanceToPerpendicularDistance(SignedDistance &distance, Point2 origin, double param) const {
  22. if (param < 0) {
  23. Vector2 dir = direction(0).normalize();
  24. Vector2 aq = origin-point(0);
  25. double ts = dotProduct(aq, dir);
  26. if (ts < 0) {
  27. double perpendicularDistance = crossProduct(aq, dir);
  28. if (fabs(perpendicularDistance) <= fabs(distance.distance)) {
  29. distance.distance = perpendicularDistance;
  30. distance.dot = 0;
  31. }
  32. }
  33. } else if (param > 1) {
  34. Vector2 dir = direction(1).normalize();
  35. Vector2 bq = origin-point(1);
  36. double ts = dotProduct(bq, dir);
  37. if (ts > 0) {
  38. double perpendicularDistance = crossProduct(bq, dir);
  39. if (fabs(perpendicularDistance) <= fabs(distance.distance)) {
  40. distance.distance = perpendicularDistance;
  41. distance.dot = 0;
  42. }
  43. }
  44. }
  45. }
  46. LinearSegment::LinearSegment(Point2 p0, Point2 p1, EdgeColor edgeColor) : EdgeSegment(edgeColor) {
  47. p[0] = p0;
  48. p[1] = p1;
  49. }
  50. QuadraticSegment::QuadraticSegment(Point2 p0, Point2 p1, Point2 p2, EdgeColor edgeColor) : EdgeSegment(edgeColor) {
  51. p[0] = p0;
  52. p[1] = p1;
  53. p[2] = p2;
  54. }
  55. CubicSegment::CubicSegment(Point2 p0, Point2 p1, Point2 p2, Point2 p3, EdgeColor edgeColor) : EdgeSegment(edgeColor) {
  56. p[0] = p0;
  57. p[1] = p1;
  58. p[2] = p2;
  59. p[3] = p3;
  60. }
  61. LinearSegment *LinearSegment::clone() const {
  62. return new LinearSegment(p[0], p[1], color);
  63. }
  64. QuadraticSegment *QuadraticSegment::clone() const {
  65. return new QuadraticSegment(p[0], p[1], p[2], color);
  66. }
  67. CubicSegment *CubicSegment::clone() const {
  68. return new CubicSegment(p[0], p[1], p[2], p[3], color);
  69. }
  70. int LinearSegment::type() const {
  71. return (int) EDGE_TYPE;
  72. }
  73. int QuadraticSegment::type() const {
  74. return (int) EDGE_TYPE;
  75. }
  76. int CubicSegment::type() const {
  77. return (int) EDGE_TYPE;
  78. }
  79. const Point2 *LinearSegment::controlPoints() const {
  80. return p;
  81. }
  82. const Point2 *QuadraticSegment::controlPoints() const {
  83. return p;
  84. }
  85. const Point2 *CubicSegment::controlPoints() const {
  86. return p;
  87. }
  88. Point2 LinearSegment::point(double param) const {
  89. return mix(p[0], p[1], param);
  90. }
  91. Point2 QuadraticSegment::point(double param) const {
  92. return mix(mix(p[0], p[1], param), mix(p[1], p[2], param), param);
  93. }
  94. Point2 CubicSegment::point(double param) const {
  95. Vector2 p12 = mix(p[1], p[2], param);
  96. return mix(mix(mix(p[0], p[1], param), p12, param), mix(p12, mix(p[2], p[3], param), param), param);
  97. }
  98. Vector2 LinearSegment::direction(double param) const {
  99. return p[1]-p[0];
  100. }
  101. Vector2 QuadraticSegment::direction(double param) const {
  102. Vector2 tangent = mix(p[1]-p[0], p[2]-p[1], param);
  103. if (!tangent)
  104. return p[2]-p[0];
  105. return tangent;
  106. }
  107. Vector2 CubicSegment::direction(double param) const {
  108. Vector2 tangent = mix(mix(p[1]-p[0], p[2]-p[1], param), mix(p[2]-p[1], p[3]-p[2], param), param);
  109. if (!tangent) {
  110. if (param == 0) return p[2]-p[0];
  111. if (param == 1) return p[3]-p[1];
  112. }
  113. return tangent;
  114. }
  115. Vector2 LinearSegment::directionChange(double param) const {
  116. return Vector2();
  117. }
  118. Vector2 QuadraticSegment::directionChange(double param) const {
  119. return (p[2]-p[1])-(p[1]-p[0]);
  120. }
  121. Vector2 CubicSegment::directionChange(double param) const {
  122. return mix((p[2]-p[1])-(p[1]-p[0]), (p[3]-p[2])-(p[2]-p[1]), param);
  123. }
  124. double LinearSegment::length() const {
  125. return (p[1]-p[0]).length();
  126. }
  127. double QuadraticSegment::length() const {
  128. Vector2 ab = p[1]-p[0];
  129. Vector2 br = p[2]-p[1]-ab;
  130. double abab = dotProduct(ab, ab);
  131. double abbr = dotProduct(ab, br);
  132. double brbr = dotProduct(br, br);
  133. double abLen = sqrt(abab);
  134. double brLen = sqrt(brbr);
  135. double crs = crossProduct(ab, br);
  136. double h = sqrt(abab+abbr+abbr+brbr);
  137. return (
  138. brLen*((abbr+brbr)*h-abbr*abLen)+
  139. crs*crs*log((brLen*h+abbr+brbr)/(brLen*abLen+abbr))
  140. )/(brbr*brLen);
  141. }
  142. SignedDistance LinearSegment::signedDistance(Point2 origin, double &param) const {
  143. Vector2 aq = origin-p[0];
  144. Vector2 ab = p[1]-p[0];
  145. param = dotProduct(aq, ab)/dotProduct(ab, ab);
  146. Vector2 eq = p[param > .5]-origin;
  147. double endpointDistance = eq.length();
  148. if (param > 0 && param < 1) {
  149. double orthoDistance = dotProduct(ab.getOrthonormal(false), aq);
  150. if (fabs(orthoDistance) < endpointDistance)
  151. return SignedDistance(orthoDistance, 0);
  152. }
  153. return SignedDistance(nonZeroSign(crossProduct(aq, ab))*endpointDistance, fabs(dotProduct(ab.normalize(), eq.normalize())));
  154. }
  155. SignedDistance QuadraticSegment::signedDistance(Point2 origin, double &param) const {
  156. Vector2 qa = p[0]-origin;
  157. Vector2 ab = p[1]-p[0];
  158. Vector2 br = p[2]-p[1]-ab;
  159. double a = dotProduct(br, br);
  160. double b = 3*dotProduct(ab, br);
  161. double c = 2*dotProduct(ab, ab)+dotProduct(qa, br);
  162. double d = dotProduct(qa, ab);
  163. double t[3];
  164. int solutions = solveCubic(t, a, b, c, d);
  165. Vector2 epDir = direction(0);
  166. double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A
  167. param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir);
  168. {
  169. epDir = direction(1);
  170. double distance = (p[2]-origin).length(); // distance from B
  171. if (distance < fabs(minDistance)) {
  172. minDistance = nonZeroSign(crossProduct(epDir, p[2]-origin))*distance;
  173. param = dotProduct(origin-p[1], epDir)/dotProduct(epDir, epDir);
  174. }
  175. }
  176. for (int i = 0; i < solutions; ++i) {
  177. if (t[i] > 0 && t[i] < 1) {
  178. Point2 qe = qa+2*t[i]*ab+t[i]*t[i]*br;
  179. double distance = qe.length();
  180. if (distance <= fabs(minDistance)) {
  181. minDistance = nonZeroSign(crossProduct(ab+t[i]*br, qe))*distance;
  182. param = t[i];
  183. }
  184. }
  185. }
  186. if (param >= 0 && param <= 1)
  187. return SignedDistance(minDistance, 0);
  188. if (param < .5)
  189. return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize())));
  190. else
  191. return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[2]-origin).normalize())));
  192. }
  193. SignedDistance CubicSegment::signedDistance(Point2 origin, double &param) const {
  194. Vector2 qa = p[0]-origin;
  195. Vector2 ab = p[1]-p[0];
  196. Vector2 br = p[2]-p[1]-ab;
  197. Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br;
  198. Vector2 epDir = direction(0);
  199. double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A
  200. param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir);
  201. {
  202. epDir = direction(1);
  203. double distance = (p[3]-origin).length(); // distance from B
  204. if (distance < fabs(minDistance)) {
  205. minDistance = nonZeroSign(crossProduct(epDir, p[3]-origin))*distance;
  206. param = dotProduct(epDir-(p[3]-origin), epDir)/dotProduct(epDir, epDir);
  207. }
  208. }
  209. // Iterative minimum distance search
  210. for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) {
  211. double t = (double) i/MSDFGEN_CUBIC_SEARCH_STARTS;
  212. Vector2 qe = qa+3*t*ab+3*t*t*br+t*t*t*as;
  213. for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) {
  214. // Improve t
  215. Vector2 d1 = 3*ab+6*t*br+3*t*t*as;
  216. Vector2 d2 = 6*br+6*t*as;
  217. t -= dotProduct(qe, d1)/(dotProduct(d1, d1)+dotProduct(qe, d2));
  218. if (t <= 0 || t >= 1)
  219. break;
  220. qe = qa+3*t*ab+3*t*t*br+t*t*t*as;
  221. double distance = qe.length();
  222. if (distance < fabs(minDistance)) {
  223. minDistance = nonZeroSign(crossProduct(d1, qe))*distance;
  224. param = t;
  225. }
  226. }
  227. }
  228. if (param >= 0 && param <= 1)
  229. return SignedDistance(minDistance, 0);
  230. if (param < .5)
  231. return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize())));
  232. else
  233. return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[3]-origin).normalize())));
  234. }
  235. int LinearSegment::scanlineIntersections(double x[3], int dy[3], double y) const {
  236. if ((y >= p[0].y && y < p[1].y) || (y >= p[1].y && y < p[0].y)) {
  237. double param = (y-p[0].y)/(p[1].y-p[0].y);
  238. x[0] = mix(p[0].x, p[1].x, param);
  239. dy[0] = sign(p[1].y-p[0].y);
  240. return 1;
  241. }
  242. return 0;
  243. }
  244. int QuadraticSegment::scanlineIntersections(double x[3], int dy[3], double y) const {
  245. int total = 0;
  246. int nextDY = y > p[0].y ? 1 : -1;
  247. x[total] = p[0].x;
  248. if (p[0].y == y) {
  249. if (p[0].y < p[1].y || (p[0].y == p[1].y && p[0].y < p[2].y))
  250. dy[total++] = 1;
  251. else
  252. nextDY = 1;
  253. }
  254. {
  255. Vector2 ab = p[1]-p[0];
  256. Vector2 br = p[2]-p[1]-ab;
  257. double t[2];
  258. int solutions = solveQuadratic(t, br.y, 2*ab.y, p[0].y-y);
  259. // Sort solutions
  260. double tmp;
  261. if (solutions >= 2 && t[0] > t[1])
  262. tmp = t[0], t[0] = t[1], t[1] = tmp;
  263. for (int i = 0; i < solutions && total < 2; ++i) {
  264. if (t[i] >= 0 && t[i] <= 1) {
  265. x[total] = p[0].x+2*t[i]*ab.x+t[i]*t[i]*br.x;
  266. if (nextDY*(ab.y+t[i]*br.y) >= 0) {
  267. dy[total++] = nextDY;
  268. nextDY = -nextDY;
  269. }
  270. }
  271. }
  272. }
  273. if (p[2].y == y) {
  274. if (nextDY > 0 && total > 0) {
  275. --total;
  276. nextDY = -1;
  277. }
  278. if ((p[2].y < p[1].y || (p[2].y == p[1].y && p[2].y < p[0].y)) && total < 2) {
  279. x[total] = p[2].x;
  280. if (nextDY < 0) {
  281. dy[total++] = -1;
  282. nextDY = 1;
  283. }
  284. }
  285. }
  286. if (nextDY != (y >= p[2].y ? 1 : -1)) {
  287. if (total > 0)
  288. --total;
  289. else {
  290. if (fabs(p[2].y-y) < fabs(p[0].y-y))
  291. x[total] = p[2].x;
  292. dy[total++] = nextDY;
  293. }
  294. }
  295. return total;
  296. }
  297. int CubicSegment::scanlineIntersections(double x[3], int dy[3], double y) const {
  298. int total = 0;
  299. int nextDY = y > p[0].y ? 1 : -1;
  300. x[total] = p[0].x;
  301. if (p[0].y == y) {
  302. if (p[0].y < p[1].y || (p[0].y == p[1].y && (p[0].y < p[2].y || (p[0].y == p[2].y && p[0].y < p[3].y))))
  303. dy[total++] = 1;
  304. else
  305. nextDY = 1;
  306. }
  307. {
  308. Vector2 ab = p[1]-p[0];
  309. Vector2 br = p[2]-p[1]-ab;
  310. Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br;
  311. double t[3];
  312. int solutions = solveCubic(t, as.y, 3*br.y, 3*ab.y, p[0].y-y);
  313. // Sort solutions
  314. double tmp;
  315. if (solutions >= 2) {
  316. if (t[0] > t[1])
  317. tmp = t[0], t[0] = t[1], t[1] = tmp;
  318. if (solutions >= 3 && t[1] > t[2]) {
  319. tmp = t[1], t[1] = t[2], t[2] = tmp;
  320. if (t[0] > t[1])
  321. tmp = t[0], t[0] = t[1], t[1] = tmp;
  322. }
  323. }
  324. for (int i = 0; i < solutions && total < 3; ++i) {
  325. if (t[i] >= 0 && t[i] <= 1) {
  326. x[total] = p[0].x+3*t[i]*ab.x+3*t[i]*t[i]*br.x+t[i]*t[i]*t[i]*as.x;
  327. if (nextDY*(ab.y+2*t[i]*br.y+t[i]*t[i]*as.y) >= 0) {
  328. dy[total++] = nextDY;
  329. nextDY = -nextDY;
  330. }
  331. }
  332. }
  333. }
  334. if (p[3].y == y) {
  335. if (nextDY > 0 && total > 0) {
  336. --total;
  337. nextDY = -1;
  338. }
  339. if ((p[3].y < p[2].y || (p[3].y == p[2].y && (p[3].y < p[1].y || (p[3].y == p[1].y && p[3].y < p[0].y)))) && total < 3) {
  340. x[total] = p[3].x;
  341. if (nextDY < 0) {
  342. dy[total++] = -1;
  343. nextDY = 1;
  344. }
  345. }
  346. }
  347. if (nextDY != (y >= p[3].y ? 1 : -1)) {
  348. if (total > 0)
  349. --total;
  350. else {
  351. if (fabs(p[3].y-y) < fabs(p[0].y-y))
  352. x[total] = p[3].x;
  353. dy[total++] = nextDY;
  354. }
  355. }
  356. return total;
  357. }
  358. static void pointBounds(Point2 p, double &l, double &b, double &r, double &t) {
  359. if (p.x < l) l = p.x;
  360. if (p.y < b) b = p.y;
  361. if (p.x > r) r = p.x;
  362. if (p.y > t) t = p.y;
  363. }
  364. void LinearSegment::bound(double &l, double &b, double &r, double &t) const {
  365. pointBounds(p[0], l, b, r, t);
  366. pointBounds(p[1], l, b, r, t);
  367. }
  368. void QuadraticSegment::bound(double &l, double &b, double &r, double &t) const {
  369. pointBounds(p[0], l, b, r, t);
  370. pointBounds(p[2], l, b, r, t);
  371. Vector2 bot = (p[1]-p[0])-(p[2]-p[1]);
  372. if (bot.x) {
  373. double param = (p[1].x-p[0].x)/bot.x;
  374. if (param > 0 && param < 1)
  375. pointBounds(point(param), l, b, r, t);
  376. }
  377. if (bot.y) {
  378. double param = (p[1].y-p[0].y)/bot.y;
  379. if (param > 0 && param < 1)
  380. pointBounds(point(param), l, b, r, t);
  381. }
  382. }
  383. void CubicSegment::bound(double &l, double &b, double &r, double &t) const {
  384. pointBounds(p[0], l, b, r, t);
  385. pointBounds(p[3], l, b, r, t);
  386. Vector2 a0 = p[1]-p[0];
  387. Vector2 a1 = 2*(p[2]-p[1]-a0);
  388. Vector2 a2 = p[3]-3*p[2]+3*p[1]-p[0];
  389. double params[2];
  390. int solutions;
  391. solutions = solveQuadratic(params, a2.x, a1.x, a0.x);
  392. for (int i = 0; i < solutions; ++i)
  393. if (params[i] > 0 && params[i] < 1)
  394. pointBounds(point(params[i]), l, b, r, t);
  395. solutions = solveQuadratic(params, a2.y, a1.y, a0.y);
  396. for (int i = 0; i < solutions; ++i)
  397. if (params[i] > 0 && params[i] < 1)
  398. pointBounds(point(params[i]), l, b, r, t);
  399. }
  400. void LinearSegment::reverse() {
  401. Point2 tmp = p[0];
  402. p[0] = p[1];
  403. p[1] = tmp;
  404. }
  405. void QuadraticSegment::reverse() {
  406. Point2 tmp = p[0];
  407. p[0] = p[2];
  408. p[2] = tmp;
  409. }
  410. void CubicSegment::reverse() {
  411. Point2 tmp = p[0];
  412. p[0] = p[3];
  413. p[3] = tmp;
  414. tmp = p[1];
  415. p[1] = p[2];
  416. p[2] = tmp;
  417. }
  418. void LinearSegment::moveStartPoint(Point2 to) {
  419. p[0] = to;
  420. }
  421. void QuadraticSegment::moveStartPoint(Point2 to) {
  422. Vector2 origSDir = p[0]-p[1];
  423. Point2 origP1 = p[1];
  424. p[1] += crossProduct(p[0]-p[1], to-p[0])/crossProduct(p[0]-p[1], p[2]-p[1])*(p[2]-p[1]);
  425. p[0] = to;
  426. if (dotProduct(origSDir, p[0]-p[1]) < 0)
  427. p[1] = origP1;
  428. }
  429. void CubicSegment::moveStartPoint(Point2 to) {
  430. p[1] += to-p[0];
  431. p[0] = to;
  432. }
  433. void LinearSegment::moveEndPoint(Point2 to) {
  434. p[1] = to;
  435. }
  436. void QuadraticSegment::moveEndPoint(Point2 to) {
  437. Vector2 origEDir = p[2]-p[1];
  438. Point2 origP1 = p[1];
  439. p[1] += crossProduct(p[2]-p[1], to-p[2])/crossProduct(p[2]-p[1], p[0]-p[1])*(p[0]-p[1]);
  440. p[2] = to;
  441. if (dotProduct(origEDir, p[2]-p[1]) < 0)
  442. p[1] = origP1;
  443. }
  444. void CubicSegment::moveEndPoint(Point2 to) {
  445. p[2] += to-p[3];
  446. p[3] = to;
  447. }
  448. void LinearSegment::splitInThirds(EdgeSegment *&part0, EdgeSegment *&part1, EdgeSegment *&part2) const {
  449. part0 = new LinearSegment(p[0], point(1/3.), color);
  450. part1 = new LinearSegment(point(1/3.), point(2/3.), color);
  451. part2 = new LinearSegment(point(2/3.), p[1], color);
  452. }
  453. void QuadraticSegment::splitInThirds(EdgeSegment *&part0, EdgeSegment *&part1, EdgeSegment *&part2) const {
  454. part0 = new QuadraticSegment(p[0], mix(p[0], p[1], 1/3.), point(1/3.), color);
  455. part1 = new QuadraticSegment(point(1/3.), mix(mix(p[0], p[1], 5/9.), mix(p[1], p[2], 4/9.), .5), point(2/3.), color);
  456. part2 = new QuadraticSegment(point(2/3.), mix(p[1], p[2], 2/3.), p[2], color);
  457. }
  458. void CubicSegment::splitInThirds(EdgeSegment *&part0, EdgeSegment *&part1, EdgeSegment *&part2) const {
  459. part0 = new CubicSegment(p[0], p[0] == p[1] ? p[0] : mix(p[0], p[1], 1/3.), mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), point(1/3.), color);
  460. part1 = new CubicSegment(point(1/3.),
  461. mix(mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), mix(mix(p[1], p[2], 1/3.), mix(p[2], p[3], 1/3.), 1/3.), 2/3.),
  462. mix(mix(mix(p[0], p[1], 2/3.), mix(p[1], p[2], 2/3.), 2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), 1/3.),
  463. point(2/3.), color);
  464. part2 = new CubicSegment(point(2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), p[2] == p[3] ? p[3] : mix(p[2], p[3], 2/3.), p[3], color);
  465. }
  466. EdgeSegment *QuadraticSegment::convertToCubic() const {
  467. return new CubicSegment(p[0], mix(p[0], p[1], 2/3.), mix(p[1], p[2], 1/3.), p[2], color);
  468. }
  469. }