|
@@ -0,0 +1,912 @@
|
|
|
|
|
+/* See http://www.burtleburtle.net/bob/hash/ */
|
|
|
|
|
+
|
|
|
|
|
+/*
|
|
|
|
|
+-------------------------------------------------------------------------------
|
|
|
|
|
+lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
|
|
|
|
+
|
|
|
|
|
+These are functions for producing 32-bit hashes for hash table lookup.
|
|
|
|
|
+hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
|
|
|
|
|
+are externally useful functions. Routines to test the hash are included
|
|
|
|
|
+if SELF_TEST is defined. You can use this free for any purpose. It's in
|
|
|
|
|
+the public domain. It has no warranty.
|
|
|
|
|
+
|
|
|
|
|
+You probably want to use hashlittle(). hashlittle() and hashbig()
|
|
|
|
|
+hash byte arrays. hashlittle() is is faster than hashbig() on
|
|
|
|
|
+little-endian machines. Intel and AMD are little-endian machines.
|
|
|
|
|
+On second thought, you probably want hashlittle2(), which is identical to
|
|
|
|
|
+hashlittle() except it returns two 32-bit hashes for the price of one.
|
|
|
|
|
+You could implement hashbig2() if you wanted but I haven't bothered here.
|
|
|
|
|
+
|
|
|
|
|
+If you want to find a hash of, say, exactly 7 integers, do
|
|
|
|
|
+ a = i1; b = i2; c = i3;
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ a += i4; b += i5; c += i6;
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ a += i7;
|
|
|
|
|
+ final(a,b,c);
|
|
|
|
|
+then use c as the hash value. If you have a variable length array of
|
|
|
|
|
+4-byte integers to hash, use hashword(). If you have a byte array (like
|
|
|
|
|
+a character string), use hashlittle(). If you have several byte arrays, or
|
|
|
|
|
+a mix of things, see the comments above hashlittle().
|
|
|
|
|
+
|
|
|
|
|
+Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
|
|
|
|
|
+then mix those integers. This is fast (you can do a lot more thorough
|
|
|
|
|
+mixing with 12*3 instructions on 3 integers than you can with 3 instructions
|
|
|
|
|
+on 1 byte), but shoehorning those bytes into integers efficiently is messy.
|
|
|
|
|
+-------------------------------------------------------------------------------
|
|
|
|
|
+*/
|
|
|
|
|
+/*#define SELF_TEST 1*/
|
|
|
|
|
+
|
|
|
|
|
+#include "lookup3.h"
|
|
|
|
|
+
|
|
|
|
|
+#include <stdio.h>
|
|
|
|
|
+#include <stddef.h>
|
|
|
|
|
+#include <stdlib.h>
|
|
|
|
|
+#include <time.h>
|
|
|
|
|
+
|
|
|
|
|
+#ifdef WORDS_BIGENDIAN
|
|
|
|
|
+# define HASH_LITTLE_ENDIAN 0
|
|
|
|
|
+# define HASH_BIG_ENDIAN 1
|
|
|
|
|
+#else
|
|
|
|
|
+# define HASH_LITTLE_ENDIAN 1
|
|
|
|
|
+# define HASH_BIG_ENDIAN 0
|
|
|
|
|
+#endif
|
|
|
|
|
+
|
|
|
|
|
+#define hashsize(n) ((uint32_t)1<<(n))
|
|
|
|
|
+#define hashmask(n) (hashsize(n)-1)
|
|
|
|
|
+#define rot(x,k) (((x)<<(k)) ^ ((x)>>(32-(k))))
|
|
|
|
|
+
|
|
|
|
|
+/*
|
|
|
|
|
+-------------------------------------------------------------------------------
|
|
|
|
|
+mix -- mix 3 32-bit values reversibly.
|
|
|
|
|
+
|
|
|
|
|
+This is reversible, so any information in (a,b,c) before mix() is
|
|
|
|
|
+still in (a,b,c) after mix().
|
|
|
|
|
+
|
|
|
|
|
+If four pairs of (a,b,c) inputs are run through mix(), or through
|
|
|
|
|
+mix() in reverse, there are at least 32 bits of the output that
|
|
|
|
|
+are sometimes the same for one pair and different for another pair.
|
|
|
|
|
+This was tested for:
|
|
|
|
|
+* pairs that differed by one bit, by two bits, in any combination
|
|
|
|
|
+ of top bits of (a,b,c), or in any combination of bottom bits of
|
|
|
|
|
+ (a,b,c).
|
|
|
|
|
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|
|
|
|
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|
|
|
|
+ is commonly produced by subtraction) look like a single 1-bit
|
|
|
|
|
+ difference.
|
|
|
|
|
+* the base values were pseudorandom, all zero but one bit set, or
|
|
|
|
|
+ all zero plus a counter that starts at zero.
|
|
|
|
|
+
|
|
|
|
|
+Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
|
|
|
|
+satisfy this are
|
|
|
|
|
+ 4 6 8 16 19 4
|
|
|
|
|
+ 9 15 3 18 27 15
|
|
|
|
|
+ 14 9 3 7 17 3
|
|
|
|
|
+Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
|
|
|
|
+for "differ" defined as + with a one-bit base and a two-bit delta. I
|
|
|
|
|
+used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
|
|
|
|
+the operations, constants, and arrangements of the variables.
|
|
|
|
|
+
|
|
|
|
|
+This does not achieve avalanche. There are input bits of (a,b,c)
|
|
|
|
|
+that fail to affect some output bits of (a,b,c), especially of a. The
|
|
|
|
|
+most thoroughly mixed value is c, but it doesn't really even achieve
|
|
|
|
|
+avalanche in c.
|
|
|
|
|
+
|
|
|
|
|
+This allows some parallelism. Read-after-writes are good at doubling
|
|
|
|
|
+the number of bits affected, so the goal of mixing pulls in the opposite
|
|
|
|
|
+direction as the goal of parallelism. I did what I could. Rotates
|
|
|
|
|
+seem to cost as much as shifts on every machine I could lay my hands
|
|
|
|
|
+on, and rotates are much kinder to the top and bottom bits, so I used
|
|
|
|
|
+rotates.
|
|
|
|
|
+-------------------------------------------------------------------------------
|
|
|
|
|
+*/
|
|
|
|
|
+#define mix(a,b,c) \
|
|
|
|
|
+{ \
|
|
|
|
|
+ a -= c; a ^= rot(c, 4); c += b; \
|
|
|
|
|
+ b -= a; b ^= rot(a, 6); a += c; \
|
|
|
|
|
+ c -= b; c ^= rot(b, 8); b += a; \
|
|
|
|
|
+ a -= c; a ^= rot(c,16); c += b; \
|
|
|
|
|
+ b -= a; b ^= rot(a,19); a += c; \
|
|
|
|
|
+ c -= b; c ^= rot(b, 4); b += a; \
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+/*
|
|
|
|
|
+-------------------------------------------------------------------------------
|
|
|
|
|
+final -- final mixing of 3 32-bit values (a,b,c) into c
|
|
|
|
|
+
|
|
|
|
|
+Pairs of (a,b,c) values differing in only a few bits will usually
|
|
|
|
|
+produce values of c that look totally different. This was tested for
|
|
|
|
|
+* pairs that differed by one bit, by two bits, in any combination
|
|
|
|
|
+ of top bits of (a,b,c), or in any combination of bottom bits of
|
|
|
|
|
+ (a,b,c).
|
|
|
|
|
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|
|
|
|
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|
|
|
|
+ is commonly produced by subtraction) look like a single 1-bit
|
|
|
|
|
+ difference.
|
|
|
|
|
+* the base values were pseudorandom, all zero but one bit set, or
|
|
|
|
|
+ all zero plus a counter that starts at zero.
|
|
|
|
|
+
|
|
|
|
|
+These constants passed:
|
|
|
|
|
+ 14 11 25 16 4 14 24
|
|
|
|
|
+ 12 14 25 16 4 14 24
|
|
|
|
|
+and these came close:
|
|
|
|
|
+ 4 8 15 26 3 22 24
|
|
|
|
|
+ 10 8 15 26 3 22 24
|
|
|
|
|
+ 11 8 15 26 3 22 24
|
|
|
|
|
+-------------------------------------------------------------------------------
|
|
|
|
|
+*/
|
|
|
|
|
+#define final(a,b,c) \
|
|
|
|
|
+{ \
|
|
|
|
|
+ c ^= b; c -= rot(b,14); \
|
|
|
|
|
+ a ^= c; a -= rot(c,11); \
|
|
|
|
|
+ b ^= a; b -= rot(a,25); \
|
|
|
|
|
+ c ^= b; c -= rot(b,16); \
|
|
|
|
|
+ a ^= c; a -= rot(c,4); \
|
|
|
|
|
+ b ^= a; b -= rot(a,14); \
|
|
|
|
|
+ c ^= b; c -= rot(b,24); \
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+/*
|
|
|
|
|
+--------------------------------------------------------------------
|
|
|
|
|
+ This works on all machines. To be useful, it requires
|
|
|
|
|
+ -- that the key be an array of PN_uint32's, and
|
|
|
|
|
+ -- that the length be the number of PN_uint32's in the key
|
|
|
|
|
+
|
|
|
|
|
+ The function hashword() is identical to hashlittle() on little-endian
|
|
|
|
|
+ machines, and identical to hashbig() on big-endian machines,
|
|
|
|
|
+ except that the length has to be measured in PN_uint32s rather than in
|
|
|
|
|
+ bytes. hashlittle() is more complicated than hashword() only because
|
|
|
|
|
+ hashlittle() has to dance around fitting the key bytes into registers.
|
|
|
|
|
+--------------------------------------------------------------------
|
|
|
|
|
+*/
|
|
|
|
|
+PN_uint32 hashword(
|
|
|
|
|
+const PN_uint32 *k, /* the key, an array of PN_uint32 values */
|
|
|
|
|
+size_t length, /* the length of the key, in PN_uint32s */
|
|
|
|
|
+PN_uint32 initval) /* the previous hash, or an arbitrary value */
|
|
|
|
|
+{
|
|
|
|
|
+ PN_uint32 a,b,c;
|
|
|
|
|
+
|
|
|
|
|
+ /* Set up the internal state */
|
|
|
|
|
+ a = b = c = 0xdeadbeef + (((PN_uint32)length)<<2) + initval;
|
|
|
|
|
+
|
|
|
|
|
+ /*------------------------------------------------- handle most of the key */
|
|
|
|
|
+ while (length > 3)
|
|
|
|
|
+ {
|
|
|
|
|
+ a += k[0];
|
|
|
|
|
+ b += k[1];
|
|
|
|
|
+ c += k[2];
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ length -= 3;
|
|
|
|
|
+ k += 3;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ /*------------------------------------------- handle the last 3 PN_uint32's */
|
|
|
|
|
+ switch(length) /* all the case statements fall through */
|
|
|
|
|
+ {
|
|
|
|
|
+ case 3 : c+=k[2];
|
|
|
|
|
+ case 2 : b+=k[1];
|
|
|
|
|
+ case 1 : a+=k[0];
|
|
|
|
|
+ final(a,b,c);
|
|
|
|
|
+ case 0: /* case 0: nothing left to add */
|
|
|
|
|
+ break;
|
|
|
|
|
+ }
|
|
|
|
|
+ /*------------------------------------------------------ report the result */
|
|
|
|
|
+ return c;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+/*
|
|
|
|
|
+-------------------------------------------------------------------------------
|
|
|
|
|
+hashlittle() -- hash a variable-length key into a 32-bit value
|
|
|
|
|
+ k : the key (the unaligned variable-length array of bytes)
|
|
|
|
|
+ length : the length of the key, counting by bytes
|
|
|
|
|
+ initval : can be any 4-byte value
|
|
|
|
|
+Returns a 32-bit value. Every bit of the key affects every bit of
|
|
|
|
|
+the return value. Two keys differing by one or two bits will have
|
|
|
|
|
+totally different hash values.
|
|
|
|
|
+
|
|
|
|
|
+The best hash table sizes are powers of 2. There is no need to do
|
|
|
|
|
+mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
|
|
|
|
+use a bitmask. For example, if you need only 10 bits, do
|
|
|
|
|
+ h = (h & hashmask(10));
|
|
|
|
|
+In which case, the hash table should have hashsize(10) elements.
|
|
|
|
|
+
|
|
|
|
|
+If you are hashing n strings (PN_uint8 **)k, do it like this:
|
|
|
|
|
+ for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
|
|
|
|
|
+
|
|
|
|
|
+By Bob Jenkins, 2006. [email protected]. You may use this
|
|
|
|
|
+code any way you wish, private, educational, or commercial. It's free.
|
|
|
|
|
+
|
|
|
|
|
+Use for hash table lookup, or anything where one collision in 2^^32 is
|
|
|
|
|
+acceptable. Do NOT use for cryptographic purposes.
|
|
|
|
|
+-------------------------------------------------------------------------------
|
|
|
|
|
+*/
|
|
|
|
|
+
|
|
|
|
|
+PN_uint32 hashlittle( const void *key, size_t length, PN_uint32 initval)
|
|
|
|
|
+{
|
|
|
|
|
+ PN_uint32 a,b,c; /* internal state */
|
|
|
|
|
+ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
|
|
|
|
|
+
|
|
|
|
|
+ /* Set up the internal state */
|
|
|
|
|
+ a = b = c = 0xdeadbeef + ((PN_uint32)length) + initval;
|
|
|
|
|
+
|
|
|
|
|
+ u.ptr = key;
|
|
|
|
|
+ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
|
|
|
|
+ const PN_uint32 *k = key; /* read 32-bit chunks */
|
|
|
|
|
+#ifdef VALGRIND
|
|
|
|
|
+ const PN_uint8 *k8;
|
|
|
|
|
+#endif
|
|
|
|
|
+
|
|
|
|
|
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
|
|
|
|
+ while (length > 12)
|
|
|
|
|
+ {
|
|
|
|
|
+ a += k[0];
|
|
|
|
|
+ b += k[1];
|
|
|
|
|
+ c += k[2];
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ length -= 12;
|
|
|
|
|
+ k += 3;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ /*----------------------------- handle the last (probably partial) block */
|
|
|
|
|
+ /*
|
|
|
|
|
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
|
|
|
|
|
+ * then masks off the part it's not allowed to read. Because the
|
|
|
|
|
+ * string is aligned, the masked-off tail is in the same word as the
|
|
|
|
|
+ * rest of the string. Every machine with memory protection I've seen
|
|
|
|
|
+ * does it on word boundaries, so is OK with this. But VALGRIND will
|
|
|
|
|
+ * still catch it and complain. The masking trick does make the hash
|
|
|
|
|
+ * noticably faster for short strings (like English words).
|
|
|
|
|
+ */
|
|
|
|
|
+#ifndef VALGRIND
|
|
|
|
|
+
|
|
|
|
|
+ switch(length)
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
|
|
|
|
+ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
|
|
|
|
+ case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
|
|
|
|
+ case 4 : a+=k[0]; break;
|
|
|
|
|
+ case 3 : a+=k[0]&0xffffff; break;
|
|
|
|
|
+ case 2 : a+=k[0]&0xffff; break;
|
|
|
|
|
+ case 1 : a+=k[0]&0xff; break;
|
|
|
|
|
+ case 0 : return c; /* zero length strings require no mixing */
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+#else /* make valgrind happy */
|
|
|
|
|
+
|
|
|
|
|
+ k8 = (const PN_uint8 *)k;
|
|
|
|
|
+ switch(length)
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 11: c+=((PN_uint32)k8[10])<<16; /* fall through */
|
|
|
|
|
+ case 10: c+=((PN_uint32)k8[9])<<8; /* fall through */
|
|
|
|
|
+ case 9 : c+=k8[8]; /* fall through */
|
|
|
|
|
+ case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 7 : b+=((PN_uint32)k8[6])<<16; /* fall through */
|
|
|
|
|
+ case 6 : b+=((PN_uint32)k8[5])<<8; /* fall through */
|
|
|
|
|
+ case 5 : b+=k8[4]; /* fall through */
|
|
|
|
|
+ case 4 : a+=k[0]; break;
|
|
|
|
|
+ case 3 : a+=((PN_uint32)k8[2])<<16; /* fall through */
|
|
|
|
|
+ case 2 : a+=((PN_uint32)k8[1])<<8; /* fall through */
|
|
|
|
|
+ case 1 : a+=k8[0]; break;
|
|
|
|
|
+ case 0 : return c;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+#endif /* !valgrind */
|
|
|
|
|
+
|
|
|
|
|
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
|
|
|
|
|
+ const PN_uint16 *k = key; /* read 16-bit chunks */
|
|
|
|
|
+ const PN_uint8 *k8;
|
|
|
|
|
+
|
|
|
|
|
+ /*--------------- all but last block: aligned reads and different mixing */
|
|
|
|
|
+ while (length > 12)
|
|
|
|
|
+ {
|
|
|
|
|
+ a += k[0] + (((PN_uint32)k[1])<<16);
|
|
|
|
|
+ b += k[2] + (((PN_uint32)k[3])<<16);
|
|
|
|
|
+ c += k[4] + (((PN_uint32)k[5])<<16);
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ length -= 12;
|
|
|
|
|
+ k += 6;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ /*----------------------------- handle the last (probably partial) block */
|
|
|
|
|
+ k8 = (const PN_uint8 *)k;
|
|
|
|
|
+ switch(length)
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=k[4]+(((PN_uint32)k[5])<<16);
|
|
|
|
|
+ b+=k[2]+(((PN_uint32)k[3])<<16);
|
|
|
|
|
+ a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 11: c+=((PN_uint32)k8[10])<<16; /* fall through */
|
|
|
|
|
+ case 10: c+=k[4];
|
|
|
|
|
+ b+=k[2]+(((PN_uint32)k[3])<<16);
|
|
|
|
|
+ a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 9 : c+=k8[8]; /* fall through */
|
|
|
|
|
+ case 8 : b+=k[2]+(((PN_uint32)k[3])<<16);
|
|
|
|
|
+ a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 7 : b+=((PN_uint32)k8[6])<<16; /* fall through */
|
|
|
|
|
+ case 6 : b+=k[2];
|
|
|
|
|
+ a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 5 : b+=k8[4]; /* fall through */
|
|
|
|
|
+ case 4 : a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 3 : a+=((PN_uint32)k8[2])<<16; /* fall through */
|
|
|
|
|
+ case 2 : a+=k[0];
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 1 : a+=k8[0];
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 0 : return c; /* zero length requires no mixing */
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ } else { /* need to read the key one byte at a time */
|
|
|
|
|
+ const PN_uint8 *k = key;
|
|
|
|
|
+
|
|
|
|
|
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
|
|
|
|
+ while (length > 12)
|
|
|
|
|
+ {
|
|
|
|
|
+ a += k[0];
|
|
|
|
|
+ a += ((PN_uint32)k[1])<<8;
|
|
|
|
|
+ a += ((PN_uint32)k[2])<<16;
|
|
|
|
|
+ a += ((PN_uint32)k[3])<<24;
|
|
|
|
|
+ b += k[4];
|
|
|
|
|
+ b += ((PN_uint32)k[5])<<8;
|
|
|
|
|
+ b += ((PN_uint32)k[6])<<16;
|
|
|
|
|
+ b += ((PN_uint32)k[7])<<24;
|
|
|
|
|
+ c += k[8];
|
|
|
|
|
+ c += ((PN_uint32)k[9])<<8;
|
|
|
|
|
+ c += ((PN_uint32)k[10])<<16;
|
|
|
|
|
+ c += ((PN_uint32)k[11])<<24;
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ length -= 12;
|
|
|
|
|
+ k += 12;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ /*-------------------------------- last block: affect all 32 bits of (c) */
|
|
|
|
|
+ switch(length) /* all the case statements fall through */
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=((PN_uint32)k[11])<<24;
|
|
|
|
|
+ case 11: c+=((PN_uint32)k[10])<<16;
|
|
|
|
|
+ case 10: c+=((PN_uint32)k[9])<<8;
|
|
|
|
|
+ case 9 : c+=k[8];
|
|
|
|
|
+ case 8 : b+=((PN_uint32)k[7])<<24;
|
|
|
|
|
+ case 7 : b+=((PN_uint32)k[6])<<16;
|
|
|
|
|
+ case 6 : b+=((PN_uint32)k[5])<<8;
|
|
|
|
|
+ case 5 : b+=k[4];
|
|
|
|
|
+ case 4 : a+=((PN_uint32)k[3])<<24;
|
|
|
|
|
+ case 3 : a+=((PN_uint32)k[2])<<16;
|
|
|
|
|
+ case 2 : a+=((PN_uint32)k[1])<<8;
|
|
|
|
|
+ case 1 : a+=k[0];
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 0 : return c;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ final(a,b,c);
|
|
|
|
|
+ return c;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+/*
|
|
|
|
|
+ * hashlittle2: return 2 32-bit hash values
|
|
|
|
|
+ *
|
|
|
|
|
+ * This is identical to hashlittle(), except it returns two 32-bit hash
|
|
|
|
|
+ * values instead of just one. This is good enough for hash table
|
|
|
|
|
+ * lookup with 2^^64 buckets, or if you want a second hash if you're not
|
|
|
|
|
+ * happy with the first, or if you want a probably-unique 64-bit ID for
|
|
|
|
|
+ * the key. *pc is better mixed than *pb, so use *pc first. If you want
|
|
|
|
|
+ * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
|
|
|
|
|
+ */
|
|
|
|
|
+void hashlittle2(
|
|
|
|
|
+ const void *key, /* the key to hash */
|
|
|
|
|
+ size_t length, /* length of the key */
|
|
|
|
|
+ PN_uint32 *pc, /* IN: primary initval, OUT: primary hash */
|
|
|
|
|
+ PN_uint32 *pb) /* IN: secondary initval, OUT: secondary hash */
|
|
|
|
|
+{
|
|
|
|
|
+ PN_uint32 a,b,c; /* internal state */
|
|
|
|
|
+ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
|
|
|
|
|
+
|
|
|
|
|
+ /* Set up the internal state */
|
|
|
|
|
+ a = b = c = 0xdeadbeef + ((PN_uint32)length) + *pc;
|
|
|
|
|
+ c += *pb;
|
|
|
|
|
+
|
|
|
|
|
+ u.ptr = key;
|
|
|
|
|
+ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
|
|
|
|
+ const PN_uint32 *k = key; /* read 32-bit chunks */
|
|
|
|
|
+#ifdef VALGRIND
|
|
|
|
|
+ const PN_uint8 *k8;
|
|
|
|
|
+#endif
|
|
|
|
|
+
|
|
|
|
|
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
|
|
|
|
+ while (length > 12)
|
|
|
|
|
+ {
|
|
|
|
|
+ a += k[0];
|
|
|
|
|
+ b += k[1];
|
|
|
|
|
+ c += k[2];
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ length -= 12;
|
|
|
|
|
+ k += 3;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ /*----------------------------- handle the last (probably partial) block */
|
|
|
|
|
+ /*
|
|
|
|
|
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
|
|
|
|
|
+ * then masks off the part it's not allowed to read. Because the
|
|
|
|
|
+ * string is aligned, the masked-off tail is in the same word as the
|
|
|
|
|
+ * rest of the string. Every machine with memory protection I've seen
|
|
|
|
|
+ * does it on word boundaries, so is OK with this. But VALGRIND will
|
|
|
|
|
+ * still catch it and complain. The masking trick does make the hash
|
|
|
|
|
+ * noticably faster for short strings (like English words).
|
|
|
|
|
+ */
|
|
|
|
|
+#ifndef VALGRIND
|
|
|
|
|
+
|
|
|
|
|
+ switch(length)
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
|
|
|
|
+ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
|
|
|
|
+ case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
|
|
|
|
+ case 4 : a+=k[0]; break;
|
|
|
|
|
+ case 3 : a+=k[0]&0xffffff; break;
|
|
|
|
|
+ case 2 : a+=k[0]&0xffff; break;
|
|
|
|
|
+ case 1 : a+=k[0]&0xff; break;
|
|
|
|
|
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+#else /* make valgrind happy */
|
|
|
|
|
+
|
|
|
|
|
+ k8 = (const PN_uint8 *)k;
|
|
|
|
|
+ switch(length)
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 11: c+=((PN_uint32)k8[10])<<16; /* fall through */
|
|
|
|
|
+ case 10: c+=((PN_uint32)k8[9])<<8; /* fall through */
|
|
|
|
|
+ case 9 : c+=k8[8]; /* fall through */
|
|
|
|
|
+ case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 7 : b+=((PN_uint32)k8[6])<<16; /* fall through */
|
|
|
|
|
+ case 6 : b+=((PN_uint32)k8[5])<<8; /* fall through */
|
|
|
|
|
+ case 5 : b+=k8[4]; /* fall through */
|
|
|
|
|
+ case 4 : a+=k[0]; break;
|
|
|
|
|
+ case 3 : a+=((PN_uint32)k8[2])<<16; /* fall through */
|
|
|
|
|
+ case 2 : a+=((PN_uint32)k8[1])<<8; /* fall through */
|
|
|
|
|
+ case 1 : a+=k8[0]; break;
|
|
|
|
|
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+#endif /* !valgrind */
|
|
|
|
|
+
|
|
|
|
|
+ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
|
|
|
|
|
+ const PN_uint16 *k = key; /* read 16-bit chunks */
|
|
|
|
|
+ const PN_uint8 *k8;
|
|
|
|
|
+
|
|
|
|
|
+ /*--------------- all but last block: aligned reads and different mixing */
|
|
|
|
|
+ while (length > 12)
|
|
|
|
|
+ {
|
|
|
|
|
+ a += k[0] + (((PN_uint32)k[1])<<16);
|
|
|
|
|
+ b += k[2] + (((PN_uint32)k[3])<<16);
|
|
|
|
|
+ c += k[4] + (((PN_uint32)k[5])<<16);
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ length -= 12;
|
|
|
|
|
+ k += 6;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ /*----------------------------- handle the last (probably partial) block */
|
|
|
|
|
+ k8 = (const PN_uint8 *)k;
|
|
|
|
|
+ switch(length)
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=k[4]+(((PN_uint32)k[5])<<16);
|
|
|
|
|
+ b+=k[2]+(((PN_uint32)k[3])<<16);
|
|
|
|
|
+ a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 11: c+=((PN_uint32)k8[10])<<16; /* fall through */
|
|
|
|
|
+ case 10: c+=k[4];
|
|
|
|
|
+ b+=k[2]+(((PN_uint32)k[3])<<16);
|
|
|
|
|
+ a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 9 : c+=k8[8]; /* fall through */
|
|
|
|
|
+ case 8 : b+=k[2]+(((PN_uint32)k[3])<<16);
|
|
|
|
|
+ a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 7 : b+=((PN_uint32)k8[6])<<16; /* fall through */
|
|
|
|
|
+ case 6 : b+=k[2];
|
|
|
|
|
+ a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 5 : b+=k8[4]; /* fall through */
|
|
|
|
|
+ case 4 : a+=k[0]+(((PN_uint32)k[1])<<16);
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 3 : a+=((PN_uint32)k8[2])<<16; /* fall through */
|
|
|
|
|
+ case 2 : a+=k[0];
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 1 : a+=k8[0];
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ } else { /* need to read the key one byte at a time */
|
|
|
|
|
+ const PN_uint8 *k = key;
|
|
|
|
|
+
|
|
|
|
|
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
|
|
|
|
+ while (length > 12)
|
|
|
|
|
+ {
|
|
|
|
|
+ a += k[0];
|
|
|
|
|
+ a += ((PN_uint32)k[1])<<8;
|
|
|
|
|
+ a += ((PN_uint32)k[2])<<16;
|
|
|
|
|
+ a += ((PN_uint32)k[3])<<24;
|
|
|
|
|
+ b += k[4];
|
|
|
|
|
+ b += ((PN_uint32)k[5])<<8;
|
|
|
|
|
+ b += ((PN_uint32)k[6])<<16;
|
|
|
|
|
+ b += ((PN_uint32)k[7])<<24;
|
|
|
|
|
+ c += k[8];
|
|
|
|
|
+ c += ((PN_uint32)k[9])<<8;
|
|
|
|
|
+ c += ((PN_uint32)k[10])<<16;
|
|
|
|
|
+ c += ((PN_uint32)k[11])<<24;
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ length -= 12;
|
|
|
|
|
+ k += 12;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ /*-------------------------------- last block: affect all 32 bits of (c) */
|
|
|
|
|
+ switch(length) /* all the case statements fall through */
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=((PN_uint32)k[11])<<24;
|
|
|
|
|
+ case 11: c+=((PN_uint32)k[10])<<16;
|
|
|
|
|
+ case 10: c+=((PN_uint32)k[9])<<8;
|
|
|
|
|
+ case 9 : c+=k[8];
|
|
|
|
|
+ case 8 : b+=((PN_uint32)k[7])<<24;
|
|
|
|
|
+ case 7 : b+=((PN_uint32)k[6])<<16;
|
|
|
|
|
+ case 6 : b+=((PN_uint32)k[5])<<8;
|
|
|
|
|
+ case 5 : b+=k[4];
|
|
|
|
|
+ case 4 : a+=((PN_uint32)k[3])<<24;
|
|
|
|
|
+ case 3 : a+=((PN_uint32)k[2])<<16;
|
|
|
|
|
+ case 2 : a+=((PN_uint32)k[1])<<8;
|
|
|
|
|
+ case 1 : a+=k[0];
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ final(a,b,c);
|
|
|
|
|
+ *pc=c; *pb=b; return; /* zero length strings require no mixing */
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+/*
|
|
|
|
|
+ * hashbig():
|
|
|
|
|
+ * This is the same as hashword() on big-endian machines. It is different
|
|
|
|
|
+ * from hashlittle() on all machines. hashbig() takes advantage of
|
|
|
|
|
+ * big-endian byte ordering.
|
|
|
|
|
+ */
|
|
|
|
|
+PN_uint32 hashbig( const void *key, size_t length, PN_uint32 initval)
|
|
|
|
|
+{
|
|
|
|
|
+ PN_uint32 a,b,c;
|
|
|
|
|
+ union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
|
|
|
|
|
+
|
|
|
|
|
+ /* Set up the internal state */
|
|
|
|
|
+ a = b = c = 0xdeadbeef + ((PN_uint32)length) + initval;
|
|
|
|
|
+
|
|
|
|
|
+ u.ptr = key;
|
|
|
|
|
+ if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
|
|
|
|
|
+ const PN_uint32 *k = key; /* read 32-bit chunks */
|
|
|
|
|
+#ifdef VALGRIND
|
|
|
|
|
+ const PN_uint8 *k8;
|
|
|
|
|
+#endif
|
|
|
|
|
+
|
|
|
|
|
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
|
|
|
|
+ while (length > 12)
|
|
|
|
|
+ {
|
|
|
|
|
+ a += k[0];
|
|
|
|
|
+ b += k[1];
|
|
|
|
|
+ c += k[2];
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ length -= 12;
|
|
|
|
|
+ k += 3;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ /*----------------------------- handle the last (probably partial) block */
|
|
|
|
|
+ /*
|
|
|
|
|
+ * "k[2]<<8" actually reads beyond the end of the string, but
|
|
|
|
|
+ * then shifts out the part it's not allowed to read. Because the
|
|
|
|
|
+ * string is aligned, the illegal read is in the same word as the
|
|
|
|
|
+ * rest of the string. Every machine with memory protection I've seen
|
|
|
|
|
+ * does it on word boundaries, so is OK with this. But VALGRIND will
|
|
|
|
|
+ * still catch it and complain. The masking trick does make the hash
|
|
|
|
|
+ * noticably faster for short strings (like English words).
|
|
|
|
|
+ */
|
|
|
|
|
+#ifndef VALGRIND
|
|
|
|
|
+
|
|
|
|
|
+ switch(length)
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 11: c+=k[2]<<8; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 10: c+=k[2]<<16; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 9 : c+=k[2]<<24; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 7 : b+=k[1]<<8; a+=k[0]; break;
|
|
|
|
|
+ case 6 : b+=k[1]<<16; a+=k[0]; break;
|
|
|
|
|
+ case 5 : b+=k[1]<<24; a+=k[0]; break;
|
|
|
|
|
+ case 4 : a+=k[0]; break;
|
|
|
|
|
+ case 3 : a+=k[0]<<8; break;
|
|
|
|
|
+ case 2 : a+=k[0]<<16; break;
|
|
|
|
|
+ case 1 : a+=k[0]<<24; break;
|
|
|
|
|
+ case 0 : return c; /* zero length strings require no mixing */
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+#else /* make valgrind happy */
|
|
|
|
|
+
|
|
|
|
|
+ k8 = (const PN_uint8 *)k;
|
|
|
|
|
+ switch(length) /* all the case statements fall through */
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 11: c+=((PN_uint32)k8[10])<<8; /* fall through */
|
|
|
|
|
+ case 10: c+=((PN_uint32)k8[9])<<16; /* fall through */
|
|
|
|
|
+ case 9 : c+=((PN_uint32)k8[8])<<24; /* fall through */
|
|
|
|
|
+ case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
|
+ case 7 : b+=((PN_uint32)k8[6])<<8; /* fall through */
|
|
|
|
|
+ case 6 : b+=((PN_uint32)k8[5])<<16; /* fall through */
|
|
|
|
|
+ case 5 : b+=((PN_uint32)k8[4])<<24; /* fall through */
|
|
|
|
|
+ case 4 : a+=k[0]; break;
|
|
|
|
|
+ case 3 : a+=((PN_uint32)k8[2])<<8; /* fall through */
|
|
|
|
|
+ case 2 : a+=((PN_uint32)k8[1])<<16; /* fall through */
|
|
|
|
|
+ case 1 : a+=((PN_uint32)k8[0])<<24; break;
|
|
|
|
|
+ case 0 : return c;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+#endif /* !VALGRIND */
|
|
|
|
|
+
|
|
|
|
|
+ } else { /* need to read the key one byte at a time */
|
|
|
|
|
+ const PN_uint8 *k = key;
|
|
|
|
|
+
|
|
|
|
|
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
|
|
|
|
+ while (length > 12)
|
|
|
|
|
+ {
|
|
|
|
|
+ a += ((PN_uint32)k[0])<<24;
|
|
|
|
|
+ a += ((PN_uint32)k[1])<<16;
|
|
|
|
|
+ a += ((PN_uint32)k[2])<<8;
|
|
|
|
|
+ a += ((PN_uint32)k[3]);
|
|
|
|
|
+ b += ((PN_uint32)k[4])<<24;
|
|
|
|
|
+ b += ((PN_uint32)k[5])<<16;
|
|
|
|
|
+ b += ((PN_uint32)k[6])<<8;
|
|
|
|
|
+ b += ((PN_uint32)k[7]);
|
|
|
|
|
+ c += ((PN_uint32)k[8])<<24;
|
|
|
|
|
+ c += ((PN_uint32)k[9])<<16;
|
|
|
|
|
+ c += ((PN_uint32)k[10])<<8;
|
|
|
|
|
+ c += ((PN_uint32)k[11]);
|
|
|
|
|
+ mix(a,b,c);
|
|
|
|
|
+ length -= 12;
|
|
|
|
|
+ k += 12;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ /*-------------------------------- last block: affect all 32 bits of (c) */
|
|
|
|
|
+ switch(length) /* all the case statements fall through */
|
|
|
|
|
+ {
|
|
|
|
|
+ case 12: c+=k[11];
|
|
|
|
|
+ case 11: c+=((PN_uint32)k[10])<<8;
|
|
|
|
|
+ case 10: c+=((PN_uint32)k[9])<<16;
|
|
|
|
|
+ case 9 : c+=((PN_uint32)k[8])<<24;
|
|
|
|
|
+ case 8 : b+=k[7];
|
|
|
|
|
+ case 7 : b+=((PN_uint32)k[6])<<8;
|
|
|
|
|
+ case 6 : b+=((PN_uint32)k[5])<<16;
|
|
|
|
|
+ case 5 : b+=((PN_uint32)k[4])<<24;
|
|
|
|
|
+ case 4 : a+=k[3];
|
|
|
|
|
+ case 3 : a+=((PN_uint32)k[2])<<8;
|
|
|
|
|
+ case 2 : a+=((PN_uint32)k[1])<<16;
|
|
|
|
|
+ case 1 : a+=((PN_uint32)k[0])<<24;
|
|
|
|
|
+ break;
|
|
|
|
|
+ case 0 : return c;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ final(a,b,c);
|
|
|
|
|
+ return c;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+#ifdef SELF_TEST
|
|
|
|
|
+
|
|
|
|
|
+/* used for timings */
|
|
|
|
|
+void driver1()
|
|
|
|
|
+{
|
|
|
|
|
+ PN_uint8 buf[256];
|
|
|
|
|
+ PN_uint32 i;
|
|
|
|
|
+ PN_uint32 h=0;
|
|
|
|
|
+ time_t a,z;
|
|
|
|
|
+
|
|
|
|
|
+ time(&a);
|
|
|
|
|
+ for (i=0; i<256; ++i) buf[i] = 'x';
|
|
|
|
|
+ for (i=0; i<1; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ h = hashlittle(&buf[0],1,h);
|
|
|
|
|
+ }
|
|
|
|
|
+ time(&z);
|
|
|
|
|
+ if (z-a > 0) printf("time %d %.8x\n", z-a, h);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+/* check that every input bit changes every output bit half the time */
|
|
|
|
|
+#define HASHSTATE 1
|
|
|
|
|
+#define HASHLEN 1
|
|
|
|
|
+#define MAXPAIR 60
|
|
|
|
|
+#define MAXLEN 70
|
|
|
|
|
+void driver2()
|
|
|
|
|
+{
|
|
|
|
|
+ PN_uint8 qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
|
|
|
|
|
+ PN_uint32 c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
|
|
|
|
|
+ PN_uint32 e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
|
|
|
|
|
+ PN_uint32 x[HASHSTATE],y[HASHSTATE];
|
|
|
|
|
+ PN_uint32 hlen;
|
|
|
|
|
+
|
|
|
|
|
+ printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
|
|
|
|
|
+ for (hlen=0; hlen < MAXLEN; ++hlen)
|
|
|
|
|
+ {
|
|
|
|
|
+ z=0;
|
|
|
|
|
+ for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
|
|
|
|
|
+ {
|
|
|
|
|
+ for (j=0; j<8; ++j) /*------------------------ for each input bit, */
|
|
|
|
|
+ {
|
|
|
|
|
+ for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */
|
|
|
|
|
+ {
|
|
|
|
|
+ for (l=0; l<HASHSTATE; ++l)
|
|
|
|
|
+ e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((PN_uint32)0);
|
|
|
|
|
+
|
|
|
|
|
+ /*---- check that every output bit is affected by that input bit */
|
|
|
|
|
+ for (k=0; k<MAXPAIR; k+=2)
|
|
|
|
|
+ {
|
|
|
|
|
+ PN_uint32 finished=1;
|
|
|
|
|
+ /* keys have one bit different */
|
|
|
|
|
+ for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (PN_uint8)0;}
|
|
|
|
|
+ /* have a and b be two keys differing in only one bit */
|
|
|
|
|
+ a[i] ^= (k<<j);
|
|
|
|
|
+ a[i] ^= (k>>(8-j));
|
|
|
|
|
+ c[0] = hashlittle(a, hlen, m);
|
|
|
|
|
+ b[i] ^= ((k+1)<<j);
|
|
|
|
|
+ b[i] ^= ((k+1)>>(8-j));
|
|
|
|
|
+ d[0] = hashlittle(b, hlen, m);
|
|
|
|
|
+ /* check every bit is 1, 0, set, and not set at least once */
|
|
|
|
|
+ for (l=0; l<HASHSTATE; ++l)
|
|
|
|
|
+ {
|
|
|
|
|
+ e[l] &= (c[l]^d[l]);
|
|
|
|
|
+ f[l] &= ~(c[l]^d[l]);
|
|
|
|
|
+ g[l] &= c[l];
|
|
|
|
|
+ h[l] &= ~c[l];
|
|
|
|
|
+ x[l] &= d[l];
|
|
|
|
|
+ y[l] &= ~d[l];
|
|
|
|
|
+ if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
|
|
|
|
|
+ }
|
|
|
|
|
+ if (finished) break;
|
|
|
|
|
+ }
|
|
|
|
|
+ if (k>z) z=k;
|
|
|
|
|
+ if (k==MAXPAIR)
|
|
|
|
|
+ {
|
|
|
|
|
+ printf("Some bit didn't change: ");
|
|
|
|
|
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
|
|
|
|
|
+ e[0],f[0],g[0],h[0],x[0],y[0]);
|
|
|
|
|
+ printf("i %d j %d m %d len %d\n", i, j, m, hlen);
|
|
|
|
|
+ }
|
|
|
|
|
+ if (z==MAXPAIR) goto done;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ done:
|
|
|
|
|
+ if (z < MAXPAIR)
|
|
|
|
|
+ {
|
|
|
|
|
+ printf("Mix success %2d bytes %2d initvals ",i,m);
|
|
|
|
|
+ printf("required %d trials\n", z/2);
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ printf("\n");
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+/* Check for reading beyond the end of the buffer and alignment problems */
|
|
|
|
|
+void driver3()
|
|
|
|
|
+{
|
|
|
|
|
+ PN_uint8 buf[MAXLEN+20], *b;
|
|
|
|
|
+ PN_uint32 len;
|
|
|
|
|
+ PN_uint8 q[] = "This is the time for all good men to come to the aid of their country...";
|
|
|
|
|
+ PN_uint32 h;
|
|
|
|
|
+ PN_uint8 qq[] = "xThis is the time for all good men to come to the aid of their country...";
|
|
|
|
|
+ PN_uint32 i;
|
|
|
|
|
+ PN_uint8 qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
|
|
|
|
|
+ PN_uint32 j;
|
|
|
|
|
+ PN_uint8 qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
|
|
|
|
|
+ PN_uint32 ref,x,y;
|
|
|
|
|
+ PN_uint8 *p;
|
|
|
|
|
+
|
|
|
|
|
+ printf("Endianness. These lines should all be the same (for values filled in):\n");
|
|
|
|
|
+ printf("%.8x %.8x %.8x\n",
|
|
|
|
|
+ hashword((const PN_uint32 *)q, (sizeof(q)-1)/4, 13),
|
|
|
|
|
+ hashword((const PN_uint32 *)q, (sizeof(q)-5)/4, 13),
|
|
|
|
|
+ hashword((const PN_uint32 *)q, (sizeof(q)-9)/4, 13));
|
|
|
|
|
+ p = q;
|
|
|
|
|
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
|
|
|
|
+ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
|
|
|
|
+ p = &qq[1];
|
|
|
|
|
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
|
|
|
|
+ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
|
|
|
|
+ p = &qqq[2];
|
|
|
|
|
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
|
|
|
|
+ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
|
|
|
|
+ p = &qqqq[3];
|
|
|
|
|
+ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
|
|
|
|
|
+ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
|
|
|
|
|
+ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
|
|
|
|
|
+ printf("\n");
|
|
|
|
|
+ for (h=0, b=buf+1; h<8; ++h, ++b)
|
|
|
|
|
+ {
|
|
|
|
|
+ for (i=0; i<MAXLEN; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ len = i;
|
|
|
|
|
+ for (j=0; j<i; ++j) *(b+j)=0;
|
|
|
|
|
+
|
|
|
|
|
+ /* these should all be equal */
|
|
|
|
|
+ ref = hashlittle(b, len, (PN_uint32)1);
|
|
|
|
|
+ *(b+i)=(PN_uint8)~0;
|
|
|
|
|
+ *(b-1)=(PN_uint8)~0;
|
|
|
|
|
+ x = hashlittle(b, len, (PN_uint32)1);
|
|
|
|
|
+ y = hashlittle(b, len, (PN_uint32)1);
|
|
|
|
|
+ if ((ref != x) || (ref != y))
|
|
|
|
|
+ {
|
|
|
|
|
+ printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
|
|
|
|
|
+ h, i);
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+/* check for problems with nulls */
|
|
|
|
|
+ void driver4()
|
|
|
|
|
+{
|
|
|
|
|
+ PN_uint8 buf[1];
|
|
|
|
|
+ PN_uint32 h,i,state[HASHSTATE];
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ buf[0] = ~0;
|
|
|
|
|
+ for (i=0; i<HASHSTATE; ++i) state[i] = 1;
|
|
|
|
|
+ printf("These should all be different\n");
|
|
|
|
|
+ for (i=0, h=0; i<8; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ h = hashlittle(buf, 0, h);
|
|
|
|
|
+ printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
|
|
|
|
|
+ }
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+int main()
|
|
|
|
|
+{
|
|
|
|
|
+ driver1(); /* test that the key is hashed: used for timings */
|
|
|
|
|
+ driver2(); /* test that whole key is hashed thoroughly */
|
|
|
|
|
+ driver3(); /* test that nothing but the key is hashed */
|
|
|
|
|
+ driver4(); /* test hashing multiple buffers (all buffers are null) */
|
|
|
|
|
+ return 1;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+#endif /* SELF_TEST */
|