123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863 |
- /*
- * Copyright 2006 The Android Open Source Project
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
- /* Generated by tools/bookmaker from include/core/SkMatrix.h and docs/SkMatrix_Reference.bmh
- on 2018-09-13 13:59:55. Additional documentation and examples can be found at:
- https://skia.org/user/api/SkMatrix_Reference
- You may edit either file directly. Structural changes to public interfaces require
- editing both files. After editing docs/SkMatrix_Reference.bmh, run:
- bookmaker -b docs -i include/core/SkMatrix.h -p
- to create an updated version of this file.
- */
- #ifndef SkMatrix_DEFINED
- #define SkMatrix_DEFINED
- #include "../private/SkMacros.h"
- #include "../private/SkTo.h"
- #include "SkRect.h"
- struct SkRSXform;
- struct SkPoint3;
- class SkString;
- /** \class SkMatrix
- SkMatrix holds a 3x3 matrix for transforming coordinates. This allows mapping
- SkPoint and vectors with translation, scaling, skewing, rotation, and
- perspective.
- SkMatrix elements are in row major order. SkMatrix does not have a constructor,
- so it must be explicitly initialized. setIdentity() initializes SkMatrix
- so it has no effect. setTranslate(), setScale(), setSkew(), setRotate(), set9 and setAll()
- initializes all SkMatrix elements with the corresponding mapping.
- SkMatrix includes a hidden variable that classifies the type of matrix to
- improve performance. SkMatrix is not thread safe unless getType() is called first.
- */
- SK_BEGIN_REQUIRE_DENSE
- class SK_API SkMatrix {
- public:
- /** Sets SkMatrix to scale by (sx, sy). Returned matrix is:
- | sx 0 0 |
- | 0 sy 0 |
- | 0 0 1 |
- @param sx horizontal scale factor
- @param sy vertical scale factor
- @return SkMatrix with scale
- */
- static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar sx, SkScalar sy) {
- SkMatrix m;
- m.setScale(sx, sy);
- return m;
- }
- /** Sets SkMatrix to scale by (scale, scale). Returned matrix is:
- | scale 0 0 |
- | 0 scale 0 |
- | 0 0 1 |
- @param scale horizontal and vertical scale factor
- @return SkMatrix with scale
- */
- static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar scale) {
- SkMatrix m;
- m.setScale(scale, scale);
- return m;
- }
- /** Sets SkMatrix to translate by (dx, dy). Returned matrix is:
- | 1 0 dx |
- | 0 1 dy |
- | 0 0 1 |
- @param dx horizontal translation
- @param dy vertical translation
- @return SkMatrix with translation
- */
- static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkScalar dx, SkScalar dy) {
- SkMatrix m;
- m.setTranslate(dx, dy);
- return m;
- }
- /** Sets SkMatrix to:
- | scaleX skewX transX |
- | skewY scaleY transY |
- | pers0 pers1 pers2 |
- @param scaleX horizontal scale factor
- @param skewX horizontal skew factor
- @param transX horizontal translation
- @param skewY vertical skew factor
- @param scaleY vertical scale factor
- @param transY vertical translation
- @param pers0 input x-axis perspective factor
- @param pers1 input y-axis perspective factor
- @param pers2 perspective scale factor
- @return SkMatrix constructed from parameters
- */
- static SkMatrix SK_WARN_UNUSED_RESULT MakeAll(SkScalar scaleX, SkScalar skewX, SkScalar transX,
- SkScalar skewY, SkScalar scaleY, SkScalar transY,
- SkScalar pers0, SkScalar pers1, SkScalar pers2) {
- SkMatrix m;
- m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2);
- return m;
- }
- /** \enum SkMatrix::TypeMask
- Enum of bit fields for mask returned by getType().
- Used to identify the complexity of SkMatrix, to optimize performance.
- */
- enum TypeMask {
- kIdentity_Mask = 0, //!< identity SkMatrix; all bits clear
- kTranslate_Mask = 0x01, //!< translation SkMatrix
- kScale_Mask = 0x02, //!< scale SkMatrix
- kAffine_Mask = 0x04, //!< skew or rotate SkMatrix
- kPerspective_Mask = 0x08, //!< perspective SkMatrix
- };
- /** Returns a bit field describing the transformations the matrix may
- perform. The bit field is computed conservatively, so it may include
- false positives. For example, when kPerspective_Mask is set, all
- other bits are set.
- @return kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask,
- kAffine_Mask, kPerspective_Mask
- */
- TypeMask getType() const {
- if (fTypeMask & kUnknown_Mask) {
- fTypeMask = this->computeTypeMask();
- }
- // only return the public masks
- return (TypeMask)(fTypeMask & 0xF);
- }
- /** Returns true if SkMatrix is identity. Identity matrix is:
- | 1 0 0 |
- | 0 1 0 |
- | 0 0 1 |
- @return true if SkMatrix has no effect
- */
- bool isIdentity() const {
- return this->getType() == 0;
- }
- /** Returns true if SkMatrix at most scales and translates. SkMatrix may be identity,
- contain only scale elements, only translate elements, or both. SkMatrix form is:
- | scale-x 0 translate-x |
- | 0 scale-y translate-y |
- | 0 0 1 |
- @return true if SkMatrix is identity; or scales, translates, or both
- */
- bool isScaleTranslate() const {
- return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
- }
- /** Returns true if SkMatrix is identity, or translates. SkMatrix form is:
- | 1 0 translate-x |
- | 0 1 translate-y |
- | 0 0 1 |
- @return true if SkMatrix is identity, or translates
- */
- bool isTranslate() const { return !(this->getType() & ~(kTranslate_Mask)); }
- /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity,
- or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
- cases, SkMatrix may also have translation. SkMatrix form is either:
- | scale-x 0 translate-x |
- | 0 scale-y translate-y |
- | 0 0 1 |
- or
- | 0 rotate-x translate-x |
- | rotate-y 0 translate-y |
- | 0 0 1 |
- for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.
- Also called preservesAxisAlignment(); use the one that provides better inline
- documentation.
- @return true if SkMatrix maps one SkRect into another
- */
- bool rectStaysRect() const {
- if (fTypeMask & kUnknown_Mask) {
- fTypeMask = this->computeTypeMask();
- }
- return (fTypeMask & kRectStaysRect_Mask) != 0;
- }
- /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity,
- or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
- cases, SkMatrix may also have translation. SkMatrix form is either:
- | scale-x 0 translate-x |
- | 0 scale-y translate-y |
- | 0 0 1 |
- or
- | 0 rotate-x translate-x |
- | rotate-y 0 translate-y |
- | 0 0 1 |
- for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.
- Also called rectStaysRect(); use the one that provides better inline
- documentation.
- @return true if SkMatrix maps one SkRect into another
- */
- bool preservesAxisAlignment() const { return this->rectStaysRect(); }
- /** Returns true if the matrix contains perspective elements. SkMatrix form is:
- | -- -- -- |
- | -- -- -- |
- | perspective-x perspective-y perspective-scale |
- where perspective-x or perspective-y is non-zero, or perspective-scale is
- not one. All other elements may have any value.
- @return true if SkMatrix is in most general form
- */
- bool hasPerspective() const {
- return SkToBool(this->getPerspectiveTypeMaskOnly() &
- kPerspective_Mask);
- }
- /** Returns true if SkMatrix contains only translation, rotation, reflection, and
- uniform scale.
- Returns false if SkMatrix contains different scales, skewing, perspective, or
- degenerate forms that collapse to a line or point.
- Describes that the SkMatrix makes rendering with and without the matrix are
- visually alike; a transformed circle remains a circle. Mathematically, this is
- referred to as similarity of a Euclidean space, or a similarity transformation.
- Preserves right angles, keeping the arms of the angle equal lengths.
- @param tol to be deprecated
- @return true if SkMatrix only rotates, uniformly scales, translates
- */
- bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const;
- /** Returns true if SkMatrix contains only translation, rotation, reflection, and
- scale. Scale may differ along rotated axes.
- Returns false if SkMatrix skewing, perspective, or degenerate forms that collapse
- to a line or point.
- Preserves right angles, but not requiring that the arms of the angle
- retain equal lengths.
- @param tol to be deprecated
- @return true if SkMatrix only rotates, scales, translates
- */
- bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const;
- /** SkMatrix organizes its values in row order. These members correspond to
- each value in SkMatrix.
- */
- static constexpr int kMScaleX = 0; //!< horizontal scale factor
- static constexpr int kMSkewX = 1; //!< horizontal skew factor
- static constexpr int kMTransX = 2; //!< horizontal translation
- static constexpr int kMSkewY = 3; //!< vertical skew factor
- static constexpr int kMScaleY = 4; //!< vertical scale factor
- static constexpr int kMTransY = 5; //!< vertical translation
- static constexpr int kMPersp0 = 6; //!< input x perspective factor
- static constexpr int kMPersp1 = 7; //!< input y perspective factor
- static constexpr int kMPersp2 = 8; //!< perspective bias
- /** Affine arrays are in column major order to match the matrix used by
- PDF and XPS.
- */
- static constexpr int kAScaleX = 0; //!< horizontal scale factor
- static constexpr int kASkewY = 1; //!< vertical skew factor
- static constexpr int kASkewX = 2; //!< horizontal skew factor
- static constexpr int kAScaleY = 3; //!< vertical scale factor
- static constexpr int kATransX = 4; //!< horizontal translation
- static constexpr int kATransY = 5; //!< vertical translation
- /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
- defined.
- @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
- kMPersp0, kMPersp1, kMPersp2
- @return value corresponding to index
- */
- SkScalar operator[](int index) const {
- SkASSERT((unsigned)index < 9);
- return fMat[index];
- }
- /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
- defined.
- @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
- kMPersp0, kMPersp1, kMPersp2
- @return value corresponding to index
- */
- SkScalar get(int index) const {
- SkASSERT((unsigned)index < 9);
- return fMat[index];
- }
- /** Returns scale factor multiplied by x-axis input, contributing to x-axis output.
- With mapPoints(), scales SkPoint along the x-axis.
- @return horizontal scale factor
- */
- SkScalar getScaleX() const { return fMat[kMScaleX]; }
- /** Returns scale factor multiplied by y-axis input, contributing to y-axis output.
- With mapPoints(), scales SkPoint along the y-axis.
- @return vertical scale factor
- */
- SkScalar getScaleY() const { return fMat[kMScaleY]; }
- /** Returns scale factor multiplied by x-axis input, contributing to y-axis output.
- With mapPoints(), skews SkPoint along the y-axis.
- Skewing both axes can rotate SkPoint.
- @return vertical skew factor
- */
- SkScalar getSkewY() const { return fMat[kMSkewY]; }
- /** Returns scale factor multiplied by y-axis input, contributing to x-axis output.
- With mapPoints(), skews SkPoint along the x-axis.
- Skewing both axes can rotate SkPoint.
- @return horizontal scale factor
- */
- SkScalar getSkewX() const { return fMat[kMSkewX]; }
- /** Returns translation contributing to x-axis output.
- With mapPoints(), moves SkPoint along the x-axis.
- @return horizontal translation factor
- */
- SkScalar getTranslateX() const { return fMat[kMTransX]; }
- /** Returns translation contributing to y-axis output.
- With mapPoints(), moves SkPoint along the y-axis.
- @return vertical translation factor
- */
- SkScalar getTranslateY() const { return fMat[kMTransY]; }
- /** Returns factor scaling input x-axis relative to input y-axis.
- @return input x-axis perspective factor
- */
- SkScalar getPerspX() const { return fMat[kMPersp0]; }
- /** Returns factor scaling input y-axis relative to input x-axis.
- @return input y-axis perspective factor
- */
- SkScalar getPerspY() const { return fMat[kMPersp1]; }
- /** Returns writable SkMatrix value. Asserts if index is out of range and SK_DEBUG is
- defined. Clears internal cache anticipating that caller will change SkMatrix value.
- Next call to read SkMatrix state may recompute cache; subsequent writes to SkMatrix
- value must be followed by dirtyMatrixTypeCache().
- @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
- kMPersp0, kMPersp1, kMPersp2
- @return writable value corresponding to index
- */
- SkScalar& operator[](int index) {
- SkASSERT((unsigned)index < 9);
- this->setTypeMask(kUnknown_Mask);
- return fMat[index];
- }
- /** Sets SkMatrix value. Asserts if index is out of range and SK_DEBUG is
- defined. Safer than operator[]; internal cache is always maintained.
- @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
- kMPersp0, kMPersp1, kMPersp2
- @param value scalar to store in SkMatrix
- */
- void set(int index, SkScalar value) {
- SkASSERT((unsigned)index < 9);
- fMat[index] = value;
- this->setTypeMask(kUnknown_Mask);
- }
- /** Sets horizontal scale factor.
- @param v horizontal scale factor to store
- */
- void setScaleX(SkScalar v) { this->set(kMScaleX, v); }
- /** Sets vertical scale factor.
- @param v vertical scale factor to store
- */
- void setScaleY(SkScalar v) { this->set(kMScaleY, v); }
- /** Sets vertical skew factor.
- @param v vertical skew factor to store
- */
- void setSkewY(SkScalar v) { this->set(kMSkewY, v); }
- /** Sets horizontal skew factor.
- @param v horizontal skew factor to store
- */
- void setSkewX(SkScalar v) { this->set(kMSkewX, v); }
- /** Sets horizontal translation.
- @param v horizontal translation to store
- */
- void setTranslateX(SkScalar v) { this->set(kMTransX, v); }
- /** Sets vertical translation.
- @param v vertical translation to store
- */
- void setTranslateY(SkScalar v) { this->set(kMTransY, v); }
- /** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values
- inversely proportional to input y-axis values.
- @param v perspective factor
- */
- void setPerspX(SkScalar v) { this->set(kMPersp0, v); }
- /** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values
- inversely proportional to input x-axis values.
- @param v perspective factor
- */
- void setPerspY(SkScalar v) { this->set(kMPersp1, v); }
- /** Sets all values from parameters. Sets matrix to:
- | scaleX skewX transX |
- | skewY scaleY transY |
- | persp0 persp1 persp2 |
- @param scaleX horizontal scale factor to store
- @param skewX horizontal skew factor to store
- @param transX horizontal translation to store
- @param skewY vertical skew factor to store
- @param scaleY vertical scale factor to store
- @param transY vertical translation to store
- @param persp0 input x-axis values perspective factor to store
- @param persp1 input y-axis values perspective factor to store
- @param persp2 perspective scale factor to store
- */
- void setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX,
- SkScalar skewY, SkScalar scaleY, SkScalar transY,
- SkScalar persp0, SkScalar persp1, SkScalar persp2) {
- fMat[kMScaleX] = scaleX;
- fMat[kMSkewX] = skewX;
- fMat[kMTransX] = transX;
- fMat[kMSkewY] = skewY;
- fMat[kMScaleY] = scaleY;
- fMat[kMTransY] = transY;
- fMat[kMPersp0] = persp0;
- fMat[kMPersp1] = persp1;
- fMat[kMPersp2] = persp2;
- this->setTypeMask(kUnknown_Mask);
- }
- /** Copies nine scalar values contained by SkMatrix into buffer, in member value
- ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
- kMPersp0, kMPersp1, kMPersp2.
- @param buffer storage for nine scalar values
- */
- void get9(SkScalar buffer[9]) const {
- memcpy(buffer, fMat, 9 * sizeof(SkScalar));
- }
- /** Sets SkMatrix to nine scalar values in buffer, in member value ascending order:
- kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1,
- kMPersp2.
- Sets matrix to:
- | buffer[0] buffer[1] buffer[2] |
- | buffer[3] buffer[4] buffer[5] |
- | buffer[6] buffer[7] buffer[8] |
- In the future, set9 followed by get9 may not return the same values. Since SkMatrix
- maps non-homogeneous coordinates, scaling all nine values produces an equivalent
- transformation, possibly improving precision.
- @param buffer nine scalar values
- */
- void set9(const SkScalar buffer[9]);
- /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to:
- | 1 0 0 |
- | 0 1 0 |
- | 0 0 1 |
- Also called setIdentity(); use the one that provides better inline
- documentation.
- */
- void reset();
- /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to:
- | 1 0 0 |
- | 0 1 0 |
- | 0 0 1 |
- Also called reset(); use the one that provides better inline
- documentation.
- */
- void setIdentity() { this->reset(); }
- /** Sets SkMatrix to translate by (dx, dy).
- @param dx horizontal translation
- @param dy vertical translation
- */
- void setTranslate(SkScalar dx, SkScalar dy);
- /** Sets SkMatrix to translate by (v.fX, v.fY).
- @param v vector containing horizontal and vertical translation
- */
- void setTranslate(const SkVector& v) { this->setTranslate(v.fX, v.fY); }
- /** Sets SkMatrix to scale by sx and sy, about a pivot point at (px, py).
- The pivot point is unchanged when mapped with SkMatrix.
- @param sx horizontal scale factor
- @param sy vertical scale factor
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
- /** Sets SkMatrix to scale by sx and sy about at pivot point at (0, 0).
- @param sx horizontal scale factor
- @param sy vertical scale factor
- */
- void setScale(SkScalar sx, SkScalar sy);
- /** Sets SkMatrix to rotate by degrees about a pivot point at (px, py).
- The pivot point is unchanged when mapped with SkMatrix.
- Positive degrees rotates clockwise.
- @param degrees angle of axes relative to upright axes
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void setRotate(SkScalar degrees, SkScalar px, SkScalar py);
- /** Sets SkMatrix to rotate by degrees about a pivot point at (0, 0).
- Positive degrees rotates clockwise.
- @param degrees angle of axes relative to upright axes
- */
- void setRotate(SkScalar degrees);
- /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (px, py).
- The pivot point is unchanged when mapped with SkMatrix.
- Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
- Vector length specifies scale.
- @param sinValue rotation vector x-axis component
- @param cosValue rotation vector y-axis component
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void setSinCos(SkScalar sinValue, SkScalar cosValue,
- SkScalar px, SkScalar py);
- /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (0, 0).
- Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
- Vector length specifies scale.
- @param sinValue rotation vector x-axis component
- @param cosValue rotation vector y-axis component
- */
- void setSinCos(SkScalar sinValue, SkScalar cosValue);
- /** Sets SkMatrix to rotate, scale, and translate using a compressed matrix form.
- Vector (rsxForm.fSSin, rsxForm.fSCos) describes the angle of rotation relative
- to (0, 1). Vector length specifies scale. Mapped point is rotated and scaled
- by vector, then translated by (rsxForm.fTx, rsxForm.fTy).
- @param rsxForm compressed SkRSXform matrix
- @return reference to SkMatrix
- */
- SkMatrix& setRSXform(const SkRSXform& rsxForm);
- /** Sets SkMatrix to skew by kx and ky, about a pivot point at (px, py).
- The pivot point is unchanged when mapped with SkMatrix.
- @param kx horizontal skew factor
- @param ky vertical skew factor
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
- /** Sets SkMatrix to skew by kx and ky, about a pivot point at (0, 0).
- @param kx horizontal skew factor
- @param ky vertical skew factor
- */
- void setSkew(SkScalar kx, SkScalar ky);
- /** Sets SkMatrix to SkMatrix a multiplied by SkMatrix b. Either a or b may be this.
- Given:
- | A B C | | J K L |
- a = | D E F |, b = | M N O |
- | G H I | | P Q R |
- sets SkMatrix to:
- | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
- a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
- | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
- @param a SkMatrix on left side of multiply expression
- @param b SkMatrix on right side of multiply expression
- */
- void setConcat(const SkMatrix& a, const SkMatrix& b);
- /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from translation (dx, dy).
- This can be thought of as moving the point to be mapped before applying SkMatrix.
- Given:
- | A B C | | 1 0 dx |
- Matrix = | D E F |, T(dx, dy) = | 0 1 dy |
- | G H I | | 0 0 1 |
- sets SkMatrix to:
- | A B C | | 1 0 dx | | A B A*dx+B*dy+C |
- Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F |
- | G H I | | 0 0 1 | | G H G*dx+H*dy+I |
- @param dx x-axis translation before applying SkMatrix
- @param dy y-axis translation before applying SkMatrix
- */
- void preTranslate(SkScalar dx, SkScalar dy);
- /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy)
- about pivot point (px, py).
- This can be thought of as scaling about a pivot point before applying SkMatrix.
- Given:
- | A B C | | sx 0 dx |
- Matrix = | D E F |, S(sx, sy, px, py) = | 0 sy dy |
- | G H I | | 0 0 1 |
- where
- dx = px - sx * px
- dy = py - sy * py
- sets SkMatrix to:
- | A B C | | sx 0 dx | | A*sx B*sy A*dx+B*dy+C |
- Matrix * S(sx, sy, px, py) = | D E F | | 0 sy dy | = | D*sx E*sy D*dx+E*dy+F |
- | G H I | | 0 0 1 | | G*sx H*sy G*dx+H*dy+I |
- @param sx horizontal scale factor
- @param sy vertical scale factor
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
- /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy)
- about pivot point (0, 0).
- This can be thought of as scaling about the origin before applying SkMatrix.
- Given:
- | A B C | | sx 0 0 |
- Matrix = | D E F |, S(sx, sy) = | 0 sy 0 |
- | G H I | | 0 0 1 |
- sets SkMatrix to:
- | A B C | | sx 0 0 | | A*sx B*sy C |
- Matrix * S(sx, sy) = | D E F | | 0 sy 0 | = | D*sx E*sy F |
- | G H I | | 0 0 1 | | G*sx H*sy I |
- @param sx horizontal scale factor
- @param sy vertical scale factor
- */
- void preScale(SkScalar sx, SkScalar sy);
- /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees
- about pivot point (px, py).
- This can be thought of as rotating about a pivot point before applying SkMatrix.
- Positive degrees rotates clockwise.
- Given:
- | A B C | | c -s dx |
- Matrix = | D E F |, R(degrees, px, py) = | s c dy |
- | G H I | | 0 0 1 |
- where
- c = cos(degrees)
- s = sin(degrees)
- dx = s * py + (1 - c) * px
- dy = -s * px + (1 - c) * py
- sets SkMatrix to:
- | A B C | | c -s dx | | Ac+Bs -As+Bc A*dx+B*dy+C |
- Matrix * R(degrees, px, py) = | D E F | | s c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F |
- | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc G*dx+H*dy+I |
- @param degrees angle of axes relative to upright axes
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void preRotate(SkScalar degrees, SkScalar px, SkScalar py);
- /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees
- about pivot point (0, 0).
- This can be thought of as rotating about the origin before applying SkMatrix.
- Positive degrees rotates clockwise.
- Given:
- | A B C | | c -s 0 |
- Matrix = | D E F |, R(degrees, px, py) = | s c 0 |
- | G H I | | 0 0 1 |
- where
- c = cos(degrees)
- s = sin(degrees)
- sets SkMatrix to:
- | A B C | | c -s 0 | | Ac+Bs -As+Bc C |
- Matrix * R(degrees, px, py) = | D E F | | s c 0 | = | Dc+Es -Ds+Ec F |
- | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc I |
- @param degrees angle of axes relative to upright axes
- */
- void preRotate(SkScalar degrees);
- /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky)
- about pivot point (px, py).
- This can be thought of as skewing about a pivot point before applying SkMatrix.
- Given:
- | A B C | | 1 kx dx |
- Matrix = | D E F |, K(kx, ky, px, py) = | ky 1 dy |
- | G H I | | 0 0 1 |
- where
- dx = -kx * py
- dy = -ky * px
- sets SkMatrix to:
- | A B C | | 1 kx dx | | A+B*ky A*kx+B A*dx+B*dy+C |
- Matrix * K(kx, ky, px, py) = | D E F | | ky 1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F |
- | G H I | | 0 0 1 | | G+H*ky G*kx+H G*dx+H*dy+I |
- @param kx horizontal skew factor
- @param ky vertical skew factor
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
- /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky)
- about pivot point (0, 0).
- This can be thought of as skewing about the origin before applying SkMatrix.
- Given:
- | A B C | | 1 kx 0 |
- Matrix = | D E F |, K(kx, ky) = | ky 1 0 |
- | G H I | | 0 0 1 |
- sets SkMatrix to:
- | A B C | | 1 kx 0 | | A+B*ky A*kx+B C |
- Matrix * K(kx, ky) = | D E F | | ky 1 0 | = | D+E*ky D*kx+E F |
- | G H I | | 0 0 1 | | G+H*ky G*kx+H I |
- @param kx horizontal skew factor
- @param ky vertical skew factor
- */
- void preSkew(SkScalar kx, SkScalar ky);
- /** Sets SkMatrix to SkMatrix multiplied by SkMatrix other.
- This can be thought of mapping by other before applying SkMatrix.
- Given:
- | A B C | | J K L |
- Matrix = | D E F |, other = | M N O |
- | G H I | | P Q R |
- sets SkMatrix to:
- | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
- Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
- | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
- @param other SkMatrix on right side of multiply expression
- */
- void preConcat(const SkMatrix& other);
- /** Sets SkMatrix to SkMatrix constructed from translation (dx, dy) multiplied by SkMatrix.
- This can be thought of as moving the point to be mapped after applying SkMatrix.
- Given:
- | J K L | | 1 0 dx |
- Matrix = | M N O |, T(dx, dy) = | 0 1 dy |
- | P Q R | | 0 0 1 |
- sets SkMatrix to:
- | 1 0 dx | | J K L | | J+dx*P K+dx*Q L+dx*R |
- T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R |
- | 0 0 1 | | P Q R | | P Q R |
- @param dx x-axis translation after applying SkMatrix
- @param dy y-axis translation after applying SkMatrix
- */
- void postTranslate(SkScalar dx, SkScalar dy);
- /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point
- (px, py), multiplied by SkMatrix.
- This can be thought of as scaling about a pivot point after applying SkMatrix.
- Given:
- | J K L | | sx 0 dx |
- Matrix = | M N O |, S(sx, sy, px, py) = | 0 sy dy |
- | P Q R | | 0 0 1 |
- where
- dx = px - sx * px
- dy = py - sy * py
- sets SkMatrix to:
- | sx 0 dx | | J K L | | sx*J+dx*P sx*K+dx*Q sx*L+dx+R |
- S(sx, sy, px, py) * Matrix = | 0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R |
- | 0 0 1 | | P Q R | | P Q R |
- @param sx horizontal scale factor
- @param sy vertical scale factor
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
- /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point
- (0, 0), multiplied by SkMatrix.
- This can be thought of as scaling about the origin after applying SkMatrix.
- Given:
- | J K L | | sx 0 0 |
- Matrix = | M N O |, S(sx, sy) = | 0 sy 0 |
- | P Q R | | 0 0 1 |
- sets SkMatrix to:
- | sx 0 0 | | J K L | | sx*J sx*K sx*L |
- S(sx, sy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O |
- | 0 0 1 | | P Q R | | P Q R |
- @param sx horizontal scale factor
- @param sy vertical scale factor
- */
- void postScale(SkScalar sx, SkScalar sy);
- /** Sets SkMatrix to SkMatrix constructed from scaling by (1/divx, 1/divy),
- about pivot point (px, py), multiplied by SkMatrix.
- Returns false if either divx or divy is zero.
- Given:
- | J K L | | sx 0 0 |
- Matrix = | M N O |, I(divx, divy) = | 0 sy 0 |
- | P Q R | | 0 0 1 |
- where
- sx = 1 / divx
- sy = 1 / divy
- sets SkMatrix to:
- | sx 0 0 | | J K L | | sx*J sx*K sx*L |
- I(divx, divy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O |
- | 0 0 1 | | P Q R | | P Q R |
- @param divx integer divisor for inverse scale in x
- @param divy integer divisor for inverse scale in y
- @return true on successful scale
- */
- bool postIDiv(int divx, int divy);
- /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point
- (px, py), multiplied by SkMatrix.
- This can be thought of as rotating about a pivot point after applying SkMatrix.
- Positive degrees rotates clockwise.
- Given:
- | J K L | | c -s dx |
- Matrix = | M N O |, R(degrees, px, py) = | s c dy |
- | P Q R | | 0 0 1 |
- where
- c = cos(degrees)
- s = sin(degrees)
- dx = s * py + (1 - c) * px
- dy = -s * px + (1 - c) * py
- sets SkMatrix to:
- |c -s dx| |J K L| |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R|
- R(degrees, px, py) * Matrix = |s c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R|
- |0 0 1| |P Q R| | P Q R|
- @param degrees angle of axes relative to upright axes
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void postRotate(SkScalar degrees, SkScalar px, SkScalar py);
- /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point
- (0, 0), multiplied by SkMatrix.
- This can be thought of as rotating about the origin after applying SkMatrix.
- Positive degrees rotates clockwise.
- Given:
- | J K L | | c -s 0 |
- Matrix = | M N O |, R(degrees, px, py) = | s c 0 |
- | P Q R | | 0 0 1 |
- where
- c = cos(degrees)
- s = sin(degrees)
- sets SkMatrix to:
- | c -s dx | | J K L | | cJ-sM cK-sN cL-sO |
- R(degrees, px, py) * Matrix = | s c dy | | M N O | = | sJ+cM sK+cN sL+cO |
- | 0 0 1 | | P Q R | | P Q R |
- @param degrees angle of axes relative to upright axes
- */
- void postRotate(SkScalar degrees);
- /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point
- (px, py), multiplied by SkMatrix.
- This can be thought of as skewing about a pivot point after applying SkMatrix.
- Given:
- | J K L | | 1 kx dx |
- Matrix = | M N O |, K(kx, ky, px, py) = | ky 1 dy |
- | P Q R | | 0 0 1 |
- where
- dx = -kx * py
- dy = -ky * px
- sets SkMatrix to:
- | 1 kx dx| |J K L| |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R|
- K(kx, ky, px, py) * Matrix = |ky 1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R|
- | 0 0 1| |P Q R| | P Q R|
- @param kx horizontal skew factor
- @param ky vertical skew factor
- @param px pivot on x-axis
- @param py pivot on y-axis
- */
- void postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
- /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point
- (0, 0), multiplied by SkMatrix.
- This can be thought of as skewing about the origin after applying SkMatrix.
- Given:
- | J K L | | 1 kx 0 |
- Matrix = | M N O |, K(kx, ky) = | ky 1 0 |
- | P Q R | | 0 0 1 |
- sets SkMatrix to:
- | 1 kx 0 | | J K L | | J+kx*M K+kx*N L+kx*O |
- K(kx, ky) * Matrix = | ky 1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O |
- | 0 0 1 | | P Q R | | P Q R |
- @param kx horizontal skew factor
- @param ky vertical skew factor
- */
- void postSkew(SkScalar kx, SkScalar ky);
- /** Sets SkMatrix to SkMatrix other multiplied by SkMatrix.
- This can be thought of mapping by other after applying SkMatrix.
- Given:
- | J K L | | A B C |
- Matrix = | M N O |, other = | D E F |
- | P Q R | | G H I |
- sets SkMatrix to:
- | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
- other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
- | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
- @param other SkMatrix on left side of multiply expression
- */
- void postConcat(const SkMatrix& other);
- /** \enum SkMatrix::ScaleToFit
- ScaleToFit describes how SkMatrix is constructed to map one SkRect to another.
- ScaleToFit may allow SkMatrix to have unequal horizontal and vertical scaling,
- or may restrict SkMatrix to square scaling. If restricted, ScaleToFit specifies
- how SkMatrix maps to the side or center of the destination SkRect.
- */
- enum ScaleToFit {
- kFill_ScaleToFit, //!< scales in x and y to fill destination SkRect
- kStart_ScaleToFit, //!< scales and aligns to left and top
- kCenter_ScaleToFit, //!< scales and aligns to center
- kEnd_ScaleToFit, //!< scales and aligns to right and bottom
- };
- /** Sets SkMatrix to scale and translate src SkRect to dst SkRect. stf selects whether
- mapping completely fills dst or preserves the aspect ratio, and how to align
- src within dst. Returns false if src is empty, and sets SkMatrix to identity.
- Returns true if dst is empty, and sets SkMatrix to:
- | 0 0 0 |
- | 0 0 0 |
- | 0 0 1 |
- @param src SkRect to map from
- @param dst SkRect to map to
- @param stf one of: kFill_ScaleToFit, kStart_ScaleToFit,
- kCenter_ScaleToFit, kEnd_ScaleToFit
- @return true if SkMatrix can represent SkRect mapping
- */
- bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);
- /** Returns SkMatrix set to scale and translate src SkRect to dst SkRect. stf selects
- whether mapping completely fills dst or preserves the aspect ratio, and how to
- align src within dst. Returns the identity SkMatrix if src is empty. If dst is
- empty, returns SkMatrix set to:
- | 0 0 0 |
- | 0 0 0 |
- | 0 0 1 |
- @param src SkRect to map from
- @param dst SkRect to map to
- @param stf one of: kFill_ScaleToFit, kStart_ScaleToFit,
- kCenter_ScaleToFit, kEnd_ScaleToFit
- @return SkMatrix mapping src to dst
- */
- static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) {
- SkMatrix m;
- m.setRectToRect(src, dst, stf);
- return m;
- }
- /** Sets SkMatrix to map src to dst. count must be zero or greater, and four or less.
- If count is zero, sets SkMatrix to identity and returns true.
- If count is one, sets SkMatrix to translate and returns true.
- If count is two or more, sets SkMatrix to map SkPoint if possible; returns false
- if SkMatrix cannot be constructed. If count is four, SkMatrix may include
- perspective.
- @param src SkPoint to map from
- @param dst SkPoint to map to
- @param count number of SkPoint in src and dst
- @return true if SkMatrix was constructed successfully
- */
- bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);
- /** Sets inverse to reciprocal matrix, returning true if SkMatrix can be inverted.
- Geometrically, if SkMatrix maps from source to destination, inverse SkMatrix
- maps from destination to source. If SkMatrix can not be inverted, inverse is
- unchanged.
- @param inverse storage for inverted SkMatrix; may be nullptr
- @return true if SkMatrix can be inverted
- */
- bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const {
- // Allow the trivial case to be inlined.
- if (this->isIdentity()) {
- if (inverse) {
- inverse->reset();
- }
- return true;
- }
- return this->invertNonIdentity(inverse);
- }
- /** Fills affine with identity values in column major order.
- Sets affine to:
- | 1 0 0 |
- | 0 1 0 |
- Affine 3 by 2 matrices in column major order are used by OpenGL and XPS.
- @param affine storage for 3 by 2 affine matrix
- */
- static void SetAffineIdentity(SkScalar affine[6]);
- /** Fills affine in column major order. Sets affine to:
- | scale-x skew-x translate-x |
- | skew-y scale-y translate-y |
- If SkMatrix contains perspective, returns false and leaves affine unchanged.
- @param affine storage for 3 by 2 affine matrix; may be nullptr
- @return true if SkMatrix does not contain perspective
- */
- bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const;
- /** Sets SkMatrix to affine values, passed in column major order. Given affine,
- column, then row, as:
- | scale-x skew-x translate-x |
- | skew-y scale-y translate-y |
- SkMatrix is set, row, then column, to:
- | scale-x skew-x translate-x |
- | skew-y scale-y translate-y |
- | 0 0 1 |
- @param affine 3 by 2 affine matrix
- */
- void setAffine(const SkScalar affine[6]);
- /** Maps src SkPoint array of length count to dst SkPoint array of equal or greater
- length. SkPoint are mapped by multiplying each SkPoint by SkMatrix. Given:
- | A B C | | x |
- Matrix = | D E F |, pt = | y |
- | G H I | | 1 |
- where
- for (i = 0; i < count; ++i) {
- x = src[i].fX
- y = src[i].fY
- }
- each dst SkPoint is computed as:
- |A B C| |x| Ax+By+C Dx+Ey+F
- Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
- |G H I| |1| Gx+Hy+I Gx+Hy+I
- src and dst may point to the same storage.
- @param dst storage for mapped SkPoint
- @param src SkPoint to transform
- @param count number of SkPoint to transform
- */
- void mapPoints(SkPoint dst[], const SkPoint src[], int count) const {
- SkASSERT((dst && src && count > 0) || 0 == count);
- // no partial overlap
- SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]);
- this->getMapPtsProc()(*this, dst, src, count);
- }
- /** Maps pts SkPoint array of length count in place. SkPoint are mapped by multiplying
- each SkPoint by SkMatrix. Given:
- | A B C | | x |
- Matrix = | D E F |, pt = | y |
- | G H I | | 1 |
- where
- for (i = 0; i < count; ++i) {
- x = pts[i].fX
- y = pts[i].fY
- }
- each resulting pts SkPoint is computed as:
- |A B C| |x| Ax+By+C Dx+Ey+F
- Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
- |G H I| |1| Gx+Hy+I Gx+Hy+I
- @param pts storage for mapped SkPoint
- @param count number of SkPoint to transform
- */
- void mapPoints(SkPoint pts[], int count) const {
- this->mapPoints(pts, pts, count);
- }
- /** Maps src SkPoint3 array of length count to dst SkPoint3 array, which must of length count or
- greater. SkPoint3 array is mapped by multiplying each SkPoint3 by SkMatrix. Given:
- | A B C | | x |
- Matrix = | D E F |, src = | y |
- | G H I | | z |
- each resulting dst SkPoint is computed as:
- |A B C| |x|
- Matrix * src = |D E F| |y| = |Ax+By+Cz Dx+Ey+Fz Gx+Hy+Iz|
- |G H I| |z|
- @param dst storage for mapped SkPoint3 array
- @param src SkPoint3 array to transform
- @param count items in SkPoint3 array to transform
- */
- void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const;
- /** Maps SkPoint (x, y) to result. SkPoint is mapped by multiplying by SkMatrix. Given:
- | A B C | | x |
- Matrix = | D E F |, pt = | y |
- | G H I | | 1 |
- result is computed as:
- |A B C| |x| Ax+By+C Dx+Ey+F
- Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
- |G H I| |1| Gx+Hy+I Gx+Hy+I
- @param x x-axis value of SkPoint to map
- @param y y-axis value of SkPoint to map
- @param result storage for mapped SkPoint
- */
- void mapXY(SkScalar x, SkScalar y, SkPoint* result) const {
- SkASSERT(result);
- this->getMapXYProc()(*this, x, y, result);
- }
- /** Returns SkPoint (x, y) multiplied by SkMatrix. Given:
- | A B C | | x |
- Matrix = | D E F |, pt = | y |
- | G H I | | 1 |
- result is computed as:
- |A B C| |x| Ax+By+C Dx+Ey+F
- Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
- |G H I| |1| Gx+Hy+I Gx+Hy+I
- @param x x-axis value of SkPoint to map
- @param y y-axis value of SkPoint to map
- @return mapped SkPoint
- */
- SkPoint mapXY(SkScalar x, SkScalar y) const {
- SkPoint result;
- this->getMapXYProc()(*this, x, y, &result);
- return result;
- }
- /** Maps src vector array of length count to vector SkPoint array of equal or greater
- length. Vectors are mapped by multiplying each vector by SkMatrix, treating
- SkMatrix translation as zero. Given:
- | A B 0 | | x |
- Matrix = | D E 0 |, src = | y |
- | G H I | | 1 |
- where
- for (i = 0; i < count; ++i) {
- x = src[i].fX
- y = src[i].fY
- }
- each dst vector is computed as:
- |A B 0| |x| Ax+By Dx+Ey
- Matrix * src = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , -------
- |G H I| |1| Gx+Hy+I Gx+Hy+I
- src and dst may point to the same storage.
- @param dst storage for mapped vectors
- @param src vectors to transform
- @param count number of vectors to transform
- */
- void mapVectors(SkVector dst[], const SkVector src[], int count) const;
- /** Maps vecs vector array of length count in place, multiplying each vector by
- SkMatrix, treating SkMatrix translation as zero. Given:
- | A B 0 | | x |
- Matrix = | D E 0 |, vec = | y |
- | G H I | | 1 |
- where
- for (i = 0; i < count; ++i) {
- x = vecs[i].fX
- y = vecs[i].fY
- }
- each result vector is computed as:
- |A B 0| |x| Ax+By Dx+Ey
- Matrix * vec = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , -------
- |G H I| |1| Gx+Hy+I Gx+Hy+I
- @param vecs vectors to transform, and storage for mapped vectors
- @param count number of vectors to transform
- */
- void mapVectors(SkVector vecs[], int count) const {
- this->mapVectors(vecs, vecs, count);
- }
- /** Maps vector (dx, dy) to result. Vector is mapped by multiplying by SkMatrix,
- treating SkMatrix translation as zero. Given:
- | A B 0 | | dx |
- Matrix = | D E 0 |, vec = | dy |
- | G H I | | 1 |
- each result vector is computed as:
- |A B 0| |dx| A*dx+B*dy D*dx+E*dy
- Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , -----------
- |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I
- @param dx x-axis value of vector to map
- @param dy y-axis value of vector to map
- @param result storage for mapped vector
- */
- void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const {
- SkVector vec = { dx, dy };
- this->mapVectors(result, &vec, 1);
- }
- /** Returns vector (dx, dy) multiplied by SkMatrix, treating SkMatrix translation as zero.
- Given:
- | A B 0 | | dx |
- Matrix = | D E 0 |, vec = | dy |
- | G H I | | 1 |
- each result vector is computed as:
- |A B 0| |dx| A*dx+B*dy D*dx+E*dy
- Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , -----------
- |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I
- @param dx x-axis value of vector to map
- @param dy y-axis value of vector to map
- @return mapped vector
- */
- SkVector mapVector(SkScalar dx, SkScalar dy) const {
- SkVector vec = { dx, dy };
- this->mapVectors(&vec, &vec, 1);
- return vec;
- }
- /** Sets dst to bounds of src corners mapped by SkMatrix.
- Returns true if mapped corners are dst corners.
- Returned value is the same as calling rectStaysRect().
- @param dst storage for bounds of mapped SkPoint
- @param src SkRect to map
- @return true if dst is equivalent to mapped src
- */
- bool mapRect(SkRect* dst, const SkRect& src) const;
- /** Sets rect to bounds of rect corners mapped by SkMatrix.
- Returns true if mapped corners are computed rect corners.
- Returned value is the same as calling rectStaysRect().
- @param rect rectangle to map, and storage for bounds of mapped corners
- @return true if result is equivalent to mapped rect
- */
- bool mapRect(SkRect* rect) const {
- return this->mapRect(rect, *rect);
- }
- /** Returns bounds of src corners mapped by SkMatrix.
- @param src rectangle to map
- @return mapped bounds
- */
- SkRect mapRect(const SkRect& src) const {
- SkRect dst;
- (void)this->mapRect(&dst, src);
- return dst;
- }
- /** Maps four corners of rect to dst. SkPoint are mapped by multiplying each
- rect corner by SkMatrix. rect corner is processed in this order:
- (rect.fLeft, rect.fTop), (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom),
- (rect.fLeft, rect.fBottom).
- rect may be empty: rect.fLeft may be greater than or equal to rect.fRight;
- rect.fTop may be greater than or equal to rect.fBottom.
- Given:
- | A B C | | x |
- Matrix = | D E F |, pt = | y |
- | G H I | | 1 |
- where pt is initialized from each of (rect.fLeft, rect.fTop),
- (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), (rect.fLeft, rect.fBottom),
- each dst SkPoint is computed as:
- |A B C| |x| Ax+By+C Dx+Ey+F
- Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
- |G H I| |1| Gx+Hy+I Gx+Hy+I
- @param dst storage for mapped corner SkPoint
- @param rect SkRect to map
- */
- void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const {
- // This could potentially be faster if we only transformed each x and y of the rect once.
- rect.toQuad(dst);
- this->mapPoints(dst, 4);
- }
- /** Sets dst to bounds of src corners mapped by SkMatrix. If matrix contains
- elements other than scale or translate: asserts if SK_DEBUG is defined;
- otherwise, results are undefined.
- @param dst storage for bounds of mapped SkPoint
- @param src SkRect to map
- */
- void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const;
- /** Returns geometric mean radius of ellipse formed by constructing circle of
- size radius, and mapping constructed circle with SkMatrix. The result squared is
- equal to the major axis length times the minor axis length.
- Result is not meaningful if SkMatrix contains perspective elements.
- @param radius circle size to map
- @return average mapped radius
- */
- SkScalar mapRadius(SkScalar radius) const;
- /** Returns true if a unit step on x-axis at some y-axis value mapped through SkMatrix
- can be represented by a constant vector. Returns true if getType() returns
- kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask, and kAffine_Mask.
- May return true if getType() returns kPerspective_Mask, but only when SkMatrix
- does not include rotation or skewing along the y-axis.
- @return true if SkMatrix does not have complex perspective
- */
- bool isFixedStepInX() const;
- /** Returns vector representing a unit step on x-axis at y mapped through SkMatrix.
- If isFixedStepInX() is false, returned value is undefined.
- @param y position of line parallel to x-axis
- @return vector advance of mapped unit step on x-axis
- */
- SkVector fixedStepInX(SkScalar y) const;
- /** Returns true if SkMatrix equals m, using an efficient comparison.
- Returns false when the sign of zero values is the different; when one
- matrix has positive zero value and the other has negative zero value.
- Returns true even when both SkMatrix contain NaN.
- NaN never equals any value, including itself. To improve performance, NaN values
- are treated as bit patterns that are equal if their bit patterns are equal.
- @param m SkMatrix to compare
- @return true if m and SkMatrix are represented by identical bit patterns
- */
- bool cheapEqualTo(const SkMatrix& m) const {
- return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
- }
- /** Compares a and b; returns true if a and b are numerically equal. Returns true
- even if sign of zero values are different. Returns false if either SkMatrix
- contains NaN, even if the other SkMatrix also contains NaN.
- @param a SkMatrix to compare
- @param b SkMatrix to compare
- @return true if SkMatrix a and SkMatrix b are numerically equal
- */
- friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b);
- /** Compares a and b; returns true if a and b are not numerically equal. Returns false
- even if sign of zero values are different. Returns true if either SkMatrix
- contains NaN, even if the other SkMatrix also contains NaN.
- @param a SkMatrix to compare
- @param b SkMatrix to compare
- @return true if SkMatrix a and SkMatrix b are numerically not equal
- */
- friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) {
- return !(a == b);
- }
- /** Writes text representation of SkMatrix to standard output. Floating point values
- are written with limited precision; it may not be possible to reconstruct
- original SkMatrix from output.
- */
- void dump() const;
- /** Returns the minimum scaling factor of SkMatrix by decomposing the scaling and
- skewing elements.
- Returns -1 if scale factor overflows or SkMatrix contains perspective.
- @return minimum scale factor
- */
- SkScalar getMinScale() const;
- /** Returns the maximum scaling factor of SkMatrix by decomposing the scaling and
- skewing elements.
- Returns -1 if scale factor overflows or SkMatrix contains perspective.
- @return maximum scale factor
- */
- SkScalar getMaxScale() const;
- /** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the
- maximum scaling factor. Scaling factors are computed by decomposing
- the SkMatrix scaling and skewing elements.
- Returns true if scaleFactors are found; otherwise, returns false and sets
- scaleFactors to undefined values.
- @param scaleFactors storage for minimum and maximum scale factors
- @return true if scale factors were computed correctly
- */
- bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const;
- /** Decomposes SkMatrix into scale components and whatever remains. Returns false if
- SkMatrix could not be decomposed.
- Sets scale to portion of SkMatrix that scale axes. Sets remaining to SkMatrix
- with scaling factored out. remaining may be passed as nullptr
- to determine if SkMatrix can be decomposed without computing remainder.
- Returns true if scale components are found. scale and remaining are
- unchanged if SkMatrix contains perspective; scale factors are not finite, or
- are nearly zero.
- On success: Matrix = scale * Remaining.
- @param scale axes scaling factors; may be nullptr
- @param remaining SkMatrix without scaling; may be nullptr
- @return true if scale can be computed
- */
- bool decomposeScale(SkSize* scale, SkMatrix* remaining = nullptr) const;
- /** Returns reference to const identity SkMatrix. Returned SkMatrix is set to:
- | 1 0 0 |
- | 0 1 0 |
- | 0 0 1 |
- @return const identity SkMatrix
- */
- static const SkMatrix& I();
- /** Returns reference to a const SkMatrix with invalid values. Returned SkMatrix is set
- to:
- | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
- | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
- | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
- @return const invalid SkMatrix
- */
- static const SkMatrix& InvalidMatrix();
- /** Returns SkMatrix a multiplied by SkMatrix b.
- Given:
- | A B C | | J K L |
- a = | D E F |, b = | M N O |
- | G H I | | P Q R |
- sets SkMatrix to:
- | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
- a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
- | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
- @param a SkMatrix on left side of multiply expression
- @param b SkMatrix on right side of multiply expression
- @return SkMatrix computed from a times b
- */
- static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) {
- SkMatrix result;
- result.setConcat(a, b);
- return result;
- }
- /** Sets internal cache to unknown state. Use to force update after repeated
- modifications to SkMatrix element reference returned by operator[](int index).
- */
- void dirtyMatrixTypeCache() {
- this->setTypeMask(kUnknown_Mask);
- }
- /** Initializes SkMatrix with scale and translate elements.
- | sx 0 tx |
- | 0 sy ty |
- | 0 0 1 |
- @param sx horizontal scale factor to store
- @param sy vertical scale factor to store
- @param tx horizontal translation to store
- @param ty vertical translation to store
- */
- void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) {
- fMat[kMScaleX] = sx;
- fMat[kMSkewX] = 0;
- fMat[kMTransX] = tx;
- fMat[kMSkewY] = 0;
- fMat[kMScaleY] = sy;
- fMat[kMTransY] = ty;
- fMat[kMPersp0] = 0;
- fMat[kMPersp1] = 0;
- fMat[kMPersp2] = 1;
- unsigned mask = 0;
- if (sx != 1 || sy != 1) {
- mask |= kScale_Mask;
- }
- if (tx || ty) {
- mask |= kTranslate_Mask;
- }
- this->setTypeMask(mask | kRectStaysRect_Mask);
- }
- /** Returns true if all elements of the matrix are finite. Returns false if any
- element is infinity, or NaN.
- @return true if matrix has only finite elements
- */
- bool isFinite() const { return SkScalarsAreFinite(fMat, 9); }
- private:
- /** Set if the matrix will map a rectangle to another rectangle. This
- can be true if the matrix is scale-only, or rotates a multiple of
- 90 degrees.
- This bit will be set on identity matrices
- */
- static constexpr int kRectStaysRect_Mask = 0x10;
- /** Set if the perspective bit is valid even though the rest of
- the matrix is Unknown.
- */
- static constexpr int kOnlyPerspectiveValid_Mask = 0x40;
- static constexpr int kUnknown_Mask = 0x80;
- static constexpr int kORableMasks = kTranslate_Mask |
- kScale_Mask |
- kAffine_Mask |
- kPerspective_Mask;
- static constexpr int kAllMasks = kTranslate_Mask |
- kScale_Mask |
- kAffine_Mask |
- kPerspective_Mask |
- kRectStaysRect_Mask;
- SkScalar fMat[9];
- mutable uint32_t fTypeMask;
- static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp);
- uint8_t computeTypeMask() const;
- uint8_t computePerspectiveTypeMask() const;
- void setTypeMask(int mask) {
- // allow kUnknown or a valid mask
- SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
- ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask)
- == (kUnknown_Mask | kOnlyPerspectiveValid_Mask));
- fTypeMask = SkToU8(mask);
- }
- void orTypeMask(int mask) {
- SkASSERT((mask & kORableMasks) == mask);
- fTypeMask = SkToU8(fTypeMask | mask);
- }
- void clearTypeMask(int mask) {
- // only allow a valid mask
- SkASSERT((mask & kAllMasks) == mask);
- fTypeMask = fTypeMask & ~mask;
- }
- TypeMask getPerspectiveTypeMaskOnly() const {
- if ((fTypeMask & kUnknown_Mask) &&
- !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
- fTypeMask = this->computePerspectiveTypeMask();
- }
- return (TypeMask)(fTypeMask & 0xF);
- }
- /** Returns true if we already know that the matrix is identity;
- false otherwise.
- */
- bool isTriviallyIdentity() const {
- if (fTypeMask & kUnknown_Mask) {
- return false;
- }
- return ((fTypeMask & 0xF) == 0);
- }
- inline void updateTranslateMask() {
- if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) {
- fTypeMask |= kTranslate_Mask;
- } else {
- fTypeMask &= ~kTranslate_Mask;
- }
- }
- typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
- SkPoint* result);
- static MapXYProc GetMapXYProc(TypeMask mask) {
- SkASSERT((mask & ~kAllMasks) == 0);
- return gMapXYProcs[mask & kAllMasks];
- }
- MapXYProc getMapXYProc() const {
- return GetMapXYProc(this->getType());
- }
- typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
- const SkPoint src[], int count);
- static MapPtsProc GetMapPtsProc(TypeMask mask) {
- SkASSERT((mask & ~kAllMasks) == 0);
- return gMapPtsProcs[mask & kAllMasks];
- }
- MapPtsProc getMapPtsProc() const {
- return GetMapPtsProc(this->getType());
- }
- bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const;
- static bool Poly2Proc(const SkPoint[], SkMatrix*);
- static bool Poly3Proc(const SkPoint[], SkMatrix*);
- static bool Poly4Proc(const SkPoint[], SkMatrix*);
- static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
- static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
- static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
- static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
- static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
- static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
- static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
- static const MapXYProc gMapXYProcs[];
- static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
- static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
- static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
- static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
- int count);
- static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
- static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
- static const MapPtsProc gMapPtsProcs[];
- // return the number of bytes written, whether or not buffer is null
- size_t writeToMemory(void* buffer) const;
- /**
- * Reads data from the buffer parameter
- *
- * @param buffer Memory to read from
- * @param length Amount of memory available in the buffer
- * @return number of bytes read (must be a multiple of 4) or
- * 0 if there was not enough memory available
- */
- size_t readFromMemory(const void* buffer, size_t length);
- friend class SkPerspIter;
- friend class SkMatrixPriv;
- friend class SkReader32;
- friend class SerializationTest;
- };
- SK_END_REQUIRE_DENSE
- #endif
|