| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594 |
- /*
- See pdtoa.h for explanation.
- Copyright (C) 2014 Milo Yip
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE.
- */
- #include "pdtoa.h"
- #include "cmath.h"
- #include <assert.h>
- #include <math.h>
- #include <stdint.h>
- #if defined(_MSC_VER)
- #include <intrin.h>
- #include <float.h>
- #define copysign _copysign
- #pragma float_control(precise, on, push)
- #endif
- #define UINT64_C2(h, l) ((static_cast<uint64_t>(h) << 32) | static_cast<uint64_t>(l))
- struct DiyFp {
- DiyFp() {}
- DiyFp(uint64_t f, int e) : f(f), e(e) {}
- DiyFp(double d) {
- union {
- double d;
- uint64_t u64;
- } u = { d };
- int biased_e = (u.u64 & kDpExponentMask) >> kDpSignificandSize;
- uint64_t significand = (u.u64 & kDpSignificandMask);
- if (biased_e != 0) {
- f = significand + kDpHiddenBit;
- e = biased_e - kDpExponentBias;
- }
- else {
- f = significand;
- e = kDpMinExponent + 1;
- }
- }
- DiyFp operator-(const DiyFp& rhs) const {
- assert(e == rhs.e);
- assert(f >= rhs.f);
- return DiyFp(f - rhs.f, e);
- }
- DiyFp operator*(const DiyFp& rhs) const {
- #if defined(_MSC_VER) && defined(_M_AMD64)
- uint64_t h;
- uint64_t l = _umul128(f, rhs.f, &h);
- if (l & (uint64_t(1) << 63)) // rounding
- h++;
- return DiyFp(h, e + rhs.e + 64);
- #elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) && defined(__x86_64__)
- unsigned __int128 p = static_cast<unsigned __int128>(f) * static_cast<unsigned __int128>(rhs.f);
- uint64_t h = p >> 64;
- uint64_t l = static_cast<uint64_t>(p);
- if (l & (uint64_t(1) << 63)) // rounding
- h++;
- return DiyFp(h, e + rhs.e + 64);
- #else
- const uint64_t M32 = 0xFFFFFFFF;
- const uint64_t a = f >> 32;
- const uint64_t b = f & M32;
- const uint64_t c = rhs.f >> 32;
- const uint64_t d = rhs.f & M32;
- const uint64_t ac = a * c;
- const uint64_t bc = b * c;
- const uint64_t ad = a * d;
- const uint64_t bd = b * d;
- uint64_t tmp = (bd >> 32) + (ad & M32) + (bc & M32);
- tmp += 1U << 31; /// mult_round
- return DiyFp(ac + (ad >> 32) + (bc >> 32) + (tmp >> 32), e + rhs.e + 64);
- #endif
- }
- DiyFp Normalize() const {
- #if defined(_MSC_VER) && defined(_M_AMD64)
- unsigned long index;
- _BitScanReverse64(&index, f);
- return DiyFp(f << (63 - index), e - (63 - index));
- #elif defined(__GNUC__)
- int s = __builtin_clzll(f);
- return DiyFp(f << s, e - s);
- #else
- DiyFp res = *this;
- while (!(res.f & kDpHiddenBit)) {
- res.f <<= 1;
- res.e--;
- }
- res.f <<= (kDiySignificandSize - kDpSignificandSize - 1);
- res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 1);
- return res;
- #endif
- }
- DiyFp NormalizeBoundary() const {
- #if defined(_MSC_VER) && defined(_M_AMD64)
- unsigned long index;
- _BitScanReverse64(&index, f);
- return DiyFp (f << (63 - index), e - (63 - index));
- #else
- DiyFp res = *this;
- while (!(res.f & (kDpHiddenBit << 1))) {
- res.f <<= 1;
- res.e--;
- }
- res.f <<= (kDiySignificandSize - kDpSignificandSize - 2);
- res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 2);
- return res;
- #endif
- }
- void NormalizedBoundaries(DiyFp* minus, DiyFp* plus) const {
- DiyFp pl = DiyFp((f << 1) + 1, e - 1).NormalizeBoundary();
- DiyFp mi = (f == kDpHiddenBit) ? DiyFp((f << 2) - 1, e - 2) : DiyFp((f << 1) - 1, e - 1);
- mi.f <<= mi.e - pl.e;
- mi.e = pl.e;
- *plus = pl;
- *minus = mi;
- }
- static const int kDiySignificandSize = 64;
- static const int kDpSignificandSize = 52;
- static const int kDpExponentBias = 0x3FF + kDpSignificandSize;
- static const int kDpMinExponent = -kDpExponentBias;
- static const uint64_t kDpExponentMask = UINT64_C2(0x7FF00000, 0x00000000);
- static const uint64_t kDpSignificandMask = UINT64_C2(0x000FFFFF, 0xFFFFFFFF);
- static const uint64_t kDpHiddenBit = UINT64_C2(0x00100000, 0x00000000);
- uint64_t f;
- int e;
- };
- inline static DiyFp GetCachedPower(int e, int* K) {
- // 10^-348, 10^-340, ..., 10^340
- static const uint64_t kCachedPowers_F[] = {
- UINT64_C2(0xfa8fd5a0, 0x081c0288), UINT64_C2(0xbaaee17f, 0xa23ebf76),
- UINT64_C2(0x8b16fb20, 0x3055ac76), UINT64_C2(0xcf42894a, 0x5dce35ea),
- UINT64_C2(0x9a6bb0aa, 0x55653b2d), UINT64_C2(0xe61acf03, 0x3d1a45df),
- UINT64_C2(0xab70fe17, 0xc79ac6ca), UINT64_C2(0xff77b1fc, 0xbebcdc4f),
- UINT64_C2(0xbe5691ef, 0x416bd60c), UINT64_C2(0x8dd01fad, 0x907ffc3c),
- UINT64_C2(0xd3515c28, 0x31559a83), UINT64_C2(0x9d71ac8f, 0xada6c9b5),
- UINT64_C2(0xea9c2277, 0x23ee8bcb), UINT64_C2(0xaecc4991, 0x4078536d),
- UINT64_C2(0x823c1279, 0x5db6ce57), UINT64_C2(0xc2109436, 0x4dfb5637),
- UINT64_C2(0x9096ea6f, 0x3848984f), UINT64_C2(0xd77485cb, 0x25823ac7),
- UINT64_C2(0xa086cfcd, 0x97bf97f4), UINT64_C2(0xef340a98, 0x172aace5),
- UINT64_C2(0xb23867fb, 0x2a35b28e), UINT64_C2(0x84c8d4df, 0xd2c63f3b),
- UINT64_C2(0xc5dd4427, 0x1ad3cdba), UINT64_C2(0x936b9fce, 0xbb25c996),
- UINT64_C2(0xdbac6c24, 0x7d62a584), UINT64_C2(0xa3ab6658, 0x0d5fdaf6),
- UINT64_C2(0xf3e2f893, 0xdec3f126), UINT64_C2(0xb5b5ada8, 0xaaff80b8),
- UINT64_C2(0x87625f05, 0x6c7c4a8b), UINT64_C2(0xc9bcff60, 0x34c13053),
- UINT64_C2(0x964e858c, 0x91ba2655), UINT64_C2(0xdff97724, 0x70297ebd),
- UINT64_C2(0xa6dfbd9f, 0xb8e5b88f), UINT64_C2(0xf8a95fcf, 0x88747d94),
- UINT64_C2(0xb9447093, 0x8fa89bcf), UINT64_C2(0x8a08f0f8, 0xbf0f156b),
- UINT64_C2(0xcdb02555, 0x653131b6), UINT64_C2(0x993fe2c6, 0xd07b7fac),
- UINT64_C2(0xe45c10c4, 0x2a2b3b06), UINT64_C2(0xaa242499, 0x697392d3),
- UINT64_C2(0xfd87b5f2, 0x8300ca0e), UINT64_C2(0xbce50864, 0x92111aeb),
- UINT64_C2(0x8cbccc09, 0x6f5088cc), UINT64_C2(0xd1b71758, 0xe219652c),
- UINT64_C2(0x9c400000, 0x00000000), UINT64_C2(0xe8d4a510, 0x00000000),
- UINT64_C2(0xad78ebc5, 0xac620000), UINT64_C2(0x813f3978, 0xf8940984),
- UINT64_C2(0xc097ce7b, 0xc90715b3), UINT64_C2(0x8f7e32ce, 0x7bea5c70),
- UINT64_C2(0xd5d238a4, 0xabe98068), UINT64_C2(0x9f4f2726, 0x179a2245),
- UINT64_C2(0xed63a231, 0xd4c4fb27), UINT64_C2(0xb0de6538, 0x8cc8ada8),
- UINT64_C2(0x83c7088e, 0x1aab65db), UINT64_C2(0xc45d1df9, 0x42711d9a),
- UINT64_C2(0x924d692c, 0xa61be758), UINT64_C2(0xda01ee64, 0x1a708dea),
- UINT64_C2(0xa26da399, 0x9aef774a), UINT64_C2(0xf209787b, 0xb47d6b85),
- UINT64_C2(0xb454e4a1, 0x79dd1877), UINT64_C2(0x865b8692, 0x5b9bc5c2),
- UINT64_C2(0xc83553c5, 0xc8965d3d), UINT64_C2(0x952ab45c, 0xfa97a0b3),
- UINT64_C2(0xde469fbd, 0x99a05fe3), UINT64_C2(0xa59bc234, 0xdb398c25),
- UINT64_C2(0xf6c69a72, 0xa3989f5c), UINT64_C2(0xb7dcbf53, 0x54e9bece),
- UINT64_C2(0x88fcf317, 0xf22241e2), UINT64_C2(0xcc20ce9b, 0xd35c78a5),
- UINT64_C2(0x98165af3, 0x7b2153df), UINT64_C2(0xe2a0b5dc, 0x971f303a),
- UINT64_C2(0xa8d9d153, 0x5ce3b396), UINT64_C2(0xfb9b7cd9, 0xa4a7443c),
- UINT64_C2(0xbb764c4c, 0xa7a44410), UINT64_C2(0x8bab8eef, 0xb6409c1a),
- UINT64_C2(0xd01fef10, 0xa657842c), UINT64_C2(0x9b10a4e5, 0xe9913129),
- UINT64_C2(0xe7109bfb, 0xa19c0c9d), UINT64_C2(0xac2820d9, 0x623bf429),
- UINT64_C2(0x80444b5e, 0x7aa7cf85), UINT64_C2(0xbf21e440, 0x03acdd2d),
- UINT64_C2(0x8e679c2f, 0x5e44ff8f), UINT64_C2(0xd433179d, 0x9c8cb841),
- UINT64_C2(0x9e19db92, 0xb4e31ba9), UINT64_C2(0xeb96bf6e, 0xbadf77d9),
- UINT64_C2(0xaf87023b, 0x9bf0ee6b)
- };
- static const int16_t kCachedPowers_E[] = {
- -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980,
- -954, -927, -901, -874, -847, -821, -794, -768, -741, -715,
- -688, -661, -635, -608, -582, -555, -529, -502, -475, -449,
- -422, -396, -369, -343, -316, -289, -263, -236, -210, -183,
- -157, -130, -103, -77, -50, -24, 3, 30, 56, 83,
- 109, 136, 162, 189, 216, 242, 269, 295, 322, 348,
- 375, 402, 428, 455, 481, 508, 534, 561, 588, 614,
- 641, 667, 694, 720, 747, 774, 800, 827, 853, 880,
- 907, 933, 960, 986, 1013, 1039, 1066
- };
- //int k = static_cast<int>(ceil((-61 - e) * 0.30102999566398114)) + 374;
- double dk = (-61 - e) * 0.30102999566398114 + 347; // dk must be positive, so can do ceiling in positive
- int k = static_cast<int>(dk);
- if (k != dk)
- k++;
- unsigned index = static_cast<unsigned>((k >> 3) + 1);
- *K = -(-348 + static_cast<int>(index << 3)); // decimal exponent no need lookup table
- assert(index < sizeof(kCachedPowers_F) / sizeof(kCachedPowers_F[0]));
- return DiyFp(kCachedPowers_F[index], kCachedPowers_E[index]);
- }
- inline static void GrisuRound(char* buffer, int len, uint64_t delta, uint64_t rest, uint64_t ten_kappa, uint64_t wp_w) {
- while (rest < wp_w && delta - rest >= ten_kappa &&
- (rest + ten_kappa < wp_w || /// closer
- wp_w - rest > rest + ten_kappa - wp_w)) {
- buffer[len - 1]--;
- rest += ten_kappa;
- }
- }
- inline static unsigned CountDecimalDigit32(uint32_t n) {
- // Simple pure C++ implementation was faster than __builtin_clz version in this situation.
- if (n < 10) return 1;
- if (n < 100) return 2;
- if (n < 1000) return 3;
- if (n < 10000) return 4;
- if (n < 100000) return 5;
- if (n < 1000000) return 6;
- if (n < 10000000) return 7;
- if (n < 100000000) return 8;
- if (n < 1000000000) return 9;
- return 10;
- }
- inline static void DigitGen(const DiyFp& W, const DiyFp& Mp, uint64_t delta, char* buffer, int* len, int* K) {
- static const uint32_t kPow10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 0, 0, 0, 0, 0 };
- const DiyFp one(uint64_t(1) << -Mp.e, Mp.e);
- const DiyFp wp_w = Mp - W;
- uint32_t p1 = static_cast<uint32_t>(Mp.f >> -one.e);
- uint64_t p2 = Mp.f & (one.f - 1);
- int kappa = static_cast<int>(CountDecimalDigit32(p1));
- *len = 0;
- while (kappa > 0) {
- uint32_t d = 0;
- switch (kappa) {
- case 10: d = p1 / 1000000000; p1 %= 1000000000; break;
- case 9: d = p1 / 100000000; p1 %= 100000000; break;
- case 8: d = p1 / 10000000; p1 %= 10000000; break;
- case 7: d = p1 / 1000000; p1 %= 1000000; break;
- case 6: d = p1 / 100000; p1 %= 100000; break;
- case 5: d = p1 / 10000; p1 %= 10000; break;
- case 4: d = p1 / 1000; p1 %= 1000; break;
- case 3: d = p1 / 100; p1 %= 100; break;
- case 2: d = p1 / 10; p1 %= 10; break;
- case 1: d = p1; p1 = 0; break;
- NODEFAULT
- }
- if (d || *len)
- buffer[(*len)++] = '0' + static_cast<char>(d);
- kappa--;
- uint64_t tmp = (static_cast<uint64_t>(p1) << -one.e) + p2;
- if (tmp <= delta) {
- *K += kappa;
- GrisuRound(buffer, *len, delta, tmp, static_cast<uint64_t>(kPow10[kappa]) << -one.e, wp_w.f);
- return;
- }
- }
- // kappa = 0
- for (;;) {
- p2 *= 10;
- delta *= 10;
- char d = static_cast<char>(p2 >> -one.e);
- if (d || *len)
- buffer[(*len)++] = '0' + d;
- p2 &= one.f - 1;
- kappa--;
- if (p2 < delta) {
- *K += kappa;
- GrisuRound(buffer, *len, delta, p2, one.f, wp_w.f * kPow10[-kappa]);
- return;
- }
- }
- }
- inline static void Grisu2(double value, char* buffer, int* length, int* K) {
- const DiyFp v(value);
- DiyFp w_m, w_p;
- v.NormalizedBoundaries(&w_m, &w_p);
- const DiyFp c_mk = GetCachedPower(w_p.e, K);
- const DiyFp W = v.Normalize() * c_mk;
- DiyFp Wp = w_p * c_mk;
- DiyFp Wm = w_m * c_mk;
- Wm.f++;
- Wp.f--;
- DigitGen(W, Wp, Wp.f - Wm.f, buffer, length, K);
- }
- static const char cDigitsLut[200] = {
- '0', '0', '0', '1', '0', '2', '0', '3', '0', '4', '0', '5', '0', '6', '0', '7', '0', '8', '0', '9',
- '1', '0', '1', '1', '1', '2', '1', '3', '1', '4', '1', '5', '1', '6', '1', '7', '1', '8', '1', '9',
- '2', '0', '2', '1', '2', '2', '2', '3', '2', '4', '2', '5', '2', '6', '2', '7', '2', '8', '2', '9',
- '3', '0', '3', '1', '3', '2', '3', '3', '3', '4', '3', '5', '3', '6', '3', '7', '3', '8', '3', '9',
- '4', '0', '4', '1', '4', '2', '4', '3', '4', '4', '4', '5', '4', '6', '4', '7', '4', '8', '4', '9',
- '5', '0', '5', '1', '5', '2', '5', '3', '5', '4', '5', '5', '5', '6', '5', '7', '5', '8', '5', '9',
- '6', '0', '6', '1', '6', '2', '6', '3', '6', '4', '6', '5', '6', '6', '6', '7', '6', '8', '6', '9',
- '7', '0', '7', '1', '7', '2', '7', '3', '7', '4', '7', '5', '7', '6', '7', '7', '7', '8', '7', '9',
- '8', '0', '8', '1', '8', '2', '8', '3', '8', '4', '8', '5', '8', '6', '8', '7', '8', '8', '8', '9',
- '9', '0', '9', '1', '9', '2', '9', '3', '9', '4', '9', '5', '9', '6', '9', '7', '9', '8', '9', '9'
- };
- inline void WriteExponent(int K, char* buffer) {
- if (K < 0) {
- *buffer++ = '-';
- K = -K;
- }
- if (K >= 100) {
- *buffer++ = '0' + static_cast<char>(K / 100);
- K %= 100;
- const char* d = cDigitsLut + K * 2;
- *buffer++ = d[0];
- *buffer++ = d[1];
- }
- else if (K >= 10) {
- const char* d = cDigitsLut + K * 2;
- *buffer++ = d[0];
- *buffer++ = d[1];
- }
- else
- *buffer++ = '0' + static_cast<char>(K);
- *buffer = '\0';
- }
- inline static void Prettify(char* buffer, int length, int k) {
- const int kk = length + k; // 10^(kk-1) <= v < 10^kk
- if (length <= kk && kk <= 21) {
- // 1234e7 -> 12340000000
- for (int i = length; i < kk; i++)
- buffer[i] = '0';
- buffer[kk] = '.';
- buffer[kk + 1] = '0';
- buffer[kk + 2] = '\0';
- }
- else if (0 < kk && kk <= 21) {
- // 1234e-2 -> 12.34
- memmove(&buffer[kk + 1], &buffer[kk], length - kk);
- buffer[kk] = '.';
- buffer[length + 1] = '\0';
- }
- else if (-6 < kk && kk <= 0) {
- // 1234e-6 -> 0.001234
- const int offset = 2 - kk;
- memmove(&buffer[offset], &buffer[0], length);
- buffer[0] = '0';
- buffer[1] = '.';
- for (int i = 2; i < offset; i++)
- buffer[i] = '0';
- buffer[length + offset] = '\0';
- }
- else if (length == 1) {
- // 1e30
- buffer[1] = 'e';
- WriteExponent(kk - 1, &buffer[2]);
- }
- else {
- // 1234e30 -> 1.234e33
- memmove(&buffer[2], &buffer[1], length - 1);
- buffer[1] = '.';
- buffer[length + 1] = 'e';
- WriteExponent(kk - 1, &buffer[0 + length + 2]);
- }
- }
- void pdtoa(double value, char *buffer) {
- #ifdef _MSC_VER
- if (copysign(1.0, value) < 0) {
- #else
- if (std::signbit(value)) {
- #endif
- *buffer++ = '-';
- value = -value;
- }
- if (cinf(value)) {
- buffer[0] = 'i';
- buffer[1] = 'n';
- buffer[2] = 'f';
- buffer[3] = '\0';
- } else if (cnan(value)) {
- buffer[0] = 'n';
- buffer[1] = 'a';
- buffer[2] = 'n';
- buffer[3] = '\0';
- } else if (value == 0.0) {
- buffer[0] = '0';
- buffer[1] = '.';
- buffer[2] = '0';
- buffer[3] = '\0';
- } else if (value == 1.0) {
- buffer[0] = '1';
- buffer[1] = '.';
- buffer[2] = '0';
- buffer[3] = '\0';
- } else {
- int length, K;
- Grisu2(value, buffer, &length, &K);
- Prettify(buffer, length, K);
- }
- }
- /**
- * Version of pdtoa that tries hard to find the minimal string representation
- * for a single-precision floating-point number.
- */
- void pftoa(float value, char *buffer) {
- #ifdef _MSC_VER
- if (copysign(1.0f, value) < 0) {
- #else
- if (std::signbit(value)) {
- #endif
- *buffer++ = '-';
- value = -value;
- }
- if (cinf(value)) {
- buffer[0] = 'i';
- buffer[1] = 'n';
- buffer[2] = 'f';
- buffer[3] = '\0';
- } else if (cnan(value)) {
- buffer[0] = 'n';
- buffer[1] = 'a';
- buffer[2] = 'n';
- buffer[3] = '\0';
- } else if (value == 0.0f) {
- buffer[0] = '0';
- buffer[1] = '.';
- buffer[2] = '0';
- buffer[3] = '\0';
- } else if (value == 1.0f) {
- buffer[0] = '1';
- buffer[1] = '.';
- buffer[2] = '0';
- buffer[3] = '\0';
- } else {
- int length, k;
- Grisu2(value, buffer, &length, &k);
- const int kk = length + k; // 10^(kk-1) <= v < 10^kk
- if (length <= kk && kk <= 21) {
- // 1234e7 -> 12340000000
- for (int i = length; i < kk; i++)
- buffer[i] = '0';
- buffer[kk] = '.';
- buffer[kk + 1] = '0';
- buffer[kk + 2] = '\0';
- }
- else if (0 < kk && kk <= 21) {
- // 1234e-2 -> 12.34
- memmove(&buffer[kk + 1], &buffer[kk], length - kk);
- // We want the shortest possible representation, so keep reading digits
- // until strtod would give the correct float value.
- buffer[kk] = '\0';
- double v = (double)atoi(buffer);
- buffer[kk] = '.';
- double multiplicand = 0.1;
- for (int i = kk + 1; i <= length; ++i) {
- double vplus = v + (buffer[i] - '0' + 1) * multiplicand;
- v += (buffer[i] - '0') * multiplicand;
- multiplicand *= 0.1;
- if ((float)v == value) {
- length = i;
- break;
- }
- if (buffer[i] < '9' && (float)vplus == value) {
- ++buffer[i];
- length = i;
- break;
- }
- }
- buffer[length + 1] = '\0';
- }
- else if (-6 < kk && kk <= 0) {
- // 1234e-6 -> 0.001234
- const int offset = 2 - kk;
- memmove(&buffer[offset], &buffer[0], length);
- buffer[0] = '0';
- buffer[1] = '.';
- // We want the shortest possible representation, so keep reading digits
- // until strtod would give the correct float value.
- double multiplicand = 1.0;
- for (int i = 2; i < offset; i++) {
- buffer[i] = '0';
- multiplicand *= 0.1;
- }
- if ((float)multiplicand == value) {
- length = 0;
- buffer[offset - 1] = '1';
- } else {
- multiplicand *= 0.1;
- double v = 0.0;
- for (int i = offset; i < length + offset; ++i) {
- double vplus = v + (buffer[i] - '0' + 1) * multiplicand;
- v += (buffer[i] - '0') * multiplicand;
- multiplicand *= 0.1;
- if ((float)v == value) {
- buffer[i + 1] = '\0';
- break;
- }
- if (buffer[i] < '9' && (float)vplus == value) {
- buffer[i]++;
- buffer[i + 1] = '\0';
- break;
- }
- }
- }
- buffer[length + offset] = '\0';
- }
- else if (length == 1) {
- // 1e30
- buffer[1] = 'e';
- WriteExponent(kk - 1, &buffer[2]);
- }
- else {
- // 1234e30 -> 1.234e33
- memmove(&buffer[2], &buffer[1], length - 1);
- buffer[1] = '.';
- buffer[length + 1] = 'e';
- double e_mult = pow(10.0, kk - 1);
- if ((float)(10.0 * e_mult) == value) {
- buffer[0] = '1';
- buffer[1] = 'e';
- WriteExponent(kk, &buffer[2]);
- } else {
- // We want the shortest possible representation, so keep reading
- // digits until strtod would give the correct float value.
- double v = buffer[0] - '0';
- double multiplicand = 0.1;
- for (int i = 2; i < length + 2; ++i) {
- double vplus = v + (buffer[i] - '0' + 1) * multiplicand;
- v += (buffer[i] - '0') * multiplicand;
- multiplicand *= 0.1;
- if ((float)(v * e_mult) == value) {
- length = i;
- buffer[i + 1] = 'e';
- break;
- }
- if (buffer[i] < '9' && (float)(vplus * e_mult) == value) {
- buffer[i]++;
- length = i;
- buffer[i + 1] = 'e';
- break;
- }
- }
- WriteExponent(kk - 1, &buffer[0 + length + 2]);
- }
- }
- }
- }
- #ifdef _MSC_VER
- #pragma float_control(pop)
- #endif
|