edge-coloring.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. #include "edge-coloring.h"
  2. #include <cstdlib>
  3. #include <cmath>
  4. #include <cstring>
  5. #include <cfloat>
  6. #include <queue>
  7. #include "arithmetics.hpp"
  8. namespace msdfgen {
  9. static bool isCorner(const Vector2 &aDir, const Vector2 &bDir, double crossThreshold) {
  10. return dotProduct(aDir, bDir) <= 0 || fabs(crossProduct(aDir, bDir)) > crossThreshold;
  11. }
  12. static double estimateEdgeLength(const EdgeSegment *edge) {
  13. double len = 0;
  14. Point2 prev = edge->point(0);
  15. for (int i = 1; i <= MSDFGEN_EDGE_LENGTH_PRECISION; ++i) {
  16. Point2 cur = edge->point(1./MSDFGEN_EDGE_LENGTH_PRECISION*i);
  17. len += (cur-prev).length();
  18. prev = cur;
  19. }
  20. return len;
  21. }
  22. static void switchColor(EdgeColor &color, unsigned long long &seed, EdgeColor banned = BLACK) {
  23. EdgeColor combined = EdgeColor(color&banned);
  24. if (combined == RED || combined == GREEN || combined == BLUE) {
  25. color = EdgeColor(combined^WHITE);
  26. return;
  27. }
  28. if (color == BLACK || color == WHITE) {
  29. static const EdgeColor start[3] = { CYAN, MAGENTA, YELLOW };
  30. color = start[seed%3];
  31. seed /= 3;
  32. return;
  33. }
  34. int shifted = color<<(1+(seed&1));
  35. color = EdgeColor((shifted|shifted>>3)&WHITE);
  36. seed >>= 1;
  37. }
  38. void edgeColoringSimple(Shape &shape, double angleThreshold, unsigned long long seed) {
  39. double crossThreshold = sin(angleThreshold);
  40. std::vector<int> corners;
  41. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
  42. // Identify corners
  43. corners.clear();
  44. if (!contour->edges.empty()) {
  45. Vector2 prevDirection = contour->edges.back()->direction(1);
  46. int index = 0;
  47. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  48. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
  49. corners.push_back(index);
  50. prevDirection = (*edge)->direction(1);
  51. }
  52. }
  53. // Smooth contour
  54. if (corners.empty())
  55. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  56. (*edge)->color = WHITE;
  57. // "Teardrop" case
  58. else if (corners.size() == 1) {
  59. EdgeColor colors[3] = { WHITE, WHITE };
  60. switchColor(colors[0], seed);
  61. switchColor(colors[2] = colors[0], seed);
  62. int corner = corners[0];
  63. if (contour->edges.size() >= 3) {
  64. int m = (int) contour->edges.size();
  65. for (int i = 0; i < m; ++i)
  66. contour->edges[(corner+i)%m]->color = (colors+1)[int(3+2.875*i/(m-1)-1.4375+.5)-3];
  67. } else if (contour->edges.size() >= 1) {
  68. // Less than three edge segments for three colors => edges must be split
  69. EdgeSegment *parts[7] = { };
  70. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  71. if (contour->edges.size() >= 2) {
  72. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  73. parts[0]->color = parts[1]->color = colors[0];
  74. parts[2]->color = parts[3]->color = colors[1];
  75. parts[4]->color = parts[5]->color = colors[2];
  76. } else {
  77. parts[0]->color = colors[0];
  78. parts[1]->color = colors[1];
  79. parts[2]->color = colors[2];
  80. }
  81. contour->edges.clear();
  82. for (int i = 0; parts[i]; ++i)
  83. contour->edges.push_back(EdgeHolder(parts[i]));
  84. }
  85. }
  86. // Multiple corners
  87. else {
  88. int cornerCount = (int) corners.size();
  89. int spline = 0;
  90. int start = corners[0];
  91. int m = (int) contour->edges.size();
  92. EdgeColor color = WHITE;
  93. switchColor(color, seed);
  94. EdgeColor initialColor = color;
  95. for (int i = 0; i < m; ++i) {
  96. int index = (start+i)%m;
  97. if (spline+1 < cornerCount && corners[spline+1] == index) {
  98. ++spline;
  99. switchColor(color, seed, EdgeColor((spline == cornerCount-1)*initialColor));
  100. }
  101. contour->edges[index]->color = color;
  102. }
  103. }
  104. }
  105. }
  106. struct EdgeColoringInkTrapCorner {
  107. int index;
  108. double prevEdgeLengthEstimate;
  109. bool minor;
  110. EdgeColor color;
  111. };
  112. void edgeColoringInkTrap(Shape &shape, double angleThreshold, unsigned long long seed) {
  113. typedef EdgeColoringInkTrapCorner Corner;
  114. double crossThreshold = sin(angleThreshold);
  115. std::vector<Corner> corners;
  116. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
  117. // Identify corners
  118. double splineLength = 0;
  119. corners.clear();
  120. if (!contour->edges.empty()) {
  121. Vector2 prevDirection = contour->edges.back()->direction(1);
  122. int index = 0;
  123. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  124. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold)) {
  125. Corner corner = { index, splineLength };
  126. corners.push_back(corner);
  127. splineLength = 0;
  128. }
  129. splineLength += estimateEdgeLength(*edge);
  130. prevDirection = (*edge)->direction(1);
  131. }
  132. }
  133. // Smooth contour
  134. if (corners.empty())
  135. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  136. (*edge)->color = WHITE;
  137. // "Teardrop" case
  138. else if (corners.size() == 1) {
  139. EdgeColor colors[3] = { WHITE, WHITE };
  140. switchColor(colors[0], seed);
  141. switchColor(colors[2] = colors[0], seed);
  142. int corner = corners[0].index;
  143. if (contour->edges.size() >= 3) {
  144. int m = (int) contour->edges.size();
  145. for (int i = 0; i < m; ++i)
  146. contour->edges[(corner+i)%m]->color = (colors+1)[int(3+2.875*i/(m-1)-1.4375+.5)-3];
  147. } else if (contour->edges.size() >= 1) {
  148. // Less than three edge segments for three colors => edges must be split
  149. EdgeSegment *parts[7] = { };
  150. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  151. if (contour->edges.size() >= 2) {
  152. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  153. parts[0]->color = parts[1]->color = colors[0];
  154. parts[2]->color = parts[3]->color = colors[1];
  155. parts[4]->color = parts[5]->color = colors[2];
  156. } else {
  157. parts[0]->color = colors[0];
  158. parts[1]->color = colors[1];
  159. parts[2]->color = colors[2];
  160. }
  161. contour->edges.clear();
  162. for (int i = 0; parts[i]; ++i)
  163. contour->edges.push_back(EdgeHolder(parts[i]));
  164. }
  165. }
  166. // Multiple corners
  167. else {
  168. int cornerCount = (int) corners.size();
  169. int majorCornerCount = cornerCount;
  170. if (cornerCount > 3) {
  171. corners.begin()->prevEdgeLengthEstimate += splineLength;
  172. for (int i = 0; i < cornerCount; ++i) {
  173. if (
  174. corners[i].prevEdgeLengthEstimate > corners[(i+1)%cornerCount].prevEdgeLengthEstimate &&
  175. corners[(i+1)%cornerCount].prevEdgeLengthEstimate < corners[(i+2)%cornerCount].prevEdgeLengthEstimate
  176. ) {
  177. corners[i].minor = true;
  178. --majorCornerCount;
  179. }
  180. }
  181. }
  182. EdgeColor color = WHITE;
  183. EdgeColor initialColor = BLACK;
  184. for (int i = 0; i < cornerCount; ++i) {
  185. if (!corners[i].minor) {
  186. --majorCornerCount;
  187. switchColor(color, seed, EdgeColor(!majorCornerCount*initialColor));
  188. corners[i].color = color;
  189. if (!initialColor)
  190. initialColor = color;
  191. }
  192. }
  193. for (int i = 0; i < cornerCount; ++i) {
  194. if (corners[i].minor) {
  195. EdgeColor nextColor = corners[(i+1)%cornerCount].color;
  196. corners[i].color = EdgeColor((color&nextColor)^WHITE);
  197. } else
  198. color = corners[i].color;
  199. }
  200. int spline = 0;
  201. int start = corners[0].index;
  202. color = corners[0].color;
  203. int m = (int) contour->edges.size();
  204. for (int i = 0; i < m; ++i) {
  205. int index = (start+i)%m;
  206. if (spline+1 < cornerCount && corners[spline+1].index == index)
  207. color = corners[++spline].color;
  208. contour->edges[index]->color = color;
  209. }
  210. }
  211. }
  212. }
  213. // EDGE COLORING BY DISTANCE - EXPERIMENTAL IMPLEMENTATION - WORK IN PROGRESS
  214. #define MAX_RECOLOR_STEPS 16
  215. #define EDGE_DISTANCE_PRECISION 16
  216. static double edgeToEdgeDistance(const EdgeSegment &a, const EdgeSegment &b, int precision) {
  217. if (a.point(0) == b.point(0) || a.point(0) == b.point(1) || a.point(1) == b.point(0) || a.point(1) == b.point(1))
  218. return 0;
  219. double iFac = 1./precision;
  220. double minDistance = (b.point(0)-a.point(0)).length();
  221. for (int i = 0; i <= precision; ++i) {
  222. double t = iFac*i;
  223. double d = fabs(a.signedDistance(b.point(t), t).distance);
  224. minDistance = min(minDistance, d);
  225. }
  226. for (int i = 0; i <= precision; ++i) {
  227. double t = iFac*i;
  228. double d = fabs(b.signedDistance(a.point(t), t).distance);
  229. minDistance = min(minDistance, d);
  230. }
  231. return minDistance;
  232. }
  233. static double splineToSplineDistance(EdgeSegment * const *edgeSegments, int aStart, int aEnd, int bStart, int bEnd, int precision) {
  234. double minDistance = DBL_MAX;
  235. for (int ai = aStart; ai < aEnd; ++ai)
  236. for (int bi = bStart; bi < bEnd && minDistance; ++bi) {
  237. double d = edgeToEdgeDistance(*edgeSegments[ai], *edgeSegments[bi], precision);
  238. minDistance = min(minDistance, d);
  239. }
  240. return minDistance;
  241. }
  242. static void colorSecondDegreeGraph(int *coloring, const int * const *edgeMatrix, int vertexCount, unsigned long long seed) {
  243. for (int i = 0; i < vertexCount; ++i) {
  244. int possibleColors = 7;
  245. for (int j = 0; j < i; ++j) {
  246. if (edgeMatrix[i][j])
  247. possibleColors &= ~(1<<coloring[j]);
  248. }
  249. int color = 0;
  250. switch (possibleColors) {
  251. case 1:
  252. color = 0;
  253. break;
  254. case 2:
  255. color = 1;
  256. break;
  257. case 3:
  258. color = (int) seed&1;
  259. seed >>= 1;
  260. break;
  261. case 4:
  262. color = 2;
  263. break;
  264. case 5:
  265. color = ((int) seed+1&1)<<1;
  266. seed >>= 1;
  267. break;
  268. case 6:
  269. color = ((int) seed&1)+1;
  270. seed >>= 1;
  271. break;
  272. case 7:
  273. color = int((seed+i)%3);
  274. seed /= 3;
  275. break;
  276. }
  277. coloring[i] = color;
  278. }
  279. }
  280. static int vertexPossibleColors(const int *coloring, const int *edgeVector, int vertexCount) {
  281. int usedColors = 0;
  282. for (int i = 0; i < vertexCount; ++i)
  283. if (edgeVector[i])
  284. usedColors |= 1<<coloring[i];
  285. return 7&~usedColors;
  286. }
  287. static void uncolorSameNeighbors(std::queue<int> &uncolored, int *coloring, const int * const *edgeMatrix, int vertex, int vertexCount) {
  288. for (int i = vertex+1; i < vertexCount; ++i) {
  289. if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
  290. coloring[i] = -1;
  291. uncolored.push(i);
  292. }
  293. }
  294. for (int i = 0; i < vertex; ++i) {
  295. if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
  296. coloring[i] = -1;
  297. uncolored.push(i);
  298. }
  299. }
  300. }
  301. static bool tryAddEdge(int *coloring, int * const *edgeMatrix, int vertexCount, int vertexA, int vertexB, int *coloringBuffer) {
  302. static const int FIRST_POSSIBLE_COLOR[8] = { -1, 0, 1, 0, 2, 2, 1, 0 };
  303. edgeMatrix[vertexA][vertexB] = 1;
  304. edgeMatrix[vertexB][vertexA] = 1;
  305. if (coloring[vertexA] != coloring[vertexB])
  306. return true;
  307. int bPossibleColors = vertexPossibleColors(coloring, edgeMatrix[vertexB], vertexCount);
  308. if (bPossibleColors) {
  309. coloring[vertexB] = FIRST_POSSIBLE_COLOR[bPossibleColors];
  310. return true;
  311. }
  312. memcpy(coloringBuffer, coloring, sizeof(int)*vertexCount);
  313. std::queue<int> uncolored;
  314. {
  315. int *coloring = coloringBuffer;
  316. coloring[vertexB] = FIRST_POSSIBLE_COLOR[7&~(1<<coloring[vertexA])];
  317. uncolorSameNeighbors(uncolored, coloring, edgeMatrix, vertexB, vertexCount);
  318. int step = 0;
  319. while (!uncolored.empty() && step < MAX_RECOLOR_STEPS) {
  320. int i = uncolored.front();
  321. uncolored.pop();
  322. int possibleColors = vertexPossibleColors(coloring, edgeMatrix[i], vertexCount);
  323. if (possibleColors) {
  324. coloring[i] = FIRST_POSSIBLE_COLOR[possibleColors];
  325. continue;
  326. }
  327. do {
  328. coloring[i] = step++%3;
  329. } while (edgeMatrix[i][vertexA] && coloring[i] == coloring[vertexA]);
  330. uncolorSameNeighbors(uncolored, coloring, edgeMatrix, i, vertexCount);
  331. }
  332. }
  333. if (!uncolored.empty()) {
  334. edgeMatrix[vertexA][vertexB] = 0;
  335. edgeMatrix[vertexB][vertexA] = 0;
  336. return false;
  337. }
  338. memcpy(coloring, coloringBuffer, sizeof(int)*vertexCount);
  339. return true;
  340. }
  341. static int cmpDoublePtr(const void *a, const void *b) {
  342. return sign(**reinterpret_cast<const double * const *>(a)-**reinterpret_cast<const double * const *>(b));
  343. }
  344. void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long long seed) {
  345. std::vector<EdgeSegment *> edgeSegments;
  346. std::vector<int> splineStarts;
  347. double crossThreshold = sin(angleThreshold);
  348. std::vector<int> corners;
  349. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour)
  350. if (!contour->edges.empty()) {
  351. // Identify corners
  352. corners.clear();
  353. Vector2 prevDirection = contour->edges.back()->direction(1);
  354. int index = 0;
  355. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  356. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
  357. corners.push_back(index);
  358. prevDirection = (*edge)->direction(1);
  359. }
  360. splineStarts.push_back((int) edgeSegments.size());
  361. // Smooth contour
  362. if (corners.empty())
  363. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  364. edgeSegments.push_back(&**edge);
  365. // "Teardrop" case
  366. else if (corners.size() == 1) {
  367. int corner = corners[0];
  368. if (contour->edges.size() >= 3) {
  369. int m = (int) contour->edges.size();
  370. for (int i = 0; i < m; ++i) {
  371. if (i == m/2)
  372. splineStarts.push_back((int) edgeSegments.size());
  373. if (int(3+2.875*i/(m-1)-1.4375+.5)-3)
  374. edgeSegments.push_back(&*contour->edges[(corner+i)%m]);
  375. else
  376. contour->edges[(corner+i)%m]->color = WHITE;
  377. }
  378. } else if (contour->edges.size() >= 1) {
  379. // Less than three edge segments for three colors => edges must be split
  380. EdgeSegment *parts[7] = { };
  381. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  382. if (contour->edges.size() >= 2) {
  383. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  384. edgeSegments.push_back(parts[0]);
  385. edgeSegments.push_back(parts[1]);
  386. parts[2]->color = parts[3]->color = WHITE;
  387. splineStarts.push_back((int) edgeSegments.size());
  388. edgeSegments.push_back(parts[4]);
  389. edgeSegments.push_back(parts[5]);
  390. } else {
  391. edgeSegments.push_back(parts[0]);
  392. parts[1]->color = WHITE;
  393. splineStarts.push_back((int) edgeSegments.size());
  394. edgeSegments.push_back(parts[2]);
  395. }
  396. contour->edges.clear();
  397. for (int i = 0; parts[i]; ++i)
  398. contour->edges.push_back(EdgeHolder(parts[i]));
  399. }
  400. }
  401. // Multiple corners
  402. else {
  403. int cornerCount = (int) corners.size();
  404. int spline = 0;
  405. int start = corners[0];
  406. int m = (int) contour->edges.size();
  407. for (int i = 0; i < m; ++i) {
  408. int index = (start+i)%m;
  409. if (spline+1 < cornerCount && corners[spline+1] == index) {
  410. splineStarts.push_back((int) edgeSegments.size());
  411. ++spline;
  412. }
  413. edgeSegments.push_back(&*contour->edges[index]);
  414. }
  415. }
  416. }
  417. splineStarts.push_back((int) edgeSegments.size());
  418. int segmentCount = (int) edgeSegments.size();
  419. int splineCount = (int) splineStarts.size()-1;
  420. if (!splineCount)
  421. return;
  422. std::vector<double> distanceMatrixStorage(splineCount*splineCount);
  423. std::vector<double *> distanceMatrix(splineCount);
  424. for (int i = 0; i < splineCount; ++i)
  425. distanceMatrix[i] = &distanceMatrixStorage[i*splineCount];
  426. const double *distanceMatrixBase = &distanceMatrixStorage[0];
  427. for (int i = 0; i < splineCount; ++i) {
  428. distanceMatrix[i][i] = -1;
  429. for (int j = i+1; j < splineCount; ++j) {
  430. double dist = splineToSplineDistance(&edgeSegments[0], splineStarts[i], splineStarts[i+1], splineStarts[j], splineStarts[j+1], EDGE_DISTANCE_PRECISION);
  431. distanceMatrix[i][j] = dist;
  432. distanceMatrix[j][i] = dist;
  433. }
  434. }
  435. std::vector<const double *> graphEdgeDistances;
  436. graphEdgeDistances.reserve(splineCount*(splineCount-1)/2);
  437. for (int i = 0; i < splineCount; ++i)
  438. for (int j = i+1; j < splineCount; ++j)
  439. graphEdgeDistances.push_back(&distanceMatrix[i][j]);
  440. int graphEdgeCount = (int) graphEdgeDistances.size();
  441. if (!graphEdgeDistances.empty())
  442. qsort(&graphEdgeDistances[0], graphEdgeDistances.size(), sizeof(const double *), &cmpDoublePtr);
  443. std::vector<int> edgeMatrixStorage(splineCount*splineCount);
  444. std::vector<int *> edgeMatrix(splineCount);
  445. for (int i = 0; i < splineCount; ++i)
  446. edgeMatrix[i] = &edgeMatrixStorage[i*splineCount];
  447. int nextEdge = 0;
  448. for (; nextEdge < graphEdgeCount && !*graphEdgeDistances[nextEdge]; ++nextEdge) {
  449. int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
  450. int row = elem/splineCount;
  451. int col = elem%splineCount;
  452. edgeMatrix[row][col] = 1;
  453. edgeMatrix[col][row] = 1;
  454. }
  455. std::vector<int> coloring(2*splineCount);
  456. colorSecondDegreeGraph(&coloring[0], &edgeMatrix[0], splineCount, seed);
  457. for (; nextEdge < graphEdgeCount; ++nextEdge) {
  458. int elem = (int) (graphEdgeDistances[nextEdge]-distanceMatrixBase);
  459. tryAddEdge(&coloring[0], &edgeMatrix[0], splineCount, elem/splineCount, elem%splineCount, &coloring[splineCount]);
  460. }
  461. const EdgeColor colors[3] = { YELLOW, CYAN, MAGENTA };
  462. int spline = -1;
  463. for (int i = 0; i < segmentCount; ++i) {
  464. if (splineStarts[spline+1] == i)
  465. ++spline;
  466. edgeSegments[i]->color = colors[coloring[spline]];
  467. }
  468. }
  469. }