1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- #include "equation-solver.h"
- #define _USE_MATH_DEFINES
- #include <cmath>
- #define TOO_LARGE_RATIO 1e12
- namespace msdfgen {
- int solveQuadratic(double x[2], double a, double b, double c) {
- // a = 0 -> linear equation
- if (a == 0 || fabs(b)+fabs(c) > TOO_LARGE_RATIO*fabs(a)) {
- // a, b = 0 -> no solution
- if (b == 0 || fabs(c) > TOO_LARGE_RATIO*fabs(b)) {
- if (c == 0)
- return -1; // 0 = 0
- return 0;
- }
- x[0] = -c/b;
- return 1;
- }
- double dscr = b*b-4*a*c;
- if (dscr > 0) {
- dscr = sqrt(dscr);
- x[0] = (-b+dscr)/(2*a);
- x[1] = (-b-dscr)/(2*a);
- return 2;
- } else if (dscr == 0) {
- x[0] = -b/(2*a);
- return 1;
- } else
- return 0;
- }
- static int solveCubicNormed(double x[3], double a, double b, double c) {
- double a2 = a*a;
- double q = (a2 - 3*b)/9;
- double r = (a*(2*a2-9*b) + 27*c)/54;
- double r2 = r*r;
- double q3 = q*q*q;
- double A, B;
- if (r2 < q3) {
- double t = r/sqrt(q3);
- if (t < -1) t = -1;
- if (t > 1) t = 1;
- t = acos(t);
- a /= 3; q = -2*sqrt(q);
- x[0] = q*cos(t/3)-a;
- x[1] = q*cos((t+2*M_PI)/3)-a;
- x[2] = q*cos((t-2*M_PI)/3)-a;
- return 3;
- } else {
- A = -pow(fabs(r)+sqrt(r2-q3), 1/3.);
- if (r < 0) A = -A;
- B = A == 0 ? 0 : q/A;
- a /= 3;
- x[0] = (A+B)-a;
- x[1] = -0.5*(A+B)-a;
- x[2] = 0.5*sqrt(3.)*(A-B);
- if (fabs(x[2]) < 1e-14)
- return 2;
- return 1;
- }
- }
- int solveCubic(double x[3], double a, double b, double c, double d) {
- if (a != 0) {
- double bn = b/a, cn = c/a, dn = d/a;
- // Check that a isn't "almost zero"
- if (fabs(bn) < TOO_LARGE_RATIO && fabs(cn) < TOO_LARGE_RATIO && fabs(dn) < TOO_LARGE_RATIO)
- return solveCubicNormed(x, bn, cn, dn);
- }
- return solveQuadratic(x, b, c, d);
- }
- }
|