|
|
@@ -85,7 +85,7 @@ child_integrate(Physical *physical,
|
|
|
LRotationf accum_quat(0, 0, 0, 0);
|
|
|
|
|
|
// set up the traversal stuff.
|
|
|
- ForceNode *force_node;
|
|
|
+ //////////////////////ForceNode *force_node;
|
|
|
AngularForceVector::const_iterator f_cur;
|
|
|
|
|
|
LRotationf f;
|
|
|
@@ -101,13 +101,14 @@ child_integrate(Physical *physical,
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
- force_node = cur_force->get_force_node();
|
|
|
+ /////////////////force_node = cur_force->get_force_node();
|
|
|
|
|
|
// now we go from force space to our object's space.
|
|
|
assert(index >= 0 && index < matrices.size());
|
|
|
- f = matrices[index++] * cur_force->get_quat(current_object);
|
|
|
+ //f = matrices[index++] * cur_force->get_quat(current_object);
|
|
|
+ f = cur_force->get_quat(current_object);
|
|
|
|
|
|
- // tally it into the accum vector, applying the inertial tensor.
|
|
|
+ // tally it into the accumulation quaternion
|
|
|
accum_quat += f;
|
|
|
}
|
|
|
|
|
|
@@ -121,16 +122,17 @@ child_integrate(Physical *physical,
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
- force_node = cur_force->get_force_node();
|
|
|
+ ///////////////force_node = cur_force->get_force_node();
|
|
|
|
|
|
// go from force space to object space
|
|
|
- assert(index >= 0 && index < matrices.size());
|
|
|
- f = matrices[index++] * cur_force->get_quat(current_object);
|
|
|
+ //assert(index >= 0 && index < matrices.size());
|
|
|
+ //f = matrices[index++] * cur_force->get_quat(current_object);
|
|
|
+ f = cur_force->get_quat(current_object);
|
|
|
|
|
|
- // tally it into the accum vectors
|
|
|
+ // tally it into the accumulation quaternion
|
|
|
accum_quat += f;
|
|
|
}
|
|
|
- assert(index == matrices.size());
|
|
|
+ //assert(index == matrices.size());
|
|
|
|
|
|
// apply the accumulated torque vector to the object's inertial tensor.
|
|
|
// this matrix represents how much force the object 'wants' applied to it
|
|
|
@@ -139,7 +141,8 @@ child_integrate(Physical *physical,
|
|
|
|
|
|
// derive this into the angular velocity vector.
|
|
|
LRotationf rot_quat = current_object->get_rotation();
|
|
|
- rot_quat += (LVecBase4f(accum_quat) * dt);
|
|
|
+ #if 0
|
|
|
+ rot_quat += accum_quat * dt;
|
|
|
|
|
|
if (rot_quat.normalize()) {
|
|
|
LOrientationf old_orientation = current_object->get_orientation();
|
|
|
@@ -150,6 +153,23 @@ child_integrate(Physical *physical,
|
|
|
current_object->set_orientation(new_orientation);
|
|
|
current_object->set_rotation(rot_quat);
|
|
|
}
|
|
|
+ #else
|
|
|
+ //accum_quat*=viscosityDamper;
|
|
|
+ LOrientationf orientation = current_object->get_orientation();
|
|
|
+
|
|
|
+ //accum_quat.normalize();
|
|
|
+ // x = x + v * t + 0.5 * a * t * t
|
|
|
+ orientation = orientation * ((rot_quat * dt) * (accum_quat * (0.5 * dt * dt)));
|
|
|
+ // v = v + a * t
|
|
|
+ rot_quat = rot_quat + (accum_quat * dt);
|
|
|
+
|
|
|
+ //if (rot_quat.normalize()) {
|
|
|
+ //if (orientation.normalize() && rot_quat.normalize()) {
|
|
|
+ // and write the results back.
|
|
|
+ current_object->set_orientation(orientation);
|
|
|
+ current_object->set_rotation(rot_quat);
|
|
|
+ //}
|
|
|
+ #endif
|
|
|
}
|
|
|
}
|
|
|
|