edge-coloring.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. #include "edge-coloring.h"
  2. #include <cstdlib>
  3. #include <cmath>
  4. #include <cstring>
  5. #include <queue>
  6. #include "arithmetics.hpp"
  7. namespace msdfgen {
  8. static bool isCorner(const Vector2 &aDir, const Vector2 &bDir, double crossThreshold) {
  9. return dotProduct(aDir, bDir) <= 0 || fabs(crossProduct(aDir, bDir)) > crossThreshold;
  10. }
  11. static double estimateEdgeLength(const EdgeSegment *edge) {
  12. double len = 0;
  13. Point2 prev = edge->point(0);
  14. for (int i = 1; i <= MSDFGEN_EDGE_LENGTH_PRECISION; ++i) {
  15. Point2 cur = edge->point(1./MSDFGEN_EDGE_LENGTH_PRECISION*i);
  16. len += (cur-prev).length();
  17. prev = cur;
  18. }
  19. return len;
  20. }
  21. static void switchColor(EdgeColor &color, unsigned long long &seed, EdgeColor banned = BLACK) {
  22. EdgeColor combined = EdgeColor(color&banned);
  23. if (combined == RED || combined == GREEN || combined == BLUE) {
  24. color = EdgeColor(combined^WHITE);
  25. return;
  26. }
  27. if (color == BLACK || color == WHITE) {
  28. static const EdgeColor start[3] = { CYAN, MAGENTA, YELLOW };
  29. color = start[seed%3];
  30. seed /= 3;
  31. return;
  32. }
  33. int shifted = color<<(1+(seed&1));
  34. color = EdgeColor((shifted|shifted>>3)&WHITE);
  35. seed >>= 1;
  36. }
  37. void edgeColoringSimple(Shape &shape, double angleThreshold, unsigned long long seed) {
  38. double crossThreshold = sin(angleThreshold);
  39. std::vector<int> corners;
  40. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
  41. // Identify corners
  42. corners.clear();
  43. if (!contour->edges.empty()) {
  44. Vector2 prevDirection = contour->edges.back()->direction(1);
  45. int index = 0;
  46. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  47. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
  48. corners.push_back(index);
  49. prevDirection = (*edge)->direction(1);
  50. }
  51. }
  52. // Smooth contour
  53. if (corners.empty())
  54. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  55. (*edge)->color = WHITE;
  56. // "Teardrop" case
  57. else if (corners.size() == 1) {
  58. EdgeColor colors[3] = { WHITE, WHITE };
  59. switchColor(colors[0], seed);
  60. switchColor(colors[2] = colors[0], seed);
  61. int corner = corners[0];
  62. if (contour->edges.size() >= 3) {
  63. int m = (int) contour->edges.size();
  64. for (int i = 0; i < m; ++i)
  65. contour->edges[(corner+i)%m]->color = (colors+1)[int(3+2.875*i/(m-1)-1.4375+.5)-3];
  66. } else if (contour->edges.size() >= 1) {
  67. // Less than three edge segments for three colors => edges must be split
  68. EdgeSegment *parts[7] = { };
  69. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  70. if (contour->edges.size() >= 2) {
  71. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  72. parts[0]->color = parts[1]->color = colors[0];
  73. parts[2]->color = parts[3]->color = colors[1];
  74. parts[4]->color = parts[5]->color = colors[2];
  75. } else {
  76. parts[0]->color = colors[0];
  77. parts[1]->color = colors[1];
  78. parts[2]->color = colors[2];
  79. }
  80. contour->edges.clear();
  81. for (int i = 0; parts[i]; ++i)
  82. contour->edges.push_back(EdgeHolder(parts[i]));
  83. }
  84. }
  85. // Multiple corners
  86. else {
  87. int cornerCount = (int) corners.size();
  88. int spline = 0;
  89. int start = corners[0];
  90. int m = (int) contour->edges.size();
  91. EdgeColor color = WHITE;
  92. switchColor(color, seed);
  93. EdgeColor initialColor = color;
  94. for (int i = 0; i < m; ++i) {
  95. int index = (start+i)%m;
  96. if (spline+1 < cornerCount && corners[spline+1] == index) {
  97. ++spline;
  98. switchColor(color, seed, EdgeColor((spline == cornerCount-1)*initialColor));
  99. }
  100. contour->edges[index]->color = color;
  101. }
  102. }
  103. }
  104. }
  105. struct EdgeColoringInkTrapCorner {
  106. int index;
  107. double prevEdgeLengthEstimate;
  108. bool minor;
  109. EdgeColor color;
  110. };
  111. void edgeColoringInkTrap(Shape &shape, double angleThreshold, unsigned long long seed) {
  112. typedef EdgeColoringInkTrapCorner Corner;
  113. double crossThreshold = sin(angleThreshold);
  114. std::vector<Corner> corners;
  115. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour) {
  116. // Identify corners
  117. double splineLength = 0;
  118. corners.clear();
  119. if (!contour->edges.empty()) {
  120. Vector2 prevDirection = contour->edges.back()->direction(1);
  121. int index = 0;
  122. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  123. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold)) {
  124. Corner corner = { index, splineLength };
  125. corners.push_back(corner);
  126. splineLength = 0;
  127. }
  128. splineLength += estimateEdgeLength(*edge);
  129. prevDirection = (*edge)->direction(1);
  130. }
  131. }
  132. // Smooth contour
  133. if (corners.empty())
  134. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  135. (*edge)->color = WHITE;
  136. // "Teardrop" case
  137. else if (corners.size() == 1) {
  138. EdgeColor colors[3] = { WHITE, WHITE };
  139. switchColor(colors[0], seed);
  140. switchColor(colors[2] = colors[0], seed);
  141. int corner = corners[0].index;
  142. if (contour->edges.size() >= 3) {
  143. int m = (int) contour->edges.size();
  144. for (int i = 0; i < m; ++i)
  145. contour->edges[(corner+i)%m]->color = (colors+1)[int(3+2.875*i/(m-1)-1.4375+.5)-3];
  146. } else if (contour->edges.size() >= 1) {
  147. // Less than three edge segments for three colors => edges must be split
  148. EdgeSegment *parts[7] = { };
  149. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  150. if (contour->edges.size() >= 2) {
  151. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  152. parts[0]->color = parts[1]->color = colors[0];
  153. parts[2]->color = parts[3]->color = colors[1];
  154. parts[4]->color = parts[5]->color = colors[2];
  155. } else {
  156. parts[0]->color = colors[0];
  157. parts[1]->color = colors[1];
  158. parts[2]->color = colors[2];
  159. }
  160. contour->edges.clear();
  161. for (int i = 0; parts[i]; ++i)
  162. contour->edges.push_back(EdgeHolder(parts[i]));
  163. }
  164. }
  165. // Multiple corners
  166. else {
  167. int cornerCount = (int) corners.size();
  168. int majorCornerCount = cornerCount;
  169. if (cornerCount > 3) {
  170. corners.begin()->prevEdgeLengthEstimate += splineLength;
  171. for (int i = 0; i < cornerCount; ++i) {
  172. if (
  173. corners[i].prevEdgeLengthEstimate > corners[(i+1)%cornerCount].prevEdgeLengthEstimate &&
  174. corners[(i+1)%cornerCount].prevEdgeLengthEstimate < corners[(i+2)%cornerCount].prevEdgeLengthEstimate
  175. ) {
  176. corners[i].minor = true;
  177. --majorCornerCount;
  178. }
  179. }
  180. }
  181. EdgeColor color = WHITE;
  182. EdgeColor initialColor = BLACK;
  183. for (int i = 0; i < cornerCount; ++i) {
  184. if (!corners[i].minor) {
  185. --majorCornerCount;
  186. switchColor(color, seed, EdgeColor(!majorCornerCount*initialColor));
  187. corners[i].color = color;
  188. if (!initialColor)
  189. initialColor = color;
  190. }
  191. }
  192. for (int i = 0; i < cornerCount; ++i) {
  193. if (corners[i].minor) {
  194. EdgeColor nextColor = corners[(i+1)%cornerCount].color;
  195. corners[i].color = EdgeColor((color&nextColor)^WHITE);
  196. } else
  197. color = corners[i].color;
  198. }
  199. int spline = 0;
  200. int start = corners[0].index;
  201. color = corners[0].color;
  202. int m = (int) contour->edges.size();
  203. for (int i = 0; i < m; ++i) {
  204. int index = (start+i)%m;
  205. if (spline+1 < cornerCount && corners[spline+1].index == index)
  206. color = corners[++spline].color;
  207. contour->edges[index]->color = color;
  208. }
  209. }
  210. }
  211. }
  212. // EDGE COLORING BY DISTANCE - EXPERIMENTAL IMPLEMENTATION - WORK IN PROGRESS
  213. #define MAX_RECOLOR_STEPS 16
  214. #define EDGE_DISTANCE_PRECISION 16
  215. static double edgeToEdgeDistance(const EdgeSegment &a, const EdgeSegment &b, int precision) {
  216. if (a.point(0) == b.point(0) || a.point(0) == b.point(1) || a.point(1) == b.point(0) || a.point(1) == b.point(1))
  217. return 0;
  218. double iFac = 1./precision;
  219. double minDistance = (b.point(0)-a.point(0)).length();
  220. for (int i = 0; i <= precision; ++i) {
  221. double t = iFac*i;
  222. double d = fabs(a.signedDistance(b.point(t), t).distance);
  223. minDistance = min(minDistance, d);
  224. }
  225. for (int i = 0; i <= precision; ++i) {
  226. double t = iFac*i;
  227. double d = fabs(b.signedDistance(a.point(t), t).distance);
  228. minDistance = min(minDistance, d);
  229. }
  230. return minDistance;
  231. }
  232. static double splineToSplineDistance(EdgeSegment * const *edgeSegments, int aStart, int aEnd, int bStart, int bEnd, int precision) {
  233. double minDistance = fabs(SignedDistance::INFINITE.distance);
  234. for (int ai = aStart; ai < aEnd; ++ai)
  235. for (int bi = bStart; bi < bEnd && minDistance; ++bi) {
  236. double d = edgeToEdgeDistance(*edgeSegments[ai], *edgeSegments[bi], precision);
  237. minDistance = min(minDistance, d);
  238. }
  239. return minDistance;
  240. }
  241. static void colorSecondDegreeGraph(int *coloring, const int * const *edgeMatrix, int vertexCount, unsigned long long seed) {
  242. for (int i = 0; i < vertexCount; ++i) {
  243. int possibleColors = 7;
  244. for (int j = 0; j < i; ++j) {
  245. if (edgeMatrix[i][j])
  246. possibleColors &= ~(1<<coloring[j]);
  247. }
  248. int color = 0;
  249. switch (possibleColors) {
  250. case 1:
  251. color = 0;
  252. break;
  253. case 2:
  254. color = 1;
  255. break;
  256. case 3:
  257. color = (int) seed&1;
  258. seed >>= 1;
  259. break;
  260. case 4:
  261. color = 2;
  262. break;
  263. case 5:
  264. color = ((int) seed+1&1)<<1;
  265. seed >>= 1;
  266. break;
  267. case 6:
  268. color = ((int) seed&1)+1;
  269. seed >>= 1;
  270. break;
  271. case 7:
  272. color = int((seed+i)%3);
  273. seed /= 3;
  274. break;
  275. }
  276. coloring[i] = color;
  277. }
  278. }
  279. static int vertexPossibleColors(const int *coloring, const int *edgeVector, int vertexCount) {
  280. int usedColors = 0;
  281. for (int i = 0; i < vertexCount; ++i)
  282. if (edgeVector[i])
  283. usedColors |= 1<<coloring[i];
  284. return 7&~usedColors;
  285. }
  286. static void uncolorSameNeighbors(std::queue<int> &uncolored, int *coloring, const int * const *edgeMatrix, int vertex, int vertexCount) {
  287. for (int i = vertex+1; i < vertexCount; ++i) {
  288. if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
  289. coloring[i] = -1;
  290. uncolored.push(i);
  291. }
  292. }
  293. for (int i = 0; i < vertex; ++i) {
  294. if (edgeMatrix[vertex][i] && coloring[i] == coloring[vertex]) {
  295. coloring[i] = -1;
  296. uncolored.push(i);
  297. }
  298. }
  299. }
  300. static bool tryAddEdge(int *coloring, int * const *edgeMatrix, int vertexCount, int vertexA, int vertexB, int *coloringBuffer) {
  301. static const int FIRST_POSSIBLE_COLOR[8] = { -1, 0, 1, 0, 2, 2, 1, 0 };
  302. edgeMatrix[vertexA][vertexB] = 1;
  303. edgeMatrix[vertexB][vertexA] = 1;
  304. if (coloring[vertexA] != coloring[vertexB])
  305. return true;
  306. int bPossibleColors = vertexPossibleColors(coloring, edgeMatrix[vertexB], vertexCount);
  307. if (bPossibleColors) {
  308. coloring[vertexB] = FIRST_POSSIBLE_COLOR[bPossibleColors];
  309. return true;
  310. }
  311. memcpy(coloringBuffer, coloring, sizeof(int)*vertexCount);
  312. std::queue<int> uncolored;
  313. {
  314. int *coloring = coloringBuffer;
  315. coloring[vertexB] = FIRST_POSSIBLE_COLOR[7&~(1<<coloring[vertexA])];
  316. uncolorSameNeighbors(uncolored, coloring, edgeMatrix, vertexB, vertexCount);
  317. int step = 0;
  318. while (!uncolored.empty() && step < MAX_RECOLOR_STEPS) {
  319. int i = uncolored.front();
  320. uncolored.pop();
  321. int possibleColors = vertexPossibleColors(coloring, edgeMatrix[i], vertexCount);
  322. if (possibleColors) {
  323. coloring[i] = FIRST_POSSIBLE_COLOR[possibleColors];
  324. continue;
  325. }
  326. do {
  327. coloring[i] = step++%3;
  328. } while (edgeMatrix[i][vertexA] && coloring[i] == coloring[vertexA]);
  329. uncolorSameNeighbors(uncolored, coloring, edgeMatrix, i, vertexCount);
  330. }
  331. }
  332. if (!uncolored.empty()) {
  333. edgeMatrix[vertexA][vertexB] = 0;
  334. edgeMatrix[vertexB][vertexA] = 0;
  335. return false;
  336. }
  337. memcpy(coloring, coloringBuffer, sizeof(int)*vertexCount);
  338. return true;
  339. }
  340. static int cmpDoublePtr(const void *a, const void *b) {
  341. return sign(**reinterpret_cast<const double * const *>(a)-**reinterpret_cast<const double * const *>(b));
  342. }
  343. void edgeColoringByDistance(Shape &shape, double angleThreshold, unsigned long long seed) {
  344. std::vector<EdgeSegment *> edgeSegments;
  345. std::vector<int> splineStarts;
  346. double crossThreshold = sin(angleThreshold);
  347. std::vector<int> corners;
  348. for (std::vector<Contour>::iterator contour = shape.contours.begin(); contour != shape.contours.end(); ++contour)
  349. if (!contour->edges.empty()) {
  350. // Identify corners
  351. corners.clear();
  352. Vector2 prevDirection = contour->edges.back()->direction(1);
  353. int index = 0;
  354. for (std::vector<EdgeHolder>::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge, ++index) {
  355. if (isCorner(prevDirection.normalize(), (*edge)->direction(0).normalize(), crossThreshold))
  356. corners.push_back(index);
  357. prevDirection = (*edge)->direction(1);
  358. }
  359. splineStarts.push_back((int) edgeSegments.size());
  360. // Smooth contour
  361. if (corners.empty())
  362. for (std::vector<EdgeHolder>::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge)
  363. edgeSegments.push_back(&**edge);
  364. // "Teardrop" case
  365. else if (corners.size() == 1) {
  366. int corner = corners[0];
  367. if (contour->edges.size() >= 3) {
  368. int m = (int) contour->edges.size();
  369. for (int i = 0; i < m; ++i) {
  370. if (i == m/2)
  371. splineStarts.push_back((int) edgeSegments.size());
  372. if (int(3+2.875*i/(m-1)-1.4375+.5)-3)
  373. edgeSegments.push_back(&*contour->edges[(corner+i)%m]);
  374. else
  375. contour->edges[(corner+i)%m]->color = WHITE;
  376. }
  377. } else if (contour->edges.size() >= 1) {
  378. // Less than three edge segments for three colors => edges must be split
  379. EdgeSegment *parts[7] = { };
  380. contour->edges[0]->splitInThirds(parts[0+3*corner], parts[1+3*corner], parts[2+3*corner]);
  381. if (contour->edges.size() >= 2) {
  382. contour->edges[1]->splitInThirds(parts[3-3*corner], parts[4-3*corner], parts[5-3*corner]);
  383. edgeSegments.push_back(parts[0]);
  384. edgeSegments.push_back(parts[1]);
  385. parts[2]->color = parts[3]->color = WHITE;
  386. splineStarts.push_back((int) edgeSegments.size());
  387. edgeSegments.push_back(parts[4]);
  388. edgeSegments.push_back(parts[5]);
  389. } else {
  390. edgeSegments.push_back(parts[0]);
  391. parts[1]->color = WHITE;
  392. splineStarts.push_back((int) edgeSegments.size());
  393. edgeSegments.push_back(parts[2]);
  394. }
  395. contour->edges.clear();
  396. for (int i = 0; parts[i]; ++i)
  397. contour->edges.push_back(EdgeHolder(parts[i]));
  398. }
  399. }
  400. // Multiple corners
  401. else {
  402. int cornerCount = (int) corners.size();
  403. int spline = 0;
  404. int start = corners[0];
  405. int m = (int) contour->edges.size();
  406. for (int i = 0; i < m; ++i) {
  407. int index = (start+i)%m;
  408. if (spline+1 < cornerCount && corners[spline+1] == index) {
  409. splineStarts.push_back((int) edgeSegments.size());
  410. ++spline;
  411. }
  412. edgeSegments.push_back(&*contour->edges[index]);
  413. }
  414. }
  415. }
  416. splineStarts.push_back((int) edgeSegments.size());
  417. int segmentCount = (int) edgeSegments.size();
  418. int splineCount = (int) splineStarts.size()-1;
  419. if (!splineCount)
  420. return;
  421. std::vector<double> distanceMatrixStorage(splineCount*splineCount);
  422. std::vector<double *> distanceMatrix(splineCount);
  423. for (int i = 0; i < splineCount; ++i)
  424. distanceMatrix[i] = &distanceMatrixStorage[i*splineCount];
  425. const double *distanceMatrixBase = &distanceMatrixStorage[0];
  426. for (int i = 0; i < splineCount; ++i) {
  427. distanceMatrix[i][i] = -1;
  428. for (int j = i+1; j < splineCount; ++j) {
  429. double dist = splineToSplineDistance(&edgeSegments[0], splineStarts[i], splineStarts[i+1], splineStarts[j], splineStarts[j+1], EDGE_DISTANCE_PRECISION);
  430. distanceMatrix[i][j] = dist;
  431. distanceMatrix[j][i] = dist;
  432. }
  433. }
  434. std::vector<const double *> graphEdgeDistances;
  435. graphEdgeDistances.reserve(splineCount*(splineCount-1)/2);
  436. for (int i = 0; i < splineCount; ++i)
  437. for (int j = i+1; j < splineCount; ++j)
  438. graphEdgeDistances.push_back(&distanceMatrix[i][j]);
  439. int graphEdgeCount = (int) graphEdgeDistances.size();
  440. if (!graphEdgeDistances.empty())
  441. qsort(&graphEdgeDistances[0], graphEdgeDistances.size(), sizeof(const double *), &cmpDoublePtr);
  442. std::vector<int> edgeMatrixStorage(splineCount*splineCount);
  443. std::vector<int *> edgeMatrix(splineCount);
  444. for (int i = 0; i < splineCount; ++i)
  445. edgeMatrix[i] = &edgeMatrixStorage[i*splineCount];
  446. int nextEdge = 0;
  447. for (; nextEdge < graphEdgeCount && !*graphEdgeDistances[nextEdge]; ++nextEdge) {
  448. int elem = graphEdgeDistances[nextEdge]-distanceMatrixBase;
  449. int row = elem/splineCount;
  450. int col = elem%splineCount;
  451. edgeMatrix[row][col] = 1;
  452. edgeMatrix[col][row] = 1;
  453. }
  454. std::vector<int> coloring(2*splineCount);
  455. colorSecondDegreeGraph(&coloring[0], &edgeMatrix[0], splineCount, seed);
  456. for (; nextEdge < graphEdgeCount; ++nextEdge) {
  457. int elem = graphEdgeDistances[nextEdge]-distanceMatrixBase;
  458. tryAddEdge(&coloring[0], &edgeMatrix[0], splineCount, elem/splineCount, elem%splineCount, &coloring[splineCount]);
  459. }
  460. const EdgeColor colors[3] = { YELLOW, CYAN, MAGENTA };
  461. int spline = -1;
  462. for (int i = 0; i < segmentCount; ++i) {
  463. if (splineStarts[spline+1] == i)
  464. ++spline;
  465. edgeSegments[i]->color = colors[coloring[spline]];
  466. }
  467. }
  468. }