edge-segments.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. #include "edge-segments.h"
  2. #include "arithmetics.hpp"
  3. #include "equation-solver.h"
  4. namespace msdfgen {
  5. void EdgeSegment::distanceToPseudoDistance(SignedDistance &distance, Point2 origin, double param) const {
  6. if (param < 0) {
  7. Vector2 dir = direction(0).normalize();
  8. Vector2 aq = origin-point(0);
  9. double ts = dotProduct(aq, dir);
  10. if (ts < 0) {
  11. double pseudoDistance = crossProduct(aq, dir);
  12. if (fabs(pseudoDistance) <= fabs(distance.distance)) {
  13. distance.distance = pseudoDistance;
  14. distance.dot = 0;
  15. }
  16. }
  17. } else if (param > 1) {
  18. Vector2 dir = direction(1).normalize();
  19. Vector2 bq = origin-point(1);
  20. double ts = dotProduct(bq, dir);
  21. if (ts > 0) {
  22. double pseudoDistance = crossProduct(bq, dir);
  23. if (fabs(pseudoDistance) <= fabs(distance.distance)) {
  24. distance.distance = pseudoDistance;
  25. distance.dot = 0;
  26. }
  27. }
  28. }
  29. }
  30. LinearSegment::LinearSegment(Point2 p0, Point2 p1, EdgeColor edgeColor) : EdgeSegment(edgeColor) {
  31. p[0] = p0;
  32. p[1] = p1;
  33. }
  34. QuadraticSegment::QuadraticSegment(Point2 p0, Point2 p1, Point2 p2, EdgeColor edgeColor) : EdgeSegment(edgeColor) {
  35. if (p1 == p0 || p1 == p2)
  36. p1 = 0.5*(p0+p2);
  37. p[0] = p0;
  38. p[1] = p1;
  39. p[2] = p2;
  40. }
  41. CubicSegment::CubicSegment(Point2 p0, Point2 p1, Point2 p2, Point2 p3, EdgeColor edgeColor) : EdgeSegment(edgeColor) {
  42. if ((p1 == p0 || p1 == p3) && (p2 == p0 || p2 == p3)) {
  43. p1 = mix(p0, p3, 1/3.);
  44. p2 = mix(p0, p3, 2/3.);
  45. }
  46. p[0] = p0;
  47. p[1] = p1;
  48. p[2] = p2;
  49. p[3] = p3;
  50. }
  51. LinearSegment * LinearSegment::clone() const {
  52. return new LinearSegment(p[0], p[1], color);
  53. }
  54. QuadraticSegment * QuadraticSegment::clone() const {
  55. return new QuadraticSegment(p[0], p[1], p[2], color);
  56. }
  57. CubicSegment * CubicSegment::clone() const {
  58. return new CubicSegment(p[0], p[1], p[2], p[3], color);
  59. }
  60. Point2 LinearSegment::point(double param) const {
  61. return mix(p[0], p[1], param);
  62. }
  63. Point2 QuadraticSegment::point(double param) const {
  64. return mix(mix(p[0], p[1], param), mix(p[1], p[2], param), param);
  65. }
  66. Point2 CubicSegment::point(double param) const {
  67. Vector2 p12 = mix(p[1], p[2], param);
  68. return mix(mix(mix(p[0], p[1], param), p12, param), mix(p12, mix(p[2], p[3], param), param), param);
  69. }
  70. Vector2 LinearSegment::direction(double param) const {
  71. return p[1]-p[0];
  72. }
  73. Vector2 QuadraticSegment::direction(double param) const {
  74. Vector2 tangent = mix(p[1]-p[0], p[2]-p[1], param);
  75. if (!tangent)
  76. return p[2]-p[0];
  77. return tangent;
  78. }
  79. Vector2 CubicSegment::direction(double param) const {
  80. Vector2 tangent = mix(mix(p[1]-p[0], p[2]-p[1], param), mix(p[2]-p[1], p[3]-p[2], param), param);
  81. if (!tangent) {
  82. if (param == 0) return p[2]-p[0];
  83. if (param == 1) return p[3]-p[1];
  84. }
  85. return tangent;
  86. }
  87. Vector2 LinearSegment::directionChange(double param) const {
  88. return Vector2();
  89. }
  90. Vector2 QuadraticSegment::directionChange(double param) const {
  91. return (p[2]-p[1])-(p[1]-p[0]);
  92. }
  93. Vector2 CubicSegment::directionChange(double param) const {
  94. return mix((p[2]-p[1])-(p[1]-p[0]), (p[3]-p[2])-(p[2]-p[1]), param);
  95. }
  96. SignedDistance LinearSegment::signedDistance(Point2 origin, double &param) const {
  97. Vector2 aq = origin-p[0];
  98. Vector2 ab = p[1]-p[0];
  99. param = dotProduct(aq, ab)/dotProduct(ab, ab);
  100. Vector2 eq = p[param > .5]-origin;
  101. double endpointDistance = eq.length();
  102. if (param > 0 && param < 1) {
  103. double orthoDistance = dotProduct(ab.getOrthonormal(false), aq);
  104. if (fabs(orthoDistance) < endpointDistance)
  105. return SignedDistance(orthoDistance, 0);
  106. }
  107. return SignedDistance(nonZeroSign(crossProduct(aq, ab))*endpointDistance, fabs(dotProduct(ab.normalize(), eq.normalize())));
  108. }
  109. SignedDistance QuadraticSegment::signedDistance(Point2 origin, double &param) const {
  110. Vector2 qa = p[0]-origin;
  111. Vector2 ab = p[1]-p[0];
  112. Vector2 br = p[2]-p[1]-ab;
  113. double a = dotProduct(br, br);
  114. double b = 3*dotProduct(ab, br);
  115. double c = 2*dotProduct(ab, ab)+dotProduct(qa, br);
  116. double d = dotProduct(qa, ab);
  117. double t[3];
  118. int solutions = solveCubic(t, a, b, c, d);
  119. Vector2 epDir = direction(0);
  120. double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A
  121. param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir);
  122. {
  123. epDir = direction(1);
  124. double distance = (p[2]-origin).length(); // distance from B
  125. if (distance < fabs(minDistance)) {
  126. minDistance = nonZeroSign(crossProduct(epDir, p[2]-origin))*distance;
  127. param = dotProduct(origin-p[1], epDir)/dotProduct(epDir, epDir);
  128. }
  129. }
  130. for (int i = 0; i < solutions; ++i) {
  131. if (t[i] > 0 && t[i] < 1) {
  132. Point2 qe = p[0]+2*t[i]*ab+t[i]*t[i]*br-origin;
  133. double distance = qe.length();
  134. if (distance <= fabs(minDistance)) {
  135. minDistance = nonZeroSign(crossProduct(direction(t[i]), qe))*distance;
  136. param = t[i];
  137. }
  138. }
  139. }
  140. if (param >= 0 && param <= 1)
  141. return SignedDistance(minDistance, 0);
  142. if (param < .5)
  143. return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize())));
  144. else
  145. return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[2]-origin).normalize())));
  146. }
  147. SignedDistance CubicSegment::signedDistance(Point2 origin, double &param) const {
  148. Vector2 qa = p[0]-origin;
  149. Vector2 ab = p[1]-p[0];
  150. Vector2 br = p[2]-p[1]-ab;
  151. Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br;
  152. Vector2 epDir = direction(0);
  153. double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A
  154. param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir);
  155. {
  156. epDir = direction(1);
  157. double distance = (p[3]-origin).length(); // distance from B
  158. if (distance < fabs(minDistance)) {
  159. minDistance = nonZeroSign(crossProduct(epDir, p[3]-origin))*distance;
  160. param = dotProduct(epDir-(p[3]-origin), epDir)/dotProduct(epDir, epDir);
  161. }
  162. }
  163. // Iterative minimum distance search
  164. for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) {
  165. double t = (double) i/MSDFGEN_CUBIC_SEARCH_STARTS;
  166. Vector2 qe = qa+3*t*ab+3*t*t*br+t*t*t*as;
  167. for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) {
  168. // Improve t
  169. Vector2 d1 = 3*as*t*t+6*br*t+3*ab;
  170. Vector2 d2 = 6*as*t+6*br;
  171. t -= dotProduct(qe, d1)/(dotProduct(d1, d1)+dotProduct(qe, d2));
  172. if (t <= 0 || t >= 1)
  173. break;
  174. qe = qa+3*t*ab+3*t*t*br+t*t*t*as;
  175. double distance = qe.length();
  176. if (distance < fabs(minDistance)) {
  177. minDistance = nonZeroSign(crossProduct(direction(t), qe))*distance;
  178. param = t;
  179. }
  180. }
  181. }
  182. if (param >= 0 && param <= 1)
  183. return SignedDistance(minDistance, 0);
  184. if (param < .5)
  185. return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize())));
  186. else
  187. return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[3]-origin).normalize())));
  188. }
  189. int LinearSegment::scanlineIntersections(double x[3], int dy[3], double y) const {
  190. if ((y >= p[0].y && y < p[1].y) || (y >= p[1].y && y < p[0].y)) {
  191. double param = (y-p[0].y)/(p[1].y-p[0].y);
  192. x[0] = mix(p[0].x, p[1].x, param);
  193. dy[0] = sign(p[1].y-p[0].y);
  194. return 1;
  195. }
  196. return 0;
  197. }
  198. int QuadraticSegment::scanlineIntersections(double x[3], int dy[3], double y) const {
  199. int total = 0;
  200. int nextDY = y > p[0].y ? 1 : -1;
  201. x[total] = p[0].x;
  202. if (p[0].y == y) {
  203. if (p[0].y < p[1].y || (p[0].y == p[1].y && p[0].y < p[2].y))
  204. dy[total++] = 1;
  205. else
  206. nextDY = 1;
  207. }
  208. {
  209. Vector2 ab = p[1]-p[0];
  210. Vector2 br = p[2]-p[1]-ab;
  211. double t[2];
  212. int solutions = solveQuadratic(t, br.y, 2*ab.y, p[0].y-y);
  213. // Sort solutions
  214. double tmp;
  215. if (solutions >= 2 && t[0] > t[1])
  216. tmp = t[0], t[0] = t[1], t[1] = tmp;
  217. for (int i = 0; i < solutions && total < 2; ++i) {
  218. if (t[i] >= 0 && t[i] <= 1) {
  219. x[total] = p[0].x+2*t[i]*ab.x+t[i]*t[i]*br.x;
  220. if (nextDY*(ab.y+t[i]*br.y) >= 0) {
  221. dy[total++] = nextDY;
  222. nextDY = -nextDY;
  223. }
  224. }
  225. }
  226. }
  227. if (p[2].y == y) {
  228. if (nextDY > 0 && total > 0) {
  229. --total;
  230. nextDY = -1;
  231. }
  232. if ((p[2].y < p[1].y || (p[2].y == p[1].y && p[2].y < p[0].y)) && total < 2) {
  233. x[total] = p[2].x;
  234. if (nextDY < 0) {
  235. dy[total++] = -1;
  236. nextDY = 1;
  237. }
  238. }
  239. }
  240. if (nextDY != (y >= p[2].y ? 1 : -1)) {
  241. if (total > 0)
  242. --total;
  243. else {
  244. if (fabs(p[2].y-y) < fabs(p[0].y-y))
  245. x[total] = p[2].x;
  246. dy[total++] = nextDY;
  247. }
  248. }
  249. return total;
  250. }
  251. int CubicSegment::scanlineIntersections(double x[3], int dy[3], double y) const {
  252. int total = 0;
  253. int nextDY = y > p[0].y ? 1 : -1;
  254. x[total] = p[0].x;
  255. if (p[0].y == y) {
  256. if (p[0].y < p[1].y || (p[0].y == p[1].y && (p[0].y < p[2].y || (p[0].y == p[2].y && p[0].y < p[3].y))))
  257. dy[total++] = 1;
  258. else
  259. nextDY = 1;
  260. }
  261. {
  262. Vector2 ab = p[1]-p[0];
  263. Vector2 br = p[2]-p[1]-ab;
  264. Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br;
  265. double t[3];
  266. int solutions = solveCubic(t, as.y, 3*br.y, 3*ab.y, p[0].y-y);
  267. // Sort solutions
  268. double tmp;
  269. if (solutions >= 2) {
  270. if (t[0] > t[1])
  271. tmp = t[0], t[0] = t[1], t[1] = tmp;
  272. if (solutions >= 3 && t[1] > t[2]) {
  273. tmp = t[1], t[1] = t[2], t[2] = tmp;
  274. if (t[0] > t[1])
  275. tmp = t[0], t[0] = t[1], t[1] = tmp;
  276. }
  277. }
  278. for (int i = 0; i < solutions && total < 3; ++i) {
  279. if (t[i] >= 0 && t[i] <= 1) {
  280. x[total] = p[0].x+3*t[i]*ab.x+3*t[i]*t[i]*br.x+t[i]*t[i]*t[i]*as.x;
  281. if (nextDY*(ab.y+2*t[i]*br.y+t[i]*t[i]*as.y) >= 0) {
  282. dy[total++] = nextDY;
  283. nextDY = -nextDY;
  284. }
  285. }
  286. }
  287. }
  288. if (p[3].y == y) {
  289. if (nextDY > 0 && total > 0) {
  290. --total;
  291. nextDY = -1;
  292. }
  293. if ((p[3].y < p[2].y || (p[3].y == p[2].y && (p[3].y < p[1].y || (p[3].y == p[1].y && p[3].y < p[0].y)))) && total < 3) {
  294. x[total] = p[3].x;
  295. if (nextDY < 0) {
  296. dy[total++] = -1;
  297. nextDY = 1;
  298. }
  299. }
  300. }
  301. if (nextDY != (y >= p[3].y ? 1 : -1)) {
  302. if (total > 0)
  303. --total;
  304. else {
  305. if (fabs(p[3].y-y) < fabs(p[0].y-y))
  306. x[total] = p[3].x;
  307. dy[total++] = nextDY;
  308. }
  309. }
  310. return total;
  311. }
  312. static void pointBounds(Point2 p, double &l, double &b, double &r, double &t) {
  313. if (p.x < l) l = p.x;
  314. if (p.y < b) b = p.y;
  315. if (p.x > r) r = p.x;
  316. if (p.y > t) t = p.y;
  317. }
  318. void LinearSegment::bound(double &l, double &b, double &r, double &t) const {
  319. pointBounds(p[0], l, b, r, t);
  320. pointBounds(p[1], l, b, r, t);
  321. }
  322. void QuadraticSegment::bound(double &l, double &b, double &r, double &t) const {
  323. pointBounds(p[0], l, b, r, t);
  324. pointBounds(p[2], l, b, r, t);
  325. Vector2 bot = (p[1]-p[0])-(p[2]-p[1]);
  326. if (bot.x) {
  327. double param = (p[1].x-p[0].x)/bot.x;
  328. if (param > 0 && param < 1)
  329. pointBounds(point(param), l, b, r, t);
  330. }
  331. if (bot.y) {
  332. double param = (p[1].y-p[0].y)/bot.y;
  333. if (param > 0 && param < 1)
  334. pointBounds(point(param), l, b, r, t);
  335. }
  336. }
  337. void CubicSegment::bound(double &l, double &b, double &r, double &t) const {
  338. pointBounds(p[0], l, b, r, t);
  339. pointBounds(p[3], l, b, r, t);
  340. Vector2 a0 = p[1]-p[0];
  341. Vector2 a1 = 2*(p[2]-p[1]-a0);
  342. Vector2 a2 = p[3]-3*p[2]+3*p[1]-p[0];
  343. double params[2];
  344. int solutions;
  345. solutions = solveQuadratic(params, a2.x, a1.x, a0.x);
  346. for (int i = 0; i < solutions; ++i)
  347. if (params[i] > 0 && params[i] < 1)
  348. pointBounds(point(params[i]), l, b, r, t);
  349. solutions = solveQuadratic(params, a2.y, a1.y, a0.y);
  350. for (int i = 0; i < solutions; ++i)
  351. if (params[i] > 0 && params[i] < 1)
  352. pointBounds(point(params[i]), l, b, r, t);
  353. }
  354. void LinearSegment::reverse() {
  355. Point2 tmp = p[0];
  356. p[0] = p[1];
  357. p[1] = tmp;
  358. }
  359. void QuadraticSegment::reverse() {
  360. Point2 tmp = p[0];
  361. p[0] = p[2];
  362. p[2] = tmp;
  363. }
  364. void CubicSegment::reverse() {
  365. Point2 tmp = p[0];
  366. p[0] = p[3];
  367. p[3] = tmp;
  368. tmp = p[1];
  369. p[1] = p[2];
  370. p[2] = tmp;
  371. }
  372. void LinearSegment::moveStartPoint(Point2 to) {
  373. p[0] = to;
  374. }
  375. void QuadraticSegment::moveStartPoint(Point2 to) {
  376. Vector2 origSDir = p[0]-p[1];
  377. Point2 origP1 = p[1];
  378. p[1] += crossProduct(p[0]-p[1], to-p[0])/crossProduct(p[0]-p[1], p[2]-p[1])*(p[2]-p[1]);
  379. p[0] = to;
  380. if (dotProduct(origSDir, p[0]-p[1]) < 0)
  381. p[1] = origP1;
  382. }
  383. void CubicSegment::moveStartPoint(Point2 to) {
  384. p[1] += to-p[0];
  385. p[0] = to;
  386. }
  387. void LinearSegment::moveEndPoint(Point2 to) {
  388. p[1] = to;
  389. }
  390. void QuadraticSegment::moveEndPoint(Point2 to) {
  391. Vector2 origEDir = p[2]-p[1];
  392. Point2 origP1 = p[1];
  393. p[1] += crossProduct(p[2]-p[1], to-p[2])/crossProduct(p[2]-p[1], p[0]-p[1])*(p[0]-p[1]);
  394. p[2] = to;
  395. if (dotProduct(origEDir, p[2]-p[1]) < 0)
  396. p[1] = origP1;
  397. }
  398. void CubicSegment::moveEndPoint(Point2 to) {
  399. p[2] += to-p[3];
  400. p[3] = to;
  401. }
  402. void LinearSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const {
  403. part1 = new LinearSegment(p[0], point(1/3.), color);
  404. part2 = new LinearSegment(point(1/3.), point(2/3.), color);
  405. part3 = new LinearSegment(point(2/3.), p[1], color);
  406. }
  407. void QuadraticSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const {
  408. part1 = new QuadraticSegment(p[0], mix(p[0], p[1], 1/3.), point(1/3.), color);
  409. part2 = new QuadraticSegment(point(1/3.), mix(mix(p[0], p[1], 5/9.), mix(p[1], p[2], 4/9.), .5), point(2/3.), color);
  410. part3 = new QuadraticSegment(point(2/3.), mix(p[1], p[2], 2/3.), p[2], color);
  411. }
  412. void CubicSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const {
  413. part1 = new CubicSegment(p[0], p[0] == p[1] ? p[0] : mix(p[0], p[1], 1/3.), mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), point(1/3.), color);
  414. part2 = new CubicSegment(point(1/3.),
  415. mix(mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), mix(mix(p[1], p[2], 1/3.), mix(p[2], p[3], 1/3.), 1/3.), 2/3.),
  416. mix(mix(mix(p[0], p[1], 2/3.), mix(p[1], p[2], 2/3.), 2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), 1/3.),
  417. point(2/3.), color);
  418. part3 = new CubicSegment(point(2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), p[2] == p[3] ? p[3] : mix(p[2], p[3], 2/3.), p[3], color);
  419. }
  420. EdgeSegment * QuadraticSegment::convertToCubic() const {
  421. return new CubicSegment(p[0], mix(p[0], p[1], 2/3.), mix(p[1], p[2], 1/3.), p[2], color);
  422. }
  423. void CubicSegment::deconverge(int param, double amount) {
  424. Vector2 dir = direction(param);
  425. Vector2 normal = dir.getOrthonormal();
  426. double h = dotProduct(directionChange(param)-dir, normal);
  427. switch (param) {
  428. case 0:
  429. p[1] += amount*(dir+sign(h)*sqrt(fabs(h))*normal);
  430. break;
  431. case 1:
  432. p[2] -= amount*(dir-sign(h)*sqrt(fabs(h))*normal);
  433. break;
  434. }
  435. }
  436. }