|
|
@@ -0,0 +1,962 @@
|
|
|
+// Filename: pfmFile.cxx
|
|
|
+// Created by: drose (23Dec10)
|
|
|
+//
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+//
|
|
|
+// PANDA 3D SOFTWARE
|
|
|
+// Copyright (c) Carnegie Mellon University. All rights reserved.
|
|
|
+//
|
|
|
+// All use of this software is subject to the terms of the revised BSD
|
|
|
+// license. You should have received a copy of this license along
|
|
|
+// with this source code in a file named "LICENSE."
|
|
|
+//
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+#include "config_grutil.h"
|
|
|
+#include "pfmFile.h"
|
|
|
+#include "virtualFileSystem.h"
|
|
|
+#include "pandaFileStream.h"
|
|
|
+#include "littleEndian.h"
|
|
|
+#include "bigEndian.h"
|
|
|
+#include "cmath.h"
|
|
|
+#include "geomNode.h"
|
|
|
+#include "geom.h"
|
|
|
+#include "geomVertexData.h"
|
|
|
+#include "geomVertexFormat.h"
|
|
|
+#include "geomPoints.h"
|
|
|
+#include "geomTriangles.h"
|
|
|
+#include "geomVertexWriter.h"
|
|
|
+#include "look_at.h"
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::Constructor
|
|
|
+// Access: Published
|
|
|
+// Description:
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+PfmFile::
|
|
|
+PfmFile() {
|
|
|
+ _zero_special = false;
|
|
|
+ _vis_inverse = false;
|
|
|
+ clear();
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::Copy Constructor
|
|
|
+// Access: Published
|
|
|
+// Description:
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+PfmFile::
|
|
|
+PfmFile(const PfmFile ©) :
|
|
|
+ _table(copy._table),
|
|
|
+ _x_size(copy._x_size),
|
|
|
+ _y_size(copy._y_size),
|
|
|
+ _scale(copy._scale),
|
|
|
+ _num_channels(copy._num_channels),
|
|
|
+ _zero_special(copy._zero_special)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::Copy Assignment
|
|
|
+// Access: Published
|
|
|
+// Description:
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+operator = (const PfmFile ©) {
|
|
|
+ _table = copy._table;
|
|
|
+ _x_size = copy._x_size;
|
|
|
+ _y_size = copy._y_size;
|
|
|
+ _scale = copy._scale;
|
|
|
+ _num_channels = copy._num_channels;
|
|
|
+ _zero_special = copy._zero_special;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::clear
|
|
|
+// Access: Published
|
|
|
+// Description: Eliminates all data in the file.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+clear() {
|
|
|
+ _x_size = 0;
|
|
|
+ _y_size = 0;
|
|
|
+ _num_channels = 3;
|
|
|
+ _table.clear();
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::clear
|
|
|
+// Access: Published
|
|
|
+// Description: Resets to an empty table with a specific size.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+clear(int x_size, int y_size, int num_channels) {
|
|
|
+ nassertv(num_channels == 1 || num_channels == 3);
|
|
|
+ nassertv(x_size >= 0 && y_size >= 0);
|
|
|
+ _x_size = x_size;
|
|
|
+ _y_size = y_size;
|
|
|
+ _num_channels = _num_channels;
|
|
|
+
|
|
|
+ _table.clear();
|
|
|
+ int size = _x_size * _y_size;
|
|
|
+ _table.insert(_table.end(), size, LPoint3f::zero());
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::read
|
|
|
+// Access: Published
|
|
|
+// Description: Reads the PFM data from the indicated file, returning
|
|
|
+// true on success, false on failure.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+bool PfmFile::
|
|
|
+read(const Filename &fullpath) {
|
|
|
+ VirtualFileSystem *vfs = VirtualFileSystem::get_global_ptr();
|
|
|
+
|
|
|
+ Filename filename = Filename::binary_filename(fullpath);
|
|
|
+ PT(VirtualFile) file = vfs->get_file(filename);
|
|
|
+ if (file == (VirtualFile *)NULL) {
|
|
|
+ // No such file.
|
|
|
+ grutil_cat.error()
|
|
|
+ << "Could not find " << fullpath << "\n";
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (grutil_cat.is_debug()) {
|
|
|
+ grutil_cat.debug()
|
|
|
+ << "Reading PFM file " << filename << "\n";
|
|
|
+ }
|
|
|
+
|
|
|
+ istream *in = file->open_read_file(true);
|
|
|
+ bool success = read(*in);
|
|
|
+ vfs->close_read_file(in);
|
|
|
+
|
|
|
+ return success;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::read
|
|
|
+// Access: Published
|
|
|
+// Description: Reads the PFM data from the indicated stream,
|
|
|
+// returning true on success, false on failure.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+bool PfmFile::
|
|
|
+read(istream &in) {
|
|
|
+ clear();
|
|
|
+
|
|
|
+ string identifier;
|
|
|
+ in >> identifier;
|
|
|
+
|
|
|
+ if (identifier == "PF") {
|
|
|
+ _num_channels = 3;
|
|
|
+ } else if (identifier == "Pf") {
|
|
|
+ _num_channels = 1;
|
|
|
+ } else {
|
|
|
+ grutil_cat.error()
|
|
|
+ << "Not a pfm file.\n";
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ int width, height;
|
|
|
+ float scale;
|
|
|
+ in >> width >> height >> scale;
|
|
|
+ if (!in) {
|
|
|
+ grutil_cat.error()
|
|
|
+ << "Error parsing pfm header.\n";
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Skip the last newline/whitespace character before the raw data
|
|
|
+ // begins.
|
|
|
+ in.get();
|
|
|
+
|
|
|
+ bool little_endian = false;
|
|
|
+ if (scale < 0) {
|
|
|
+ scale = -scale;
|
|
|
+ little_endian = true;
|
|
|
+ }
|
|
|
+ if (pfm_force_littleendian) {
|
|
|
+ little_endian = true;
|
|
|
+ }
|
|
|
+ if (pfm_reverse_dimensions) {
|
|
|
+ int t = width;
|
|
|
+ width = height;
|
|
|
+ height = t;
|
|
|
+ }
|
|
|
+
|
|
|
+ _x_size = width;
|
|
|
+ _y_size = height;
|
|
|
+ _scale = scale;
|
|
|
+
|
|
|
+ // So far, so good. Now read the data.
|
|
|
+ int size = _x_size * _y_size;
|
|
|
+ _table.reserve(size);
|
|
|
+
|
|
|
+ if (little_endian) {
|
|
|
+ for (int i = 0; i < size; ++i) {
|
|
|
+ LPoint3f point = LPoint3f::zero();
|
|
|
+ for (int ci = 0; ci < _num_channels; ++ci) {
|
|
|
+ float data;
|
|
|
+ in.read((char *)&data, sizeof(data));
|
|
|
+ LittleEndian value(&data, sizeof(data));
|
|
|
+ value.store_value(&(point[ci]), sizeof(point[ci]));
|
|
|
+ }
|
|
|
+ _table.push_back(point);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ for (int i = 0; i < size; ++i) {
|
|
|
+ LPoint3f point = LPoint3f::zero();
|
|
|
+ for (int ci = 0; ci < _num_channels; ++ci) {
|
|
|
+ float data;
|
|
|
+ in.read((char *)&data, sizeof(data));
|
|
|
+ BigEndian value(&data, sizeof(data));
|
|
|
+ value.store_value(&(point[ci]), sizeof(point[ci]));
|
|
|
+ }
|
|
|
+ _table.push_back(point);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (in.fail() && !in.eof()) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::write
|
|
|
+// Access: Published
|
|
|
+// Description: Writes the PFM data to the indicated file, returning
|
|
|
+// true on success, false on failure.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+bool PfmFile::
|
|
|
+write(const Filename &fullpath) {
|
|
|
+ Filename filename = Filename::binary_filename(fullpath);
|
|
|
+ pofstream out;
|
|
|
+ if (!filename.open_write(out)) {
|
|
|
+ grutil_cat.error()
|
|
|
+ << "Unable to open " << filename << "\n";
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (grutil_cat.is_debug()) {
|
|
|
+ grutil_cat.debug()
|
|
|
+ << "Writing PFM file " << filename << "\n";
|
|
|
+ }
|
|
|
+
|
|
|
+ return write(out);
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::write
|
|
|
+// Access: Published
|
|
|
+// Description: Writes the PFM data to the indicated stream,
|
|
|
+// returning true on success, false on failure.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+bool PfmFile::
|
|
|
+write(ostream &out) {
|
|
|
+ nassertr(is_valid(), false);
|
|
|
+
|
|
|
+ if (_num_channels == 1) {
|
|
|
+ out << "Pf\n";
|
|
|
+ } else {
|
|
|
+ out << "PF\n";
|
|
|
+ }
|
|
|
+ out << _x_size << " " << _y_size << "\n";
|
|
|
+
|
|
|
+ float scale = cabs(_scale);
|
|
|
+ if (scale == 0.0f) {
|
|
|
+ scale = 1.0f;
|
|
|
+ }
|
|
|
+#ifndef WORDS_BIGENDIAN
|
|
|
+ // Little-endian computers must write a negative scale to indicate
|
|
|
+ // the little-endian nature of the output.
|
|
|
+ scale = -scale;
|
|
|
+#endif
|
|
|
+ out << scale << "\n";
|
|
|
+
|
|
|
+ int size = _x_size * _y_size;
|
|
|
+ for (int i = 0; i < size; ++i) {
|
|
|
+ const LPoint3f &point = _table[i];
|
|
|
+ for (int ci = 0; ci < _num_channels; ++ci) {
|
|
|
+ float data = point[ci];
|
|
|
+ out.write((const char *)&data, sizeof(data));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (out.fail()) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::calc_average_point
|
|
|
+// Access: Published
|
|
|
+// Description: Computes the unweighted average point of all points
|
|
|
+// within the box centered at (x, y) with the indicated
|
|
|
+// Manhattan-distance radius. Missing points are
|
|
|
+// assigned the value of their nearest neighbor.
|
|
|
+// Returns true if successful, or false if the point
|
|
|
+// value cannot be determined.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+bool PfmFile::
|
|
|
+calc_average_point(LPoint3f &result, double x, double y, double radius) const {
|
|
|
+ result = LPoint3f::zero();
|
|
|
+
|
|
|
+ int min_x = int(ceil(x - radius));
|
|
|
+ int min_y = int(ceil(y - radius));
|
|
|
+ int max_x = int(floor(x + radius));
|
|
|
+ int max_y = int(floor(y + radius));
|
|
|
+
|
|
|
+ // We first construct a mini-grid of x_size by y_size integer values
|
|
|
+ // to index into the main table. This indirection allows us to fill
|
|
|
+ // in the holes in the mini-grid with the nearest known values
|
|
|
+ // before we compute the average.
|
|
|
+ int x_size = max_x - min_x + 1;
|
|
|
+ int y_size = max_y - min_y + 1;
|
|
|
+ int size = x_size * y_size;
|
|
|
+ if (size == 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ pvector<MiniGridCell> mini_grid;
|
|
|
+ mini_grid.insert(mini_grid.end(), size, MiniGridCell());
|
|
|
+
|
|
|
+ // Now collect the known data points and apply them to the
|
|
|
+ // mini-grid.
|
|
|
+ min_x = max(min_x, 0);
|
|
|
+ min_y = max(min_y, 0);
|
|
|
+ max_x = min(max_x, _x_size - 1);
|
|
|
+ max_y = min(max_y, _y_size - 1);
|
|
|
+
|
|
|
+ bool got_any = false;
|
|
|
+ int xi, yi;
|
|
|
+ for (yi = min_y; yi <= max_y; ++yi) {
|
|
|
+ for (xi = min_x; xi <= max_x; ++xi) {
|
|
|
+ const LPoint3f &p = _table[yi * _x_size + xi];
|
|
|
+ if (_zero_special && p == LPoint3f::zero()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ int gi = (yi - min_y) * y_size + (xi - min_x);
|
|
|
+ nassertr(gi >= 0 && gi < size, false);
|
|
|
+ mini_grid[gi]._ti = yi * _x_size + xi;
|
|
|
+ mini_grid[gi]._dist = 0;
|
|
|
+ got_any = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!got_any) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Now recursively fill in any missing holes in the mini-grid.
|
|
|
+ for (yi = 0; yi < y_size; ++yi) {
|
|
|
+ for (xi = 0; xi < x_size; ++xi) {
|
|
|
+ int gi = yi * x_size + xi;
|
|
|
+ if (mini_grid[gi]._dist == 0) {
|
|
|
+ int ti = mini_grid[gi]._ti;
|
|
|
+ fill_mini_grid(&mini_grid[0], x_size, y_size, xi + 1, yi, 1, ti);
|
|
|
+ fill_mini_grid(&mini_grid[0], x_size, y_size, xi - 1, yi, 1, ti);
|
|
|
+ fill_mini_grid(&mini_grid[0], x_size, y_size, xi, yi + 1, 1, ti);
|
|
|
+ fill_mini_grid(&mini_grid[0], x_size, y_size, xi, yi - 1, 1, ti);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Now the mini-grid is completely filled, so we can compute the
|
|
|
+ // average.
|
|
|
+ for (int gi = 0; gi < size; ++gi) {
|
|
|
+ int ti = mini_grid[gi]._ti;
|
|
|
+ nassertr(ti >= 0 && ti < (int)_table.size(), false);
|
|
|
+ result += _table[ti];
|
|
|
+ }
|
|
|
+
|
|
|
+ result /= float(size);
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::calc_min_max
|
|
|
+// Access: Published
|
|
|
+// Description: Calculates the minimum and maximum x, y, and z depth
|
|
|
+// component values, representing the bounding box of
|
|
|
+// depth values, and places them in the indicated
|
|
|
+// vectors. Returns true if successful, false if the
|
|
|
+// mesh contains no points.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+bool PfmFile::
|
|
|
+calc_min_max(LVecBase3f &min_depth, LVecBase3f &max_depth) const {
|
|
|
+ bool any_points = false;
|
|
|
+
|
|
|
+ min_depth = LVecBase3f::zero();
|
|
|
+ max_depth = LVecBase3f::zero();
|
|
|
+
|
|
|
+ Table::const_iterator ti;
|
|
|
+ for (ti = _table.begin(); ti != _table.end(); ++ti) {
|
|
|
+ const LPoint3f &p = (*ti);
|
|
|
+ if (_zero_special && p == LPoint3f::zero()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!any_points) {
|
|
|
+ min_depth = p;
|
|
|
+ max_depth = p;
|
|
|
+ any_points = true;
|
|
|
+ } else {
|
|
|
+ min_depth[0] = min(min_depth[0], p[0]);
|
|
|
+ min_depth[1] = min(min_depth[1], p[1]);
|
|
|
+ min_depth[2] = min(min_depth[2], p[2]);
|
|
|
+ max_depth[0] = max(max_depth[0], p[0]);
|
|
|
+ max_depth[1] = max(max_depth[1], p[1]);
|
|
|
+ max_depth[2] = max(max_depth[2], p[2]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return any_points;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::resize
|
|
|
+// Access: Published
|
|
|
+// Description: Applies a simple filter to resample the pfm file
|
|
|
+// in-place to the indicated size. Don't confuse this
|
|
|
+// with applying a scale to all of the points via
|
|
|
+// xform().
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+resize(int new_x_size, int new_y_size) {
|
|
|
+ if (_x_size == 0 || _y_size == 0 || new_x_size == 0 || new_y_size == 0) {
|
|
|
+ clear(new_x_size, new_y_size, _num_channels);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (new_x_size == _x_size && new_y_size == _y_size) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ Table new_data;
|
|
|
+ new_data.reserve(new_x_size * new_y_size);
|
|
|
+
|
|
|
+ double from_x0, from_x1, from_y0, from_y1;
|
|
|
+
|
|
|
+ double x_scale = (double)(_x_size - 1) / (double)(new_x_size - 1);
|
|
|
+ double y_scale = (double)(_y_size - 1) / (double)(new_y_size - 1);
|
|
|
+
|
|
|
+ from_y0 = 0.0;
|
|
|
+ for (int to_y = 0; to_y < new_y_size; ++to_y) {
|
|
|
+ from_y1 = (to_y + 0.5) * y_scale;
|
|
|
+ from_y1 = min(from_y1, (double) _y_size);
|
|
|
+
|
|
|
+ from_x0 = 0.0;
|
|
|
+ for (int to_x = 0; to_x < new_x_size; ++to_x) {
|
|
|
+ from_x1 = (to_x + 0.5) * x_scale;
|
|
|
+ from_x1 = min(from_x1, (double) _x_size);
|
|
|
+
|
|
|
+ // Now the box from (from_x0, from_y0) - (from_x1, from_y1)
|
|
|
+ // but not including (from_x1, from_y1) maps to the pixel (to_x, to_y).
|
|
|
+ LPoint3f result;
|
|
|
+ box_filter_region(result, from_x0, from_y0, from_x1, from_y1);
|
|
|
+ new_data.push_back(result);
|
|
|
+
|
|
|
+ from_x0 = from_x1;
|
|
|
+ }
|
|
|
+ from_y0 = from_y1;
|
|
|
+ }
|
|
|
+
|
|
|
+ _table.swap(new_data);
|
|
|
+ _x_size = new_x_size;
|
|
|
+ _y_size = new_y_size;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::reverse_rows
|
|
|
+// Access: Published
|
|
|
+// Description: Performs an in-place reversal of the row (y) data.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+reverse_rows() {
|
|
|
+ nassertv(is_valid());
|
|
|
+
|
|
|
+ Table reversed;
|
|
|
+ reversed.reserve(_table.size());
|
|
|
+ for (int yi = 0; yi < _y_size; ++yi) {
|
|
|
+ int source_yi = _y_size - 1 - yi;
|
|
|
+ int start = source_yi * _x_size;
|
|
|
+ reversed.insert(reversed.end(),
|
|
|
+ _table.begin() + start, _table.begin() + start + _x_size);
|
|
|
+ }
|
|
|
+
|
|
|
+ nassertv(reversed.size() == _table.size());
|
|
|
+ _table.swap(reversed);
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::xform
|
|
|
+// Access: Published
|
|
|
+// Description: Applies the indicated transform matrix to all points
|
|
|
+// in-place.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+xform(const LMatrix4f &transform) {
|
|
|
+ nassertv(is_valid());
|
|
|
+
|
|
|
+ Table::iterator ti;
|
|
|
+ for (ti = _table.begin(); ti != _table.end(); ++ti) {
|
|
|
+ if (_zero_special && (*ti) == LPoint3f::zero()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ (*ti) = (*ti) * transform;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::compute_planar_bounds
|
|
|
+// Access: Published
|
|
|
+// Description: Computes the minmax bounding volume of the points in
|
|
|
+// 3-D space, assuming the points represent a
|
|
|
+// mostly-planar surface.
|
|
|
+//
|
|
|
+// This algorithm works by sampling the (square)
|
|
|
+// sample_radius pixels at three of the four point_dist
|
|
|
+// corners around the center (cx - pd, cx + pd) and so
|
|
|
+// on, to determine the plane of the surface. Then all
|
|
|
+// of the points are projected into that plane and the
|
|
|
+// bounding volume within that plane is determined.
|
|
|
+//
|
|
|
+// point_dist and sample_radius are in UV space, i.e. in
|
|
|
+// the range 0..1.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+PT(BoundingHexahedron) PfmFile::
|
|
|
+compute_planar_bounds(double point_dist, double sample_radius) const {
|
|
|
+ LPoint3f p0, p1, p2;
|
|
|
+ compute_sample_point(p0, 0.5 + point_dist, 0.5 - point_dist, sample_radius);
|
|
|
+ compute_sample_point(p1, 0.5 + point_dist, 0.5 + point_dist, sample_radius);
|
|
|
+ compute_sample_point(p2, 0.5 - point_dist, 0.5 + point_dist, sample_radius);
|
|
|
+
|
|
|
+ LPoint3f normal;
|
|
|
+
|
|
|
+ normal[0] = p0[1] * p1[2] - p0[2] * p1[1];
|
|
|
+ normal[1] = p0[2] * p1[0] - p0[0] * p1[2];
|
|
|
+ normal[2] = p0[0] * p1[1] - p0[1] * p1[0];
|
|
|
+
|
|
|
+ normal[0] += p1[1] * p2[2] - p1[2] * p2[1];
|
|
|
+ normal[1] += p1[2] * p2[0] - p1[0] * p2[2];
|
|
|
+ normal[2] += p1[0] * p2[1] - p1[1] * p2[0];
|
|
|
+
|
|
|
+ normal[0] += p2[1] * p0[2] - p2[2] * p0[1];
|
|
|
+ normal[1] += p2[2] * p0[0] - p2[0] * p0[2];
|
|
|
+ normal[2] += p2[0] * p0[1] - p2[1] * p0[0];
|
|
|
+
|
|
|
+ normal.normalize();
|
|
|
+
|
|
|
+ // Compute the transform necessary to rotate all of the points into
|
|
|
+ // the Y = 0 plane.
|
|
|
+ LMatrix4f rotate;
|
|
|
+ look_at(rotate, normal, p1 - p0);
|
|
|
+
|
|
|
+ LMatrix4f rinv;
|
|
|
+ rinv.invert_from(rotate);
|
|
|
+
|
|
|
+ LPoint3f trans = p0 * rinv;
|
|
|
+ rinv.set_row(3, -trans);
|
|
|
+ rotate.invert_from(rinv);
|
|
|
+
|
|
|
+ // Now determine the minmax in the XZ plane.
|
|
|
+ float min_x, min_z, max_x, max_z;
|
|
|
+ bool got_point = false;
|
|
|
+ Table::const_iterator ti;
|
|
|
+ for (ti = _table.begin(); ti != _table.end(); ++ti) {
|
|
|
+ if (_zero_special && (*ti) == LPoint3f::zero()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ LPoint3f point = (*ti) * rinv;
|
|
|
+ if (!got_point) {
|
|
|
+ min_x = point[0];
|
|
|
+ min_z = point[2];
|
|
|
+ max_x = point[0];
|
|
|
+ max_z = point[2];
|
|
|
+ got_point = true;
|
|
|
+ } else {
|
|
|
+ min_x = min(min_x, point[0]);
|
|
|
+ min_z = min(min_z, point[2]);
|
|
|
+ max_x = max(max_x, point[0]);
|
|
|
+ max_z = max(max_z, point[2]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ PT(BoundingHexahedron) bounds = new BoundingHexahedron
|
|
|
+ (LPoint3f(min_x, 0, min_z), LPoint3f(max_x, 0, min_z),
|
|
|
+ LPoint3f(min_x, 0, max_z), LPoint3f(max_x, 0, max_z),
|
|
|
+ LPoint3f(min_x, 0, min_z), LPoint3f(max_x, 0, min_z),
|
|
|
+ LPoint3f(min_x, 0, max_z), LPoint3f(max_x, 0, max_z));
|
|
|
+
|
|
|
+ // Rotate the bounding volume back into the original space of the
|
|
|
+ // screen.
|
|
|
+ bounds->xform(rotate);
|
|
|
+
|
|
|
+ return bounds;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::generate_vis_points
|
|
|
+// Access: Published
|
|
|
+// Description: Creates a point cloud with the points of the pfm as
|
|
|
+// 3-d coordinates in space, and texture coordinates
|
|
|
+// ranging from 0 .. 1 based on the position within the
|
|
|
+// pfm grid.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+NodePath PfmFile::
|
|
|
+generate_vis_points() const {
|
|
|
+ nassertr(is_valid(), NodePath());
|
|
|
+
|
|
|
+ CPT(GeomVertexFormat) format;
|
|
|
+ if (_vis_inverse) {
|
|
|
+ // We need a 3-d texture coordinate if we're inverted the vis.
|
|
|
+ GeomVertexArrayFormat *v3t3 = new GeomVertexArrayFormat
|
|
|
+ (InternalName::get_vertex(), 3,
|
|
|
+ Geom::NT_float32, Geom::C_point,
|
|
|
+ InternalName::get_texcoord(), 3,
|
|
|
+ Geom::NT_float32, Geom::C_texcoord);
|
|
|
+ format = GeomVertexFormat::register_format(v3t3);
|
|
|
+ } else {
|
|
|
+ format = GeomVertexFormat::get_v3t2();
|
|
|
+ }
|
|
|
+
|
|
|
+ PT(GeomVertexData) vdata = new GeomVertexData
|
|
|
+ ("points", format, Geom::UH_static);
|
|
|
+ vdata->set_num_rows(_x_size * _y_size);
|
|
|
+ GeomVertexWriter vertex(vdata, InternalName::get_vertex());
|
|
|
+ GeomVertexWriter texcoord(vdata, InternalName::get_texcoord());
|
|
|
+
|
|
|
+ for (int yi = 0; yi < _y_size; ++yi) {
|
|
|
+ for (int xi = 0; xi < _x_size; ++xi) {
|
|
|
+ const LPoint3f &point = get_point(xi, yi);
|
|
|
+ LPoint2f uv(float(xi) / float(_x_size - 1),
|
|
|
+ float(yi) / float(_y_size - 1));
|
|
|
+ if (_vis_inverse) {
|
|
|
+ vertex.add_data2f(uv);
|
|
|
+ texcoord.add_data3f(point);
|
|
|
+ } else {
|
|
|
+ vertex.add_data3f(point);
|
|
|
+ texcoord.add_data2f(uv);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ PT(Geom) geom = new Geom(vdata);
|
|
|
+ PT(GeomPoints) points = new GeomPoints(Geom::UH_static);
|
|
|
+ points->add_next_vertices(_x_size * _y_size);
|
|
|
+ geom->add_primitive(points);
|
|
|
+
|
|
|
+ PT(GeomNode) gnode = new GeomNode("");
|
|
|
+ gnode->add_geom(geom);
|
|
|
+ return NodePath(gnode);
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::generate_vis_mesh
|
|
|
+// Access: Published
|
|
|
+// Description: Creates a triangle mesh with the points of the pfm as
|
|
|
+// 3-d coordinates in space, and texture coordinates
|
|
|
+// ranging from 0 .. 1 based on the position within the
|
|
|
+// pfm grid.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+NodePath PfmFile::
|
|
|
+generate_vis_mesh(bool double_sided) const {
|
|
|
+ nassertr(is_valid(), NodePath());
|
|
|
+
|
|
|
+ PT(GeomNode) gnode = new GeomNode("");
|
|
|
+
|
|
|
+ PT(Geom) geom1 = make_vis_mesh_geom(false);
|
|
|
+ gnode->add_geom(geom1);
|
|
|
+
|
|
|
+ if (double_sided) {
|
|
|
+ PT(Geom) geom2 = make_vis_mesh_geom(true);
|
|
|
+ gnode->add_geom(geom2);
|
|
|
+ }
|
|
|
+
|
|
|
+ return NodePath(gnode);
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::make_vis_mesh_geom
|
|
|
+// Access: Private
|
|
|
+// Description: Returns a triangle mesh for the pfm. If inverted is
|
|
|
+// true, the mesh is facing the opposite direction.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+PT(Geom) PfmFile::
|
|
|
+make_vis_mesh_geom(bool inverted) const {
|
|
|
+
|
|
|
+ CPT(GeomVertexFormat) format;
|
|
|
+ if (_vis_inverse) {
|
|
|
+ // We need a 3-d texture coordinate if we're inverted the vis.
|
|
|
+ // But we don't need normals in that case.
|
|
|
+ GeomVertexArrayFormat *v3t3 = new GeomVertexArrayFormat
|
|
|
+ (InternalName::get_vertex(), 3,
|
|
|
+ Geom::NT_float32, Geom::C_point,
|
|
|
+ InternalName::get_texcoord(), 3,
|
|
|
+ Geom::NT_float32, Geom::C_texcoord);
|
|
|
+ format = GeomVertexFormat::register_format(v3t3);
|
|
|
+ } else {
|
|
|
+ // Otherwise, we only need a 2-d texture coordinate, and we do
|
|
|
+ // want normals.
|
|
|
+ format = GeomVertexFormat::get_v3n3t2();
|
|
|
+ }
|
|
|
+
|
|
|
+ PT(GeomVertexData) vdata = new GeomVertexData
|
|
|
+ ("mesh", format, Geom::UH_static);
|
|
|
+ int num_vertices = _x_size * _y_size;
|
|
|
+ vdata->set_num_rows(num_vertices);
|
|
|
+ GeomVertexWriter vertex(vdata, InternalName::get_vertex());
|
|
|
+ GeomVertexWriter normal(vdata, InternalName::get_normal());
|
|
|
+ GeomVertexWriter texcoord(vdata, InternalName::get_texcoord());
|
|
|
+
|
|
|
+ for (int yi = 0; yi < _y_size; ++yi) {
|
|
|
+ for (int xi = 0; xi < _x_size; ++xi) {
|
|
|
+ const LPoint3f &point = get_point(xi, yi);
|
|
|
+ LPoint2f uv(float(xi) / float(_x_size - 1),
|
|
|
+ float(yi) / float(_y_size - 1));
|
|
|
+
|
|
|
+ if (_vis_inverse) {
|
|
|
+ vertex.add_data2f(uv);
|
|
|
+ texcoord.add_data3f(point);
|
|
|
+ } else {
|
|
|
+ vertex.add_data3f(point);
|
|
|
+ texcoord.add_data2f(uv);
|
|
|
+
|
|
|
+ // Calculate the normal based on two neighboring vertices.
|
|
|
+ LPoint3f v[3];
|
|
|
+ v[0] = get_point(xi, yi);
|
|
|
+ if (xi + 1 < _x_size) {
|
|
|
+ v[1] = get_point(xi + 1, yi);
|
|
|
+ } else {
|
|
|
+ v[1] = v[0];
|
|
|
+ v[0] = get_point(xi - 1, yi);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (yi + 1 < _y_size) {
|
|
|
+ v[2] = get_point(xi, yi + 1);
|
|
|
+ } else {
|
|
|
+ v[2] = v[0];
|
|
|
+ v[0] = get_point(xi, yi - 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ LVector3f n = LVector3f::zero();
|
|
|
+ for (int i = 0; i < 3; ++i) {
|
|
|
+ const LPoint3f &v0 = v[i];
|
|
|
+ const LPoint3f &v1 = v[(i + 1) % 3];
|
|
|
+ n[0] += v0[1] * v1[2] - v0[2] * v1[1];
|
|
|
+ n[1] += v0[2] * v1[0] - v0[0] * v1[2];
|
|
|
+ n[2] += v0[0] * v1[1] - v0[1] * v1[0];
|
|
|
+ }
|
|
|
+ n.normalize();
|
|
|
+ if (inverted) {
|
|
|
+ n = -n;
|
|
|
+ }
|
|
|
+ normal.add_data3f(n);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ PT(Geom) geom = new Geom(vdata);
|
|
|
+ PT(GeomTriangles) tris = new GeomTriangles(Geom::UH_static);
|
|
|
+
|
|
|
+ if (num_vertices > 0xffff) {
|
|
|
+ // We need 32-bit indices.
|
|
|
+ tris->set_index_type(Geom::NT_uint32);
|
|
|
+ }
|
|
|
+
|
|
|
+ // We get direct access to the vertices data so we can speed things
|
|
|
+ // up by pre-specifying the number of vertices. Need a better
|
|
|
+ // interface to do this same thing using the high-level access
|
|
|
+ // methods.
|
|
|
+ int num_indices = (_x_size - 1) * (_y_size - 1) * 6;
|
|
|
+
|
|
|
+ PT(GeomVertexArrayData) indices = tris->modify_vertices();
|
|
|
+ indices->set_num_rows(num_indices);
|
|
|
+ GeomVertexWriter index(indices, 0);
|
|
|
+
|
|
|
+ int actual_num_indices = 0;
|
|
|
+ for (int yi = 0; yi < _y_size - 1; ++yi) {
|
|
|
+ for (int xi = 0; xi < _x_size - 1; ++xi) {
|
|
|
+
|
|
|
+ if (_zero_special) {
|
|
|
+ if (get_point(xi, yi) == LPoint3f::zero() ||
|
|
|
+ get_point(xi, yi + 1) == LPoint3f::zero() ||
|
|
|
+ get_point(xi + 1, yi + 1) == LPoint3f::zero() ||
|
|
|
+ get_point(xi + 1, yi) == LPoint3f::zero()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ int vi0 = ((xi) + (yi) * _x_size);
|
|
|
+ int vi1 = ((xi) + (yi + 1) * _x_size);
|
|
|
+ int vi2 = ((xi + 1) + (yi + 1) * _x_size);
|
|
|
+ int vi3 = ((xi + 1) + (yi) * _x_size);
|
|
|
+
|
|
|
+ if (inverted) {
|
|
|
+ index.add_data1i(vi2);
|
|
|
+ index.add_data1i(vi0);
|
|
|
+ index.add_data1i(vi1);
|
|
|
+
|
|
|
+ index.add_data1i(vi3);
|
|
|
+ index.add_data1i(vi0);
|
|
|
+ index.add_data1i(vi2);
|
|
|
+ } else {
|
|
|
+ index.add_data1i(vi2);
|
|
|
+ index.add_data1i(vi1);
|
|
|
+ index.add_data1i(vi0);
|
|
|
+
|
|
|
+ index.add_data1i(vi3);
|
|
|
+ index.add_data1i(vi2);
|
|
|
+ index.add_data1i(vi0);
|
|
|
+ }
|
|
|
+
|
|
|
+ actual_num_indices += 6;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ indices->set_num_rows(actual_num_indices);
|
|
|
+ geom->add_primitive(tris);
|
|
|
+
|
|
|
+ return geom;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::compute_sample_point
|
|
|
+// Access: Private
|
|
|
+// Description: Computes the average of all the point within
|
|
|
+// sample_radius (manhattan distance) and the indicated
|
|
|
+// point.
|
|
|
+//
|
|
|
+// Unlike box_filter_*(), these point values are given
|
|
|
+// in UV space, in the range 0..1.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+compute_sample_point(LPoint3f &result,
|
|
|
+ double x, double y, double sample_radius) const {
|
|
|
+ x *= _x_size;
|
|
|
+ y *= _y_size;
|
|
|
+ double xr = sample_radius * _x_size;
|
|
|
+ double yr = sample_radius * _y_size;
|
|
|
+ box_filter_region(result, x - xr, y - yr, x + xr, y + yr);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::box_filter_region
|
|
|
+// Access: Private
|
|
|
+// Description: Averages all the points in the rectangle from x0
|
|
|
+// .. y0 to x1 .. y1 into result. The region may be
|
|
|
+// defined by floating-point boundaries; the result will
|
|
|
+// be weighted by the degree of coverage of each
|
|
|
+// included point.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+box_filter_region(LPoint3f &result,
|
|
|
+ double x0, double y0, double x1, double y1) const {
|
|
|
+ result = LPoint3f::zero();
|
|
|
+ double coverage = 0.0;
|
|
|
+
|
|
|
+ assert(y0 >= 0.0 && y1 >= 0.0);
|
|
|
+
|
|
|
+ int y = (int)y0;
|
|
|
+ // Get the first (partial) row
|
|
|
+ box_filter_line(result, coverage, x0, y, x1, (double)(y+1)-y0);
|
|
|
+
|
|
|
+ int y_last = (int)y1;
|
|
|
+ if (y < y_last) {
|
|
|
+ y++;
|
|
|
+ while (y < y_last) {
|
|
|
+ // Get each consecutive (complete) row
|
|
|
+ box_filter_line(result, coverage, x0, y, x1, 1.0);
|
|
|
+ y++;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Get the final (partial) row
|
|
|
+ double y_contrib = y1 - (double)y_last;
|
|
|
+ if (y_contrib > 0.0001) {
|
|
|
+ box_filter_line(result, coverage, x0, y, x1, y_contrib);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (coverage != 0.0) {
|
|
|
+ result /= coverage;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::box_filter_line
|
|
|
+// Access: Private
|
|
|
+// Description:
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+box_filter_line(LPoint3f &result, double &coverage,
|
|
|
+ double x0, int y, double x1, double y_contrib) const {
|
|
|
+ int x = (int)x0;
|
|
|
+ // Get the first (partial) xel
|
|
|
+ box_filter_point(result, coverage, x, y, (double)(x+1)-x0, y_contrib);
|
|
|
+
|
|
|
+ int x_last = (int)x1;
|
|
|
+ if (x < x_last) {
|
|
|
+ x++;
|
|
|
+ while (x < x_last) {
|
|
|
+ // Get each consecutive (complete) xel
|
|
|
+ box_filter_point(result, coverage, x, y, 1.0, y_contrib);
|
|
|
+ x++;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Get the final (partial) xel
|
|
|
+ double x_contrib = x1 - (double)x_last;
|
|
|
+ if (x_contrib > 0.0001) {
|
|
|
+ box_filter_point(result, coverage, x, y, x_contrib, y_contrib);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::box_filter_point
|
|
|
+// Access: Private
|
|
|
+// Description:
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+box_filter_point(LPoint3f &result, double &coverage,
|
|
|
+ int x, int y, double x_contrib, double y_contrib) const {
|
|
|
+ const LPoint3f &point = get_point(x, y);
|
|
|
+ if (_zero_special && point == LPoint3f::zero()) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ double contrib = x_contrib * y_contrib;
|
|
|
+ result += point * contrib;
|
|
|
+ coverage += contrib;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+// Function: PfmFile::fill_mini_grid
|
|
|
+// Access: Private
|
|
|
+// Description: A support function for calc_average_point(), this
|
|
|
+// recursively fills in the holes in the mini_grid data
|
|
|
+// with the index to the nearest value.
|
|
|
+////////////////////////////////////////////////////////////////////
|
|
|
+void PfmFile::
|
|
|
+fill_mini_grid(MiniGridCell *mini_grid, int x_size, int y_size,
|
|
|
+ int xi, int yi, int dist, int ti) const {
|
|
|
+ if (xi < 0 || xi >= x_size || yi < 0 || yi >= y_size) {
|
|
|
+ // Out of bounds.
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ int gi = yi * x_size + xi;
|
|
|
+ if (mini_grid[gi]._dist == -1 || mini_grid[gi]._dist > dist) {
|
|
|
+ // Here's an undefined value that we need to populate.
|
|
|
+ mini_grid[gi]._dist = dist;
|
|
|
+ mini_grid[gi]._ti = ti;
|
|
|
+ fill_mini_grid(mini_grid, x_size, y_size, xi + 1, yi, dist + 1, ti);
|
|
|
+ fill_mini_grid(mini_grid, x_size, y_size, xi - 1, yi, dist + 1, ti);
|
|
|
+ fill_mini_grid(mini_grid, x_size, y_size, xi, yi + 1, dist + 1, ti);
|
|
|
+ fill_mini_grid(mini_grid, x_size, y_size, xi, yi - 1, dist + 1, ti);
|
|
|
+ }
|
|
|
+}
|