123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- /*
- * Copyright 2011 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
- #ifndef SkMatrix44_DEFINED
- #define SkMatrix44_DEFINED
- #include "SkMatrix.h"
- #include "SkScalar.h"
- #include <atomic>
- #include <cstring>
- #ifdef SK_MSCALAR_IS_DOUBLE
- #ifdef SK_MSCALAR_IS_FLOAT
- #error "can't define MSCALAR both as DOUBLE and FLOAT"
- #endif
- typedef double SkMScalar;
- static inline double SkFloatToMScalar(float x) {
- return static_cast<double>(x);
- }
- static inline float SkMScalarToFloat(double x) {
- return static_cast<float>(x);
- }
- static inline double SkDoubleToMScalar(double x) {
- return x;
- }
- static inline double SkMScalarToDouble(double x) {
- return x;
- }
- static inline double SkMScalarAbs(double x) {
- return fabs(x);
- }
- static const SkMScalar SK_MScalarPI = 3.141592653589793;
- #define SkMScalarFloor(x) sk_double_floor(x)
- #define SkMScalarCeil(x) sk_double_ceil(x)
- #define SkMScalarRound(x) sk_double_round(x)
- #define SkMScalarFloorToInt(x) sk_double_floor2int(x)
- #define SkMScalarCeilToInt(x) sk_double_ceil2int(x)
- #define SkMScalarRoundToInt(x) sk_double_round2int(x)
- #elif defined SK_MSCALAR_IS_FLOAT
- #ifdef SK_MSCALAR_IS_DOUBLE
- #error "can't define MSCALAR both as DOUBLE and FLOAT"
- #endif
- typedef float SkMScalar;
- static inline float SkFloatToMScalar(float x) {
- return x;
- }
- static inline float SkMScalarToFloat(float x) {
- return x;
- }
- static inline float SkDoubleToMScalar(double x) {
- return sk_double_to_float(x);
- }
- static inline double SkMScalarToDouble(float x) {
- return static_cast<double>(x);
- }
- static inline float SkMScalarAbs(float x) {
- return sk_float_abs(x);
- }
- static const SkMScalar SK_MScalarPI = 3.14159265f;
- #define SkMScalarFloor(x) sk_float_floor(x)
- #define SkMScalarCeil(x) sk_float_ceil(x)
- #define SkMScalarRound(x) sk_float_round(x)
- #define SkMScalarFloorToInt(x) sk_float_floor2int(x)
- #define SkMScalarCeilToInt(x) sk_float_ceil2int(x)
- #define SkMScalarRoundToInt(x) sk_float_round2int(x)
- #endif
- #define SkIntToMScalar(n) static_cast<SkMScalar>(n)
- #define SkMScalarToScalar(x) SkMScalarToFloat(x)
- #define SkScalarToMScalar(x) SkFloatToMScalar(x)
- static const SkMScalar SK_MScalar1 = 1;
- ///////////////////////////////////////////////////////////////////////////////
- struct SkVector4 {
- SkScalar fData[4];
- SkVector4() {
- this->set(0, 0, 0, 1);
- }
- SkVector4(const SkVector4& src) {
- memcpy(fData, src.fData, sizeof(fData));
- }
- SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
- fData[0] = x;
- fData[1] = y;
- fData[2] = z;
- fData[3] = w;
- }
- SkVector4& operator=(const SkVector4& src) {
- memcpy(fData, src.fData, sizeof(fData));
- return *this;
- }
- bool operator==(const SkVector4& v) {
- return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
- fData[2] == v.fData[2] && fData[3] == v.fData[3];
- }
- bool operator!=(const SkVector4& v) {
- return !(*this == v);
- }
- bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
- return fData[0] == x && fData[1] == y &&
- fData[2] == z && fData[3] == w;
- }
- void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
- fData[0] = x;
- fData[1] = y;
- fData[2] = z;
- fData[3] = w;
- }
- };
- /** \class SkMatrix44
- The SkMatrix44 class holds a 4x4 matrix.
- SkMatrix44 is not thread safe unless you've first called SkMatrix44::getType().
- */
- class SK_API SkMatrix44 {
- public:
- enum Uninitialized_Constructor {
- kUninitialized_Constructor
- };
- enum Identity_Constructor {
- kIdentity_Constructor
- };
- SkMatrix44(Uninitialized_Constructor) {} // ironically, cannot be constexpr
- constexpr SkMatrix44(Identity_Constructor)
- : fMat{{ 1, 0, 0, 0, },
- { 0, 1, 0, 0, },
- { 0, 0, 1, 0, },
- { 0, 0, 0, 1, }}
- , fTypeMask(kIdentity_Mask)
- {}
- constexpr SkMatrix44() : SkMatrix44{kIdentity_Constructor} {}
- SkMatrix44(const SkMatrix44& src) {
- memcpy(fMat, src.fMat, sizeof(fMat));
- fTypeMask.store(src.fTypeMask, std::memory_order_relaxed);
- }
- SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
- this->setConcat(a, b);
- }
- SkMatrix44& operator=(const SkMatrix44& src) {
- if (&src != this) {
- memcpy(fMat, src.fMat, sizeof(fMat));
- fTypeMask.store(src.fTypeMask, std::memory_order_relaxed);
- }
- return *this;
- }
- bool operator==(const SkMatrix44& other) const;
- bool operator!=(const SkMatrix44& other) const {
- return !(other == *this);
- }
- /* When converting from SkMatrix44 to SkMatrix, the third row and
- * column is dropped. When converting from SkMatrix to SkMatrix44
- * the third row and column remain as identity:
- * [ a b c ] [ a b 0 c ]
- * [ d e f ] -> [ d e 0 f ]
- * [ g h i ] [ 0 0 1 0 ]
- * [ g h 0 i ]
- */
- SkMatrix44(const SkMatrix&);
- SkMatrix44& operator=(const SkMatrix& src);
- operator SkMatrix() const;
- /**
- * Return a reference to a const identity matrix
- */
- static const SkMatrix44& I();
- enum TypeMask {
- kIdentity_Mask = 0,
- kTranslate_Mask = 0x01, //!< set if the matrix has translation
- kScale_Mask = 0x02, //!< set if the matrix has any scale != 1
- kAffine_Mask = 0x04, //!< set if the matrix skews or rotates
- kPerspective_Mask = 0x08 //!< set if the matrix is in perspective
- };
- /**
- * Returns a bitfield describing the transformations the matrix may
- * perform. The bitfield is computed conservatively, so it may include
- * false positives. For example, when kPerspective_Mask is true, all
- * other bits may be set to true even in the case of a pure perspective
- * transform.
- */
- inline TypeMask getType() const {
- if (fTypeMask.load(std::memory_order_relaxed) & kUnknown_Mask) {
- fTypeMask.store(this->computeTypeMask(), std::memory_order_relaxed);
- }
- SkASSERT(!(fTypeMask & kUnknown_Mask));
- return (TypeMask)fTypeMask.load(std::memory_order_relaxed);
- }
- /**
- * Return true if the matrix is identity.
- */
- inline bool isIdentity() const {
- return kIdentity_Mask == this->getType();
- }
- /**
- * Return true if the matrix contains translate or is identity.
- */
- inline bool isTranslate() const {
- return !(this->getType() & ~kTranslate_Mask);
- }
- /**
- * Return true if the matrix only contains scale or translate or is identity.
- */
- inline bool isScaleTranslate() const {
- return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
- }
- /**
- * Returns true if the matrix only contains scale or is identity.
- */
- inline bool isScale() const {
- return !(this->getType() & ~kScale_Mask);
- }
- inline bool hasPerspective() const {
- return SkToBool(this->getType() & kPerspective_Mask);
- }
- void setIdentity();
- inline void reset() { this->setIdentity();}
- /**
- * get a value from the matrix. The row,col parameters work as follows:
- * (0, 0) scale-x
- * (0, 3) translate-x
- * (3, 0) perspective-x
- */
- inline SkMScalar get(int row, int col) const {
- SkASSERT((unsigned)row <= 3);
- SkASSERT((unsigned)col <= 3);
- return fMat[col][row];
- }
- /**
- * set a value in the matrix. The row,col parameters work as follows:
- * (0, 0) scale-x
- * (0, 3) translate-x
- * (3, 0) perspective-x
- */
- inline void set(int row, int col, SkMScalar value) {
- SkASSERT((unsigned)row <= 3);
- SkASSERT((unsigned)col <= 3);
- fMat[col][row] = value;
- this->dirtyTypeMask();
- }
- inline double getDouble(int row, int col) const {
- return SkMScalarToDouble(this->get(row, col));
- }
- inline void setDouble(int row, int col, double value) {
- this->set(row, col, SkDoubleToMScalar(value));
- }
- inline float getFloat(int row, int col) const {
- return SkMScalarToFloat(this->get(row, col));
- }
- inline void setFloat(int row, int col, float value) {
- this->set(row, col, SkFloatToMScalar(value));
- }
- /** These methods allow one to efficiently read matrix entries into an
- * array. The given array must have room for exactly 16 entries. Whenever
- * possible, they will try to use memcpy rather than an entry-by-entry
- * copy.
- *
- * Col major indicates that consecutive elements of columns will be stored
- * contiguously in memory. Row major indicates that consecutive elements
- * of rows will be stored contiguously in memory.
- */
- void asColMajorf(float[]) const;
- void asColMajord(double[]) const;
- void asRowMajorf(float[]) const;
- void asRowMajord(double[]) const;
- /** These methods allow one to efficiently set all matrix entries from an
- * array. The given array must have room for exactly 16 entries. Whenever
- * possible, they will try to use memcpy rather than an entry-by-entry
- * copy.
- *
- * Col major indicates that input memory will be treated as if consecutive
- * elements of columns are stored contiguously in memory. Row major
- * indicates that input memory will be treated as if consecutive elements
- * of rows are stored contiguously in memory.
- */
- void setColMajorf(const float[]);
- void setColMajord(const double[]);
- void setRowMajorf(const float[]);
- void setRowMajord(const double[]);
- #ifdef SK_MSCALAR_IS_FLOAT
- void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
- void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
- #else
- void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
- void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
- #endif
- /* This sets the top-left of the matrix and clears the translation and
- * perspective components (with [3][3] set to 1). m_ij is interpreted
- * as the matrix entry at row = i, col = j. */
- void set3x3(SkMScalar m_00, SkMScalar m_10, SkMScalar m_20,
- SkMScalar m_01, SkMScalar m_11, SkMScalar m_21,
- SkMScalar m_02, SkMScalar m_12, SkMScalar m_22);
- void set3x3RowMajorf(const float[]);
- void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
- void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
- void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
- void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
- void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
- void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
- inline void setScale(SkMScalar scale) {
- this->setScale(scale, scale, scale);
- }
- inline void preScale(SkMScalar scale) {
- this->preScale(scale, scale, scale);
- }
- inline void postScale(SkMScalar scale) {
- this->postScale(scale, scale, scale);
- }
- void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
- SkMScalar degrees) {
- this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
- }
- /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
- it will be automatically resized.
- */
- void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
- SkMScalar radians);
- /** Rotate about the vector [x,y,z]. Does not check the length of the
- vector, assuming it is unit-length.
- */
- void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
- SkMScalar radians);
- void setConcat(const SkMatrix44& a, const SkMatrix44& b);
- inline void preConcat(const SkMatrix44& m) {
- this->setConcat(*this, m);
- }
- inline void postConcat(const SkMatrix44& m) {
- this->setConcat(m, *this);
- }
- friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
- return SkMatrix44(a, b);
- }
- /** If this is invertible, return that in inverse and return true. If it is
- not invertible, return false and leave the inverse parameter in an
- unspecified state.
- */
- bool invert(SkMatrix44* inverse) const;
- /** Transpose this matrix in place. */
- void transpose();
- /** Apply the matrix to the src vector, returning the new vector in dst.
- It is legal for src and dst to point to the same memory.
- */
- void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
- inline void mapScalars(SkScalar vec[4]) const {
- this->mapScalars(vec, vec);
- }
- #ifdef SK_MSCALAR_IS_DOUBLE
- void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
- #elif defined SK_MSCALAR_IS_FLOAT
- inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
- this->mapScalars(src, dst);
- }
- #endif
- inline void mapMScalars(SkMScalar vec[4]) const {
- this->mapMScalars(vec, vec);
- }
- friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
- SkVector4 dst;
- m.mapScalars(src.fData, dst.fData);
- return dst;
- }
- /**
- * map an array of [x, y, 0, 1] through the matrix, returning an array
- * of [x', y', z', w'].
- *
- * @param src2 array of [x, y] pairs, with implied z=0 and w=1
- * @param count number of [x, y] pairs in src2
- * @param dst4 array of [x', y', z', w'] quads as the output.
- */
- void map2(const float src2[], int count, float dst4[]) const;
- void map2(const double src2[], int count, double dst4[]) const;
- /** Returns true if transformating an axis-aligned square in 2d by this matrix
- will produce another 2d axis-aligned square; typically means the matrix
- is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
- degrees into a perpendicular plane collapses a square to a line, but
- is still considered to be axis-aligned.
- By default, tolerates very slight error due to float imprecisions;
- a 90-degree rotation can still end up with 10^-17 of
- "non-axis-aligned" result.
- */
- bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
- void dump() const;
- double determinant() const;
- private:
- /* This is indexed by [col][row]. */
- SkMScalar fMat[4][4];
- mutable std::atomic<unsigned> fTypeMask;
- static constexpr int kUnknown_Mask = 0x80;
- static constexpr int kAllPublic_Masks = 0xF;
- void as3x4RowMajorf(float[]) const;
- void set3x4RowMajorf(const float[]);
- SkMScalar transX() const { return fMat[3][0]; }
- SkMScalar transY() const { return fMat[3][1]; }
- SkMScalar transZ() const { return fMat[3][2]; }
- SkMScalar scaleX() const { return fMat[0][0]; }
- SkMScalar scaleY() const { return fMat[1][1]; }
- SkMScalar scaleZ() const { return fMat[2][2]; }
- SkMScalar perspX() const { return fMat[0][3]; }
- SkMScalar perspY() const { return fMat[1][3]; }
- SkMScalar perspZ() const { return fMat[2][3]; }
- int computeTypeMask() const;
- inline void dirtyTypeMask() {
- fTypeMask.store(kUnknown_Mask, std::memory_order_relaxed);
- }
- inline void setTypeMask(int mask) {
- SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
- fTypeMask.store(mask, std::memory_order_relaxed);
- }
- /**
- * Does not take the time to 'compute' the typemask. Only returns true if
- * we already know that this matrix is identity.
- */
- inline bool isTriviallyIdentity() const {
- return 0 == fTypeMask.load(std::memory_order_relaxed);
- }
- inline const SkMScalar* values() const { return &fMat[0][0]; }
- friend class SkColorSpace;
- };
- #endif
|