123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- #include "convergent-curve-ordering.h"
- #include "arithmetics.hpp"
- #include "Vector2.hpp"
- /*
- * For non-degenerate curves A(t), B(t) (ones where all control points are distinct) both originating at P = A(0) = B(0) = *corner,
- * we are computing the limit of
- *
- * sign(crossProduct( A(t / |A'(0)|) - P, B(t / |B'(0)|) - P ))
- *
- * for t -> 0 from 1. Of note is that the curves' parameter has to be normed by the first derivative at P,
- * which ensures that the limit approaches P at the same rate along both curves - omitting this was the main error of earlier versions of deconverge.
- *
- * For degenerate cubic curves (ones where the first control point equals the origin point), the denominator |A'(0)| is zero,
- * so to address that, we approach with the square root of t and use the derivative of A(sqrt(t)), which at t = 0 equals A''(0)/2
- * Therefore, in these cases, we replace one factor of the cross product with A(sqrt(2*t / |A''(0)|)) - P
- *
- * The cross product results in a polynomial (in respect to t or t^2 in the degenerate case),
- * the limit of sign of which at zero can be determined by the lowest order non-zero derivative,
- * which equals to the sign of the first non-zero polynomial coefficient in the order of increasing exponents.
- *
- * The polynomial's constant and linear terms are zero, so the first derivative is definitely zero as well.
- * The second derivative is assumed to be zero (or near zero) due to the curves being convergent - this is an input requirement
- * (otherwise the correct result is the sign of the cross product of their directions at t = 0).
- * Therefore, we skip the first and second derivatives.
- */
- namespace msdfgen {
- static void simplifyDegenerateCurve(Point2 *controlPoints, int &order) {
- if (order == 3 && (controlPoints[1] == controlPoints[0] || controlPoints[1] == controlPoints[3]) && (controlPoints[2] == controlPoints[0] || controlPoints[2] == controlPoints[3])) {
- controlPoints[1] = controlPoints[3];
- order = 1;
- }
- if (order == 2 && (controlPoints[1] == controlPoints[0] || controlPoints[1] == controlPoints[2])) {
- controlPoints[1] = controlPoints[2];
- order = 1;
- }
- if (order == 1 && controlPoints[0] == controlPoints[1])
- order = 0;
- }
- int convergentCurveOrdering(const Point2 *corner, int controlPointsBefore, int controlPointsAfter) {
- if (!(controlPointsBefore > 0 && controlPointsAfter > 0))
- return 0;
- Vector2 a1, a2, a3, b1, b2, b3;
- a1 = *(corner-1)-*corner;
- b1 = *(corner+1)-*corner;
- if (controlPointsBefore >= 2)
- a2 = *(corner-2)-*(corner-1)-a1;
- if (controlPointsAfter >= 2)
- b2 = *(corner+2)-*(corner+1)-b1;
- if (controlPointsBefore >= 3) {
- a3 = *(corner-3)-*(corner-2)-(*(corner-2)-*(corner-1))-a2;
- a2 *= 3;
- }
- if (controlPointsAfter >= 3) {
- b3 = *(corner+3)-*(corner+2)-(*(corner+2)-*(corner+1))-b2;
- b2 *= 3;
- }
- a1 *= controlPointsBefore;
- b1 *= controlPointsAfter;
- // Non-degenerate case
- if (a1 && b1) {
- double as = a1.length();
- double bs = b1.length();
- // Third derivative
- if (double d = as*crossProduct(a1, b2) + bs*crossProduct(a2, b1))
- return sign(d);
- // Fourth derivative
- if (double d = as*as*crossProduct(a1, b3) + as*bs*crossProduct(a2, b2) + bs*bs*crossProduct(a3, b1))
- return sign(d);
- // Fifth derivative
- if (double d = as*crossProduct(a2, b3) + bs*crossProduct(a3, b2))
- return sign(d);
- // Sixth derivative
- return sign(crossProduct(a3, b3));
- }
- // Degenerate curve after corner (control point after corner equals corner)
- int s = 1;
- if (a1) { // !b1
- // Swap aN <-> bN and handle in if (b1)
- b1 = a1;
- a1 = b2, b2 = a2, a2 = a1;
- a1 = b3, b3 = a3, a3 = a1;
- s = -1; // make sure to also flip output
- }
- // Degenerate curve before corner (control point before corner equals corner)
- if (b1) { // !a1
- // Two-and-a-half-th derivative
- if (double d = crossProduct(a3, b1))
- return s*sign(d);
- // Third derivative
- if (double d = crossProduct(a2, b2))
- return s*sign(d);
- // Three-and-a-half-th derivative
- if (double d = crossProduct(a3, b2))
- return s*sign(d);
- // Fourth derivative
- if (double d = crossProduct(a2, b3))
- return s*sign(d);
- // Four-and-a-half-th derivative
- return s*sign(crossProduct(a3, b3));
- }
- // Degenerate curves on both sides of the corner (control point before and after corner equals corner)
- { // !a1 && !b1
- // Two-and-a-half-th derivative
- if (double d = sqrt(a2.length())*crossProduct(a2, b3) + sqrt(b2.length())*crossProduct(a3, b2))
- return sign(d);
- // Third derivative
- return sign(crossProduct(a3, b3));
- }
- }
- int convergentCurveOrdering(const EdgeSegment *a, const EdgeSegment *b) {
- Point2 controlPoints[12];
- Point2 *corner = controlPoints+4;
- Point2 *aCpTmp = controlPoints+8;
- int aOrder = int(a->type());
- int bOrder = int(b->type());
- if (!(aOrder >= 1 && aOrder <= 3 && bOrder >= 1 && bOrder <= 3)) {
- // Not implemented - only linear, quadratic, and cubic curves supported
- return 0;
- }
- for (int i = 0; i <= aOrder; ++i)
- aCpTmp[i] = a->controlPoints()[i];
- for (int i = 0; i <= bOrder; ++i)
- corner[i] = b->controlPoints()[i];
- if (aCpTmp[aOrder] != *corner)
- return 0;
- simplifyDegenerateCurve(aCpTmp, aOrder);
- simplifyDegenerateCurve(corner, bOrder);
- for (int i = 0; i < aOrder; ++i)
- corner[i-aOrder] = aCpTmp[i];
- return convergentCurveOrdering(corner, aOrder, bOrder);
- }
- }
|