zup-axis.egg 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842
  1. <VertexPool> V {
  2. <Vertex> 1 { 10.4436 0.935039 -0.164042
  3. <Normal> { 0 -1 0 }
  4. }
  5. <Vertex> 2 { 10.4436 0.935039 0.164042
  6. <Normal> { 0 -1 0 }
  7. }
  8. <Vertex> 3 { 10.3944 0.935039 0.164042
  9. <Normal> { 0 -1 0 }
  10. }
  11. <Vertex> 4 { 10.3944 0.935039 -0.164042
  12. <Normal> { 0 -1 0 }
  13. }
  14. <Vertex> 5 { 10.7389 0.935039 -0.164042
  15. <Normal> { 0 -1 0 }
  16. }
  17. <Vertex> 6 { 10.7389 0.935039 0.164042
  18. <Normal> { 0 -1 0 }
  19. }
  20. <Vertex> 7 { 10.6897 0.935039 0.164042
  21. <Normal> { 0 -1 0 }
  22. }
  23. <Vertex> 8 { 10.6897 0.935039 -0.164042
  24. <Normal> { 0 -1 0 }
  25. }
  26. <Vertex> 9 { 11.0834 0.935039 -0.164042
  27. <Normal> { 0 -1 0 }
  28. }
  29. <Vertex> 10 { 11.0834 0.935039 0.164042
  30. <Normal> { 0 -1 0 }
  31. }
  32. <Vertex> 11 { 11.0342 0.935039 0.164042
  33. <Normal> { 0 -1 0 }
  34. }
  35. <Vertex> 12 { 11.0342 0.935039 -0.164042
  36. <Normal> { 0 -1 0 }
  37. }
  38. <Vertex> 13 { 11.3787 0.935039 -0.164042
  39. <Normal> { 0 -1 0 }
  40. }
  41. <Vertex> 14 { 11.3787 0.935039 0.164042
  42. <Normal> { 0 -1 0 }
  43. }
  44. <Vertex> 15 { 11.3295 0.935039 0.164042
  45. <Normal> { 0 -1 0 }
  46. }
  47. <Vertex> 16 { 11.3295 0.935039 -0.164042
  48. <Normal> { 0 -1 0 }
  49. }
  50. <Vertex> 17 { 11.3295 0.0492126 -0.164042
  51. <Normal> { 0 1 0 }
  52. }
  53. <Vertex> 18 { 11.3295 0.0492126 0.164042
  54. <Normal> { 0 1 0 }
  55. }
  56. <Vertex> 19 { 11.3787 0.0492126 0.164042
  57. <Normal> { 0 1 0 }
  58. }
  59. <Vertex> 20 { 11.3787 0.0492126 -0.164042
  60. <Normal> { 0 1 0 }
  61. }
  62. <Vertex> 21 { 11.0342 0.0492126 -0.164042
  63. <Normal> { 0 1 0 }
  64. }
  65. <Vertex> 22 { 11.0342 0.0492126 0.164042
  66. <Normal> { 0 1 0 }
  67. }
  68. <Vertex> 23 { 11.0834 0.0492126 0.164042
  69. <Normal> { 0 1 0 }
  70. }
  71. <Vertex> 24 { 11.0834 0.0492126 -0.164042
  72. <Normal> { 0 1 0 }
  73. }
  74. <Vertex> 25 { 10.6897 0.0492126 -0.164042
  75. <Normal> { 0 1 0 }
  76. }
  77. <Vertex> 26 { 10.6897 0.0492126 0.164042
  78. <Normal> { 0 1 0 }
  79. }
  80. <Vertex> 27 { 10.7389 0.0492126 0.164042
  81. <Normal> { 0 1 0 }
  82. }
  83. <Vertex> 28 { 10.7389 0.0492126 -0.164042
  84. <Normal> { 0 1 0 }
  85. }
  86. <Vertex> 29 { 10.3944 0.0492126 -0.164042
  87. <Normal> { 0 1 0 }
  88. }
  89. <Vertex> 30 { 10.3944 0.0492126 0.164042
  90. <Normal> { 0 1 0 }
  91. }
  92. <Vertex> 31 { 10.4436 0.0492126 0.164042
  93. <Normal> { 0 1 0 }
  94. }
  95. <Vertex> 32 { 10.4436 0.0492126 -0.164042
  96. <Normal> { 0 1 0 }
  97. }
  98. <Vertex> 33 { 11.108 0.0984252 -0.164042
  99. <Normal> { -0.788024 -0.615644 0 }
  100. }
  101. <Vertex> 34 { 11.108 0.0984252 0.164042
  102. <Normal> { -0.788024 -0.615644 0 }
  103. }
  104. <Vertex> 35 { 10.4928 0.885827 0.164042
  105. <Normal> { -0.788024 -0.615644 0 }
  106. }
  107. <Vertex> 36 { 10.4928 0.885827 -0.164042
  108. <Normal> { -0.788024 -0.615644 0 }
  109. }
  110. <Vertex> 37 { 11.0834 0.0492126 -0.164042
  111. <Normal> { -0.894424 0.44722 0 }
  112. }
  113. <Vertex> 38 { 11.0834 0.0492126 0.164042
  114. <Normal> { -0.894424 0.44722 0 }
  115. }
  116. <Vertex> 39 { 11.108 0.0984252 0.164042
  117. <Normal> { -0.894424 0.44722 0 }
  118. }
  119. <Vertex> 40 { 11.108 0.0984252 -0.164042
  120. <Normal> { -0.894424 0.44722 0 }
  121. }
  122. <Vertex> 41 { 11.1326 0.910433 -0.164042
  123. <Normal> { -0.447214 -0.894427 0 }
  124. }
  125. <Vertex> 42 { 11.1326 0.910433 0.164042
  126. <Normal> { -0.447214 -0.894427 0 }
  127. }
  128. <Vertex> 43 { 11.0834 0.935039 0.164042
  129. <Normal> { -0.447214 -0.894427 0 }
  130. }
  131. <Vertex> 44 { 11.0834 0.935039 -0.164042
  132. <Normal> { -0.447214 -0.894427 0 }
  133. }
  134. <Vertex> 45 { 11.1572 0.86122 -0.164042
  135. <Normal> { -0.894424 -0.447219 0 }
  136. }
  137. <Vertex> 46 { 11.1572 0.86122 0.164042
  138. <Normal> { -0.894424 -0.447219 0 }
  139. }
  140. <Vertex> 47 { 11.1326 0.910433 0.164042
  141. <Normal> { -0.894424 -0.447219 0 }
  142. }
  143. <Vertex> 48 { 11.1326 0.910433 -0.164042
  144. <Normal> { -0.894424 -0.447219 0 }
  145. }
  146. <Vertex> 49 { 11.2802 0.910433 -0.164042
  147. <Normal> { 0.707108 -0.707106 0 }
  148. }
  149. <Vertex> 50 { 11.2802 0.910433 0.164042
  150. <Normal> { 0.707108 -0.707106 0 }
  151. }
  152. <Vertex> 51 { 11.231 0.86122 0.164042
  153. <Normal> { 0.707108 -0.707106 0 }
  154. }
  155. <Vertex> 52 { 11.231 0.86122 -0.164042
  156. <Normal> { 0.707108 -0.707106 0 }
  157. }
  158. <Vertex> 53 { 11.3295 0.935039 -0.164042
  159. <Normal> { 0.447214 -0.894427 0 }
  160. }
  161. <Vertex> 54 { 11.3295 0.935039 0.164042
  162. <Normal> { 0.447214 -0.894427 0 }
  163. }
  164. <Vertex> 55 { 11.2802 0.910433 0.164042
  165. <Normal> { 0.447214 -0.894427 0 }
  166. }
  167. <Vertex> 56 { 11.2802 0.910433 -0.164042
  168. <Normal> { 0.447214 -0.894427 0 }
  169. }
  170. <Vertex> 57 { 10.6651 0.885827 -0.164042
  171. <Normal> { 0.788024 0.615644 0 }
  172. }
  173. <Vertex> 58 { 10.6651 0.885827 0.164042
  174. <Normal> { 0.788024 0.615644 0 }
  175. }
  176. <Vertex> 59 { 11.2802 0.0984252 0.164042
  177. <Normal> { 0.788024 0.615644 0 }
  178. }
  179. <Vertex> 60 { 11.2802 0.0984252 -0.164042
  180. <Normal> { 0.788024 0.615644 0 }
  181. }
  182. <Vertex> 61 { 11.2802 0.0984252 -0.164042
  183. <Normal> { 0.707108 0.707106 0 }
  184. }
  185. <Vertex> 62 { 11.2802 0.0984252 0.164042
  186. <Normal> { 0.707108 0.707106 0 }
  187. }
  188. <Vertex> 63 { 11.3295 0.0492126 0.164042
  189. <Normal> { 0.707108 0.707106 0 }
  190. }
  191. <Vertex> 64 { 11.3295 0.0492126 -0.164042
  192. <Normal> { 0.707108 0.707106 0 }
  193. }
  194. <Vertex> 65 { 10.6405 0.0738189 -0.164042
  195. <Normal> { 0.447215 0.894427 0 }
  196. }
  197. <Vertex> 66 { 10.6405 0.0738189 0.164042
  198. <Normal> { 0.447215 0.894427 0 }
  199. }
  200. <Vertex> 67 { 10.6897 0.0492126 0.164042
  201. <Normal> { 0.447215 0.894427 0 }
  202. }
  203. <Vertex> 68 { 10.6897 0.0492126 -0.164042
  204. <Normal> { 0.447215 0.894427 0 }
  205. }
  206. <Vertex> 69 { 10.6159 0.123031 -0.164042
  207. <Normal> { 0.894424 0.44722 0 }
  208. }
  209. <Vertex> 70 { 10.6159 0.123031 0.164042
  210. <Normal> { 0.894424 0.44722 0 }
  211. }
  212. <Vertex> 71 { 10.6405 0.0738189 0.164042
  213. <Normal> { 0.894424 0.44722 0 }
  214. }
  215. <Vertex> 72 { 10.6405 0.0738189 -0.164042
  216. <Normal> { 0.894424 0.44722 0 }
  217. }
  218. <Vertex> 73 { 10.4436 0.0492126 -0.164042
  219. <Normal> { -0.447215 0.894427 0 }
  220. }
  221. <Vertex> 74 { 10.4436 0.0492126 0.164042
  222. <Normal> { -0.447215 0.894427 0 }
  223. }
  224. <Vertex> 75 { 10.4928 0.0738189 0.164042
  225. <Normal> { -0.447215 0.894427 0 }
  226. }
  227. <Vertex> 76 { 10.4928 0.0738189 -0.164042
  228. <Normal> { -0.447215 0.894427 0 }
  229. }
  230. <Vertex> 77 { 10.4928 0.0738189 -0.164042
  231. <Normal> { -0.707108 0.707106 0 }
  232. }
  233. <Vertex> 78 { 10.4928 0.0738189 0.164042
  234. <Normal> { -0.707108 0.707106 0 }
  235. }
  236. <Vertex> 79 { 10.5421 0.123031 0.164042
  237. <Normal> { -0.707108 0.707106 0 }
  238. }
  239. <Vertex> 80 { 10.5421 0.123031 -0.164042
  240. <Normal> { -0.707108 0.707106 0 }
  241. }
  242. <Vertex> 81 { 10.4928 0.885827 -0.164042
  243. <Normal> { -0.707108 -0.707106 0 }
  244. }
  245. <Vertex> 82 { 10.4928 0.885827 0.164042
  246. <Normal> { -0.707108 -0.707106 0 }
  247. }
  248. <Vertex> 83 { 10.4436 0.935039 0.164042
  249. <Normal> { -0.707108 -0.707106 0 }
  250. }
  251. <Vertex> 84 { 10.4436 0.935039 -0.164042
  252. <Normal> { -0.707108 -0.707106 0 }
  253. }
  254. <Vertex> 85 { 10.6897 0.935039 -0.164042
  255. <Normal> { 0.894424 -0.44722 0 }
  256. }
  257. <Vertex> 86 { 10.6897 0.935039 0.164042
  258. <Normal> { 0.894424 -0.44722 0 }
  259. }
  260. <Vertex> 87 { 10.6651 0.885827 0.164042
  261. <Normal> { 0.894424 -0.44722 0 }
  262. }
  263. <Vertex> 88 { 10.6651 0.885827 -0.164042
  264. <Normal> { 0.894424 -0.44722 0 }
  265. }
  266. <Vertex> 89 { 10.5421 0.123031 -0.164042
  267. <Normal> { -0.768373 0.640003 0 }
  268. }
  269. <Vertex> 90 { 10.5421 0.123031 0.164042
  270. <Normal> { -0.768373 0.640003 0 }
  271. }
  272. <Vertex> 91 { 10.8242 0.461778 0.164042
  273. <Normal> { -0.768373 0.640003 0 }
  274. }
  275. <Vertex> 92 { 10.8242 0.461778 -0.164042
  276. <Normal> { -0.768373 0.640003 0 }
  277. }
  278. <Vertex> 93 { 10.8603 0.415846 0.164042
  279. <Normal> { 0.767692 -0.640819 0 }
  280. }
  281. <Vertex> 94 { 10.6159 0.123031 0.164042
  282. <Normal> { 0.767692 -0.640819 0 }
  283. }
  284. <Vertex> 95 { 10.6159 0.123031 -0.164042
  285. <Normal> { 0.767692 -0.640819 0 }
  286. }
  287. <Vertex> 96 { 10.8603 0.415846 -0.164042
  288. <Normal> { 0.767692 -0.640819 0 }
  289. }
  290. <Vertex> 97 { 10.9128 0.568406 0.164042
  291. <Normal> { -0.767692 0.640819 0 }
  292. }
  293. <Vertex> 98 { 11.1572 0.86122 0.164042
  294. <Normal> { -0.767692 0.640819 0 }
  295. }
  296. <Vertex> 99 { 11.1572 0.86122 -0.164042
  297. <Normal> { -0.767692 0.640819 0 }
  298. }
  299. <Vertex> 100 { 10.9128 0.568406 -0.164042
  300. <Normal> { -0.767692 0.640819 0 }
  301. }
  302. <Vertex> 101 { 11.231 0.86122 -0.164042
  303. <Normal> { 0.768374 -0.640001 0 }
  304. }
  305. <Vertex> 102 { 11.231 0.86122 0.164042
  306. <Normal> { 0.768374 -0.640001 0 }
  307. }
  308. <Vertex> 103 { 10.9489 0.522474 0.164042
  309. <Normal> { 0.768374 -0.640001 0 }
  310. }
  311. <Vertex> 104 { 10.9489 0.522474 -0.164042
  312. <Normal> { 0.768374 -0.640001 0 }
  313. }
  314. <Vertex> 105 { 10.9489 0.522474 0.164042
  315. <Normal> { 0 0 1 }
  316. }
  317. <Vertex> 106 { 11.231 0.86122 0.164042
  318. <Normal> { 0 0 1 }
  319. }
  320. <Vertex> 107 { 11.1572 0.86122 0.164042
  321. <Normal> { 0 0 1 }
  322. }
  323. <Vertex> 108 { 10.9128 0.568406 0.164042
  324. <Normal> { 0 0 1 }
  325. }
  326. <Vertex> 109 { 10.9128 0.568406 -0.164042
  327. <Normal> { 0 0 -1 }
  328. }
  329. <Vertex> 110 { 11.1572 0.86122 -0.164042
  330. <Normal> { 0 0 -1 }
  331. }
  332. <Vertex> 111 { 11.231 0.86122 -0.164042
  333. <Normal> { 0 0 -1 }
  334. }
  335. <Vertex> 112 { 10.9489 0.522474 -0.164042
  336. <Normal> { 0 0 -1 }
  337. }
  338. <Vertex> 113 { 10.6159 0.123031 0.164042
  339. <Normal> { 0 0 1 }
  340. }
  341. <Vertex> 114 { 10.8603 0.415846 0.164042
  342. <Normal> { 0 0 1 }
  343. }
  344. <Vertex> 115 { 10.8242 0.461778 0.164042
  345. <Normal> { 0 0 1 }
  346. }
  347. <Vertex> 116 { 10.5421 0.123031 0.164042
  348. <Normal> { 0 0 1 }
  349. }
  350. <Vertex> 117 { 10.5421 0.123031 -0.164042
  351. <Normal> { 0 0 -1 }
  352. }
  353. <Vertex> 118 { 10.8242 0.461778 -0.164042
  354. <Normal> { 0 0 -1 }
  355. }
  356. <Vertex> 119 { 10.8603 0.415846 -0.164042
  357. <Normal> { 0 0 -1 }
  358. }
  359. <Vertex> 120 { 10.6159 0.123031 -0.164042
  360. <Normal> { 0 0 -1 }
  361. }
  362. <Vertex> 121 { 11.108 0.0984252 0.164042
  363. <Normal> { 0 0 1 }
  364. }
  365. <Vertex> 122 { 11.2802 0.0984252 0.164042
  366. <Normal> { 0 0 1 }
  367. }
  368. <Vertex> 123 { 10.6651 0.885827 0.164042
  369. <Normal> { 0 0 1 }
  370. }
  371. <Vertex> 124 { 10.4928 0.885827 0.164042
  372. <Normal> { 0 0 1 }
  373. }
  374. <Vertex> 125 { 10.4928 0.885827 -0.164042
  375. <Normal> { 0 0 -1 }
  376. }
  377. <Vertex> 126 { 10.6651 0.885827 -0.164042
  378. <Normal> { 0 0 -1 }
  379. }
  380. <Vertex> 127 { 11.2802 0.0984252 -0.164042
  381. <Normal> { 0 0 -1 }
  382. }
  383. <Vertex> 128 { 11.108 0.0984252 -0.164042
  384. <Normal> { 0 0 -1 }
  385. }
  386. <Vertex> 129 { 10.6897 0.935039 0.164042
  387. <Normal> { 0 0 1 }
  388. }
  389. <Vertex> 130 { 10.4436 0.935039 0.164042
  390. <Normal> { 0 0 1 }
  391. }
  392. <Vertex> 131 { 10.7389 0.984252 0.164042
  393. <Normal> { 0 0 1 }
  394. }
  395. <Vertex> 132 { 10.3944 0.984252 0.164042
  396. <Normal> { 0 0 1 }
  397. }
  398. <Vertex> 133 { 10.3944 0.935039 0.164042
  399. <Normal> { 0 0 1 }
  400. }
  401. <Vertex> 134 { 10.3944 0.935039 -0.164042
  402. <Normal> { -1 0 0 }
  403. }
  404. <Vertex> 135 { 10.3944 0.935039 0.164042
  405. <Normal> { -1 0 0 }
  406. }
  407. <Vertex> 136 { 10.3944 0.984252 0.164042
  408. <Normal> { -1 0 0 }
  409. }
  410. <Vertex> 137 { 10.3944 0.984252 -0.164042
  411. <Normal> { -1 0 0 }
  412. }
  413. <Vertex> 138 { 10.7389 0.935039 0.164042
  414. <Normal> { 0 0 1 }
  415. }
  416. <Vertex> 139 { 10.4436 0.935039 -0.164042
  417. <Normal> { 0 0 -1 }
  418. }
  419. <Vertex> 140 { 10.3944 0.935039 -0.164042
  420. <Normal> { 0 0 -1 }
  421. }
  422. <Vertex> 141 { 10.3944 0.984252 -0.164042
  423. <Normal> { 0 0 -1 }
  424. }
  425. <Vertex> 142 { 10.7389 0.984252 -0.164042
  426. <Normal> { 0 0 -1 }
  427. }
  428. <Vertex> 143 { 10.6897 0.935039 -0.164042
  429. <Normal> { 0 0 -1 }
  430. }
  431. <Vertex> 144 { 10.7389 0.935039 -0.164042
  432. <Normal> { 0 0 -1 }
  433. }
  434. <Vertex> 145 { 10.3944 0.984252 -0.164042
  435. <Normal> { 0 1 0 }
  436. }
  437. <Vertex> 146 { 10.3944 0.984252 0.164042
  438. <Normal> { 0 1 0 }
  439. }
  440. <Vertex> 147 { 10.7389 0.984252 0.164042
  441. <Normal> { 0 1 0 }
  442. }
  443. <Vertex> 148 { 10.7389 0.984252 -0.164042
  444. <Normal> { 0 1 0 }
  445. }
  446. <Vertex> 149 { 10.7389 0.984252 -0.164042
  447. <Normal> { 1 0 0 }
  448. }
  449. <Vertex> 150 { 10.7389 0.984252 0.164042
  450. <Normal> { 1 0 0 }
  451. }
  452. <Vertex> 151 { 10.7389 0.935039 0.164042
  453. <Normal> { 1 0 0 }
  454. }
  455. <Vertex> 152 { 10.7389 0.935039 -0.164042
  456. <Normal> { 1 0 0 }
  457. }
  458. <Vertex> 153 { 11.0342 0.935039 -0.164042
  459. <Normal> { -1 0 0 }
  460. }
  461. <Vertex> 154 { 11.0342 0.935039 0.164042
  462. <Normal> { -1 0 0 }
  463. }
  464. <Vertex> 155 { 11.0342 0.984252 0.164042
  465. <Normal> { -1 0 0 }
  466. }
  467. <Vertex> 156 { 11.0342 0.984252 -0.164042
  468. <Normal> { -1 0 0 }
  469. }
  470. <Vertex> 157 { 11.0342 0.984252 -0.164042
  471. <Normal> { 0 1 0 }
  472. }
  473. <Vertex> 158 { 11.0342 0.984252 0.164042
  474. <Normal> { 0 1 0 }
  475. }
  476. <Vertex> 159 { 11.3787 0.984252 0.164042
  477. <Normal> { 0 1 0 }
  478. }
  479. <Vertex> 160 { 11.3787 0.984252 -0.164042
  480. <Normal> { 0 1 0 }
  481. }
  482. <Vertex> 161 { 11.0834 0.935039 -0.164042
  483. <Normal> { 0 0 -1 }
  484. }
  485. <Vertex> 162 { 11.0342 0.935039 -0.164042
  486. <Normal> { 0 0 -1 }
  487. }
  488. <Vertex> 163 { 11.0342 0.984252 -0.164042
  489. <Normal> { 0 0 -1 }
  490. }
  491. <Vertex> 164 { 11.3295 0.935039 -0.164042
  492. <Normal> { 0 0 -1 }
  493. }
  494. <Vertex> 165 { 11.1326 0.910433 -0.164042
  495. <Normal> { 0 0 -1 }
  496. }
  497. <Vertex> 166 { 11.2802 0.910433 -0.164042
  498. <Normal> { 0 0 -1 }
  499. }
  500. <Vertex> 167 { 11.3787 0.984252 -0.164042
  501. <Normal> { 0 0 -1 }
  502. }
  503. <Vertex> 168 { 11.3787 0.935039 -0.164042
  504. <Normal> { 0 0 -1 }
  505. }
  506. <Vertex> 169 { 11.2802 0.910433 0.164042
  507. <Normal> { 0 0 1 }
  508. }
  509. <Vertex> 170 { 11.0834 0.935039 0.164042
  510. <Normal> { 0 0 1 }
  511. }
  512. <Vertex> 171 { 11.1326 0.910433 0.164042
  513. <Normal> { 0 0 1 }
  514. }
  515. <Vertex> 172 { 11.3295 0.935039 0.164042
  516. <Normal> { 0 0 1 }
  517. }
  518. <Vertex> 173 { 11.0342 0.984252 0.164042
  519. <Normal> { 0 0 1 }
  520. }
  521. <Vertex> 174 { 11.0342 0.935039 0.164042
  522. <Normal> { 0 0 1 }
  523. }
  524. <Vertex> 175 { 11.3787 0.984252 -0.164042
  525. <Normal> { 1 0 0 }
  526. }
  527. <Vertex> 176 { 11.3787 0.984252 0.164042
  528. <Normal> { 1 0 0 }
  529. }
  530. <Vertex> 177 { 11.3787 0.935039 0.164042
  531. <Normal> { 1 0 0 }
  532. }
  533. <Vertex> 178 { 11.3787 0.935039 -0.164042
  534. <Normal> { 1 0 0 }
  535. }
  536. <Vertex> 179 { 11.3787 0.935039 0.164042
  537. <Normal> { 0 0 1 }
  538. }
  539. <Vertex> 180 { 11.3787 0.984252 0.164042
  540. <Normal> { 0 0 1 }
  541. }
  542. <Vertex> 181 { 11.0342 0 -0.164042
  543. <Normal> { -1 0 0 }
  544. }
  545. <Vertex> 182 { 11.0342 0 0.164042
  546. <Normal> { -1 0 0 }
  547. }
  548. <Vertex> 183 { 11.0342 0.0492126 0.164042
  549. <Normal> { -1 0 0 }
  550. }
  551. <Vertex> 184 { 11.0342 0.0492126 -0.164042
  552. <Normal> { -1 0 0 }
  553. }
  554. <Vertex> 185 { 11.3787 0 -0.164042
  555. <Normal> { 0 -1 0 }
  556. }
  557. <Vertex> 186 { 11.3787 0 0.164042
  558. <Normal> { 0 -1 0 }
  559. }
  560. <Vertex> 187 { 11.0342 0 0.164042
  561. <Normal> { 0 -1 0 }
  562. }
  563. <Vertex> 188 { 11.0342 0 -0.164042
  564. <Normal> { 0 -1 0 }
  565. }
  566. <Vertex> 189 { 11.3295 0.0492126 -0.164042
  567. <Normal> { 0 0 -1 }
  568. }
  569. <Vertex> 190 { 11.0342 0 -0.164042
  570. <Normal> { 0 0 -1 }
  571. }
  572. <Vertex> 191 { 11.0342 0.0492126 -0.164042
  573. <Normal> { 0 0 -1 }
  574. }
  575. <Vertex> 192 { 11.0834 0.0492126 -0.164042
  576. <Normal> { 0 0 -1 }
  577. }
  578. <Vertex> 193 { 11.3787 0.0492126 -0.164042
  579. <Normal> { 0 0 -1 }
  580. }
  581. <Vertex> 194 { 11.3787 0 -0.164042
  582. <Normal> { 0 0 -1 }
  583. }
  584. <Vertex> 195 { 11.0834 0.0492126 0.164042
  585. <Normal> { 0 0 1 }
  586. }
  587. <Vertex> 196 { 11.0342 0.0492126 0.164042
  588. <Normal> { 0 0 1 }
  589. }
  590. <Vertex> 197 { 11.0342 0 0.164042
  591. <Normal> { 0 0 1 }
  592. }
  593. <Vertex> 198 { 11.3295 0.0492126 0.164042
  594. <Normal> { 0 0 1 }
  595. }
  596. <Vertex> 199 { 11.3787 0.0492126 -0.164042
  597. <Normal> { 1 0 0 }
  598. }
  599. <Vertex> 200 { 11.3787 0.0492126 0.164042
  600. <Normal> { 1 0 0 }
  601. }
  602. <Vertex> 201 { 11.3787 0 0.164042
  603. <Normal> { 1 0 0 }
  604. }
  605. <Vertex> 202 { 11.3787 0 -0.164042
  606. <Normal> { 1 0 0 }
  607. }
  608. <Vertex> 203 { 11.3787 0 0.164042
  609. <Normal> { 0 0 1 }
  610. }
  611. <Vertex> 204 { 11.3787 0.0492126 0.164042
  612. <Normal> { 0 0 1 }
  613. }
  614. <Vertex> 205 { 10.6405 0.0738189 -0.164042
  615. <Normal> { 0 0 -1 }
  616. }
  617. <Vertex> 206 { 10.4928 0.0738189 -0.164042
  618. <Normal> { 0 0 -1 }
  619. }
  620. <Vertex> 207 { 10.6405 0.0738189 0.164042
  621. <Normal> { 0 0 1 }
  622. }
  623. <Vertex> 208 { 10.4928 0.0738189 0.164042
  624. <Normal> { 0 0 1 }
  625. }
  626. <Vertex> 209 { 10.4436 0.0492126 0.164042
  627. <Normal> { 0 0 1 }
  628. }
  629. <Vertex> 210 { 10.6897 0.0492126 0.164042
  630. <Normal> { 0 0 1 }
  631. }
  632. <Vertex> 211 { 10.3944 0.0492126 0.164042
  633. <Normal> { 0 0 1 }
  634. }
  635. <Vertex> 212 { 10.3944 0 0.164042
  636. <Normal> { 0 0 1 }
  637. }
  638. <Vertex> 213 { 10.7389 0 0.164042
  639. <Normal> { 0 0 1 }
  640. }
  641. <Vertex> 214 { 10.3944 0 -0.164042
  642. <Normal> { -1 0 0 }
  643. }
  644. <Vertex> 215 { 10.3944 0 0.164042
  645. <Normal> { -1 0 0 }
  646. }
  647. <Vertex> 216 { 10.3944 0.0492126 0.164042
  648. <Normal> { -1 0 0 }
  649. }
  650. <Vertex> 217 { 10.3944 0.0492126 -0.164042
  651. <Normal> { -1 0 0 }
  652. }
  653. <Vertex> 218 { 10.7389 0.0492126 0.164042
  654. <Normal> { 0 0 1 }
  655. }
  656. <Vertex> 219 { 10.7389 0 -0.164042
  657. <Normal> { 0 0 -1 }
  658. }
  659. <Vertex> 220 { 10.3944 0 -0.164042
  660. <Normal> { 0 0 -1 }
  661. }
  662. <Vertex> 221 { 10.3944 0.0492126 -0.164042
  663. <Normal> { 0 0 -1 }
  664. }
  665. <Vertex> 222 { 10.4436 0.0492126 -0.164042
  666. <Normal> { 0 0 -1 }
  667. }
  668. <Vertex> 223 { 10.6897 0.0492126 -0.164042
  669. <Normal> { 0 0 -1 }
  670. }
  671. <Vertex> 224 { 10.7389 0.0492126 -0.164042
  672. <Normal> { 0 0 -1 }
  673. }
  674. <Vertex> 225 { 10.7389 0 -0.164042
  675. <Normal> { 0 -1 0 }
  676. }
  677. <Vertex> 226 { 10.7389 0 0.164042
  678. <Normal> { 0 -1 0 }
  679. }
  680. <Vertex> 227 { 10.3944 0 0.164042
  681. <Normal> { 0 -1 0 }
  682. }
  683. <Vertex> 228 { 10.3944 0 -0.164042
  684. <Normal> { 0 -1 0 }
  685. }
  686. <Vertex> 229 { 10.7389 0.0492126 -0.164042
  687. <Normal> { 1 0 0 }
  688. }
  689. <Vertex> 230 { 10.7389 0.0492126 0.164042
  690. <Normal> { 1 0 0 }
  691. }
  692. <Vertex> 231 { 10.7389 0 0.164042
  693. <Normal> { 1 0 0 }
  694. }
  695. <Vertex> 232 { 10.7389 0 -0.164042
  696. <Normal> { 1 0 0 }
  697. }
  698. <Vertex> 233 { 1 0.1 0 }
  699. <Vertex> 234 { 1 0.2 0 }
  700. <Vertex> 235 { 0 0.2 0 }
  701. <Vertex> 236 { 0 0.1 0 }
  702. <Vertex> 237 { 2 0.1 0 }
  703. <Vertex> 238 { 2 0.2 0 }
  704. <Vertex> 239 { 4 0.1 0 }
  705. <Vertex> 240 { 4 0.2 0 }
  706. <Vertex> 241 { 3 0.2 0 }
  707. <Vertex> 242 { 3 0.1 0 }
  708. <Vertex> 243 { 5 0.1 0 }
  709. <Vertex> 244 { 5 0.2 0 }
  710. <Vertex> 245 { 6 0.1 0 }
  711. <Vertex> 246 { 6 0.2 0 }
  712. <Vertex> 247 { 7 0.1 0 }
  713. <Vertex> 248 { 7 0.2 0 }
  714. <Vertex> 249 { 8 0.1 0 }
  715. <Vertex> 250 { 8 0.2 0 }
  716. <Vertex> 251 { 9 0.1 0 }
  717. <Vertex> 252 { 9 0.2 0 }
  718. <Vertex> 253 { 10 0.1 0 }
  719. <Vertex> 254 { 10 0.2 0 }
  720. <Vertex> 255 { 10 0 0 }
  721. <Vertex> 256 { 5 0 0 }
  722. <Vertex> 257 { 0 0 0 }
  723. <Vertex> 258 { -0.164042 0.932797 -10.5513
  724. <Normal> { 0 -1 0 }
  725. }
  726. <Vertex> 259 { 0.164042 0.932797 -10.5513
  727. <Normal> { 0 -1 0 }
  728. }
  729. <Vertex> 260 { 0.164042 0.932797 -10.5021
  730. <Normal> { 0 -1 0 }
  731. }
  732. <Vertex> 261 { -0.164042 0.932797 -10.5021
  733. <Normal> { 0 -1 0 }
  734. }
  735. <Vertex> 262 { -0.164042 0.932797 -10.8466
  736. <Normal> { 0 -1 0 }
  737. }
  738. <Vertex> 263 { 0.164042 0.932797 -10.8466
  739. <Normal> { 0 -1 0 }
  740. }
  741. <Vertex> 264 { 0.164042 0.932797 -10.7974
  742. <Normal> { 0 -1 0 }
  743. }
  744. <Vertex> 265 { -0.164042 0.932797 -10.7974
  745. <Normal> { 0 -1 0 }
  746. }
  747. <Vertex> 266 { -0.164042 0.932797 -11.1911
  748. <Normal> { 0 -1 0 }
  749. }
  750. <Vertex> 267 { 0.164042 0.932797 -11.1911
  751. <Normal> { 0 -1 0 }
  752. }
  753. <Vertex> 268 { 0.164042 0.932797 -11.1419
  754. <Normal> { 0 -1 0 }
  755. }
  756. <Vertex> 269 { -0.164042 0.932797 -11.1419
  757. <Normal> { 0 -1 0 }
  758. }
  759. <Vertex> 270 { -0.164042 0.932797 -11.4864
  760. <Normal> { 0 -1 0 }
  761. }
  762. <Vertex> 271 { 0.164042 0.932797 -11.4864
  763. <Normal> { 0 -1 0 }
  764. }
  765. <Vertex> 272 { 0.164042 0.932797 -11.4372
  766. <Normal> { 0 -1 0 }
  767. }
  768. <Vertex> 273 { -0.164042 0.932797 -11.4372
  769. <Normal> { 0 -1 0 }
  770. }
  771. <Vertex> 274 { -0.164042 0.891786 -11.2403
  772. <Normal> { 0 -0.768218 0.640188 }
  773. }
  774. <Vertex> 275 { 0.164042 0.891786 -11.2403
  775. <Normal> { 0 -0.768218 0.640188 }
  776. }
  777. <Vertex> 276 { 0.164042 0.932797 -11.1911
  778. <Normal> { 0 -0.768218 0.640188 }
  779. }
  780. <Vertex> 277 { -0.164042 0.932797 -11.1911
  781. <Normal> { 0 -0.768218 0.640188 }
  782. }
  783. <Vertex> 278 { -0.164042 0.809765 -11.2649
  784. <Normal> { 0 -0.287349 0.957826 }
  785. }
  786. <Vertex> 279 { 0.164042 0.809765 -11.2649
  787. <Normal> { 0 -0.287349 0.957826 }
  788. }
  789. <Vertex> 280 { 0.164042 0.891786 -11.2403
  790. <Normal> { 0 -0.287349 0.957826 }
  791. }
  792. <Vertex> 281 { -0.164042 0.891786 -11.2403
  793. <Normal> { 0 -0.287349 0.957826 }
  794. }
  795. <Vertex> 282 { -0.164042 0.891786 -11.3879
  796. <Normal> { 0 -0.514498 -0.857492 }
  797. }
  798. <Vertex> 283 { 0.164042 0.891786 -11.3879
  799. <Normal> { 0 -0.514498 -0.857492 }
  800. }
  801. <Vertex> 284 { 0.164042 0.809765 -11.3387
  802. <Normal> { 0 -0.514498 -0.857492 }
  803. }
  804. <Vertex> 285 { -0.164042 0.809765 -11.3387
  805. <Normal> { 0 -0.514498 -0.857492 }
  806. }
  807. <Vertex> 286 { -0.164042 0.932797 -11.4372
  808. <Normal> { 0 -0.768218 -0.640189 }
  809. }
  810. <Vertex> 287 { 0.164042 0.932797 -11.4372
  811. <Normal> { 0 -0.768218 -0.640189 }
  812. }
  813. <Vertex> 288 { 0.164042 0.891786 -11.3879
  814. <Normal> { 0 -0.768218 -0.640189 }
  815. }
  816. <Vertex> 289 { -0.164042 0.891786 -11.3879
  817. <Normal> { 0 -0.768218 -0.640189 }
  818. }
  819. <Vertex> 290 { -0.164042 0.850776 -10.6005
  820. <Normal> { 0 -0.514497 0.857492 }
  821. }
  822. <Vertex> 291 { 0.164042 0.850776 -10.6005
  823. <Normal> { 0 -0.514497 0.857492 }
  824. }
  825. <Vertex> 292 { 0.164042 0.932797 -10.5513
  826. <Normal> { 0 -0.514497 0.857492 }
  827. }
  828. <Vertex> 293 { -0.164042 0.932797 -10.5513
  829. <Normal> { 0 -0.514497 0.857492 }
  830. }
  831. <Vertex> 294 { -0.164042 0.932797 -10.7974
  832. <Normal> { 0 -0.287349 -0.957826 }
  833. }
  834. <Vertex> 295 { 0.164042 0.932797 -10.7974
  835. <Normal> { 0 -0.287349 -0.957826 }
  836. }
  837. <Vertex> 296 { 0.164042 0.850776 -10.7728
  838. <Normal> { 0 -0.287349 -0.957826 }
  839. }
  840. <Vertex> 297 { -0.164042 0.850776 -10.7728
  841. <Normal> { 0 -0.287349 -0.957826 }
  842. }
  843. <Vertex> 298 { 0.164042 -0.660871 -10.6481
  844. <Normal> { 0 0.386769 0.922177 }
  845. }
  846. <Vertex> 299 { 0.164042 0.809765 -11.2649
  847. <Normal> { 0 0.386769 0.922177 }
  848. }
  849. <Vertex> 300 { -0.164042 0.809765 -11.2649
  850. <Normal> { 0 0.386769 0.922177 }
  851. }
  852. <Vertex> 301 { -0.164042 -0.660871 -10.6481
  853. <Normal> { 0 0.386769 0.922177 }
  854. }
  855. <Vertex> 302 { 0.164042 0.0272851 -10.9368
  856. <Normal> { 0 -0.378058 0.925782 }
  857. }
  858. <Vertex> 303 { 0.164042 0.850776 -10.6005
  859. <Normal> { 0 -0.378058 0.925782 }
  860. }
  861. <Vertex> 304 { -0.164042 0.850776 -10.6005
  862. <Normal> { 0 -0.378058 0.925782 }
  863. }
  864. <Vertex> 305 { -0.164042 0.0272851 -10.9368
  865. <Normal> { 0 -0.378058 0.925782 }
  866. }
  867. <Vertex> 306 { -0.164042 0.809765 -11.3387
  868. <Normal> { 0 -0.386769 -0.922177 }
  869. }
  870. <Vertex> 307 { 0.164042 0.809765 -11.3387
  871. <Normal> { 0 -0.386769 -0.922177 }
  872. }
  873. <Vertex> 308 { 0.164042 -0.660871 -10.7219
  874. <Normal> { 0 -0.386769 -0.922177 }
  875. }
  876. <Vertex> 309 { -0.164042 -0.660871 -10.7219
  877. <Normal> { 0 -0.386769 -0.922177 }
  878. }
  879. <Vertex> 310 { -0.164042 0.850776 -10.7728
  880. <Normal> { 0 0.377336 -0.926076 }
  881. }
  882. <Vertex> 311 { 0.164042 0.850776 -10.7728
  883. <Normal> { 0 0.377336 -0.926076 }
  884. }
  885. <Vertex> 312 { 0.164042 0.234798 -11.0238
  886. <Normal> { 0 0.377336 -0.926076 }
  887. }
  888. <Vertex> 313 { -0.164042 0.234798 -11.0238
  889. <Normal> { 0 0.377336 -0.926076 }
  890. }
  891. <Vertex> 314 { -0.164042 -0.783903 -10.845
  892. <Normal> { 0 0 -1 }
  893. }
  894. <Vertex> 315 { 0.164042 -0.783903 -10.845
  895. <Normal> { 0 0 -1 }
  896. }
  897. <Vertex> 316 { 0.164042 -0.865923 -10.845
  898. <Normal> { 0 0 -1 }
  899. }
  900. <Vertex> 317 { -0.164042 -0.865923 -10.845
  901. <Normal> { 0 0 -1 }
  902. }
  903. <Vertex> 318 { -0.164042 -0.865923 -10.845
  904. <Normal> { 0 -1 0 }
  905. }
  906. <Vertex> 319 { 0.164042 -0.865923 -10.845
  907. <Normal> { 0 -1 0 }
  908. }
  909. <Vertex> 320 { 0.164042 -0.865923 -10.5005
  910. <Normal> { 0 -1 0 }
  911. }
  912. <Vertex> 321 { -0.164042 -0.865923 -10.5005
  913. <Normal> { 0 -1 0 }
  914. }
  915. <Vertex> 322 { -0.164042 -0.783903 -10.7958
  916. <Normal> { -1 0 0 }
  917. }
  918. <Vertex> 323 { -0.164042 -0.783903 -10.845
  919. <Normal> { -1 0 0 }
  920. }
  921. <Vertex> 324 { -0.164042 -0.865923 -10.845
  922. <Normal> { -1 0 0 }
  923. }
  924. <Vertex> 325 { -0.164042 -0.783903 -10.5497
  925. <Normal> { -1 0 0 }
  926. }
  927. <Vertex> 326 { -0.164042 -0.742893 -10.7465
  928. <Normal> { -1 0 0 }
  929. }
  930. <Vertex> 327 { -0.164042 -0.742893 -10.5989
  931. <Normal> { -1 0 0 }
  932. }
  933. <Vertex> 328 { -0.164042 -0.865923 -10.5005
  934. <Normal> { -1 0 0 }
  935. }
  936. <Vertex> 329 { -0.164042 -0.783903 -10.5005
  937. <Normal> { -1 0 0 }
  938. }
  939. <Vertex> 330 { 0.164042 -0.742893 -10.5989
  940. <Normal> { 1 0 0 }
  941. }
  942. <Vertex> 331 { 0.164042 -0.783903 -10.7958
  943. <Normal> { 1 0 0 }
  944. }
  945. <Vertex> 332 { 0.164042 -0.742893 -10.7465
  946. <Normal> { 1 0 0 }
  947. }
  948. <Vertex> 333 { 0.164042 -0.783903 -10.5497
  949. <Normal> { 1 0 0 }
  950. }
  951. <Vertex> 334 { 0.164042 -0.865923 -10.845
  952. <Normal> { 1 0 0 }
  953. }
  954. <Vertex> 335 { 0.164042 -0.783903 -10.845
  955. <Normal> { 1 0 0 }
  956. }
  957. <Vertex> 336 { -0.164042 -0.865923 -10.5005
  958. <Normal> { 0 0 1 }
  959. }
  960. <Vertex> 337 { 0.164042 -0.865923 -10.5005
  961. <Normal> { 0 0 1 }
  962. }
  963. <Vertex> 338 { 0.164042 -0.783903 -10.5005
  964. <Normal> { 0 0 1 }
  965. }
  966. <Vertex> 339 { -0.164042 -0.783903 -10.5005
  967. <Normal> { 0 0 1 }
  968. }
  969. <Vertex> 340 { 0.164042 -0.783903 -10.5005
  970. <Normal> { 1 0 0 }
  971. }
  972. <Vertex> 341 { 0.164042 -0.865923 -10.5005
  973. <Normal> { 1 0 0 }
  974. }
  975. <Vertex> 342 { 0.164042 -0.660871 -10.6481
  976. <Normal> { 1 0 0 }
  977. }
  978. <Vertex> 343 { 0.164042 -0.660871 -10.7219
  979. <Normal> { 1 0 0 }
  980. }
  981. <Vertex> 344 { -0.164042 -0.660871 -10.6481
  982. <Normal> { -1 0 0 }
  983. }
  984. <Vertex> 345 { -0.164042 -0.660871 -10.7219
  985. <Normal> { -1 0 0 }
  986. }
  987. <Vertex> 346 { -0.164042 -0.783903 -10.5497
  988. <Normal> { 0 0.768226 0.640179 }
  989. }
  990. <Vertex> 347 { 0.164042 -0.783903 -10.5497
  991. <Normal> { 0 0.768226 0.640179 }
  992. }
  993. <Vertex> 348 { 0.164042 -0.742893 -10.5989
  994. <Normal> { 0 0.768226 0.640179 }
  995. }
  996. <Vertex> 349 { -0.164042 -0.742893 -10.5989
  997. <Normal> { 0 0.768226 0.640179 }
  998. }
  999. <Vertex> 350 { -0.164042 -0.742893 -10.5989
  1000. <Normal> { 0 0.514492 0.857495 }
  1001. }
  1002. <Vertex> 351 { 0.164042 -0.742893 -10.5989
  1003. <Normal> { 0 0.514492 0.857495 }
  1004. }
  1005. <Vertex> 352 { 0.164042 -0.660871 -10.6481
  1006. <Normal> { 0 0.514492 0.857495 }
  1007. }
  1008. <Vertex> 353 { -0.164042 -0.660871 -10.6481
  1009. <Normal> { 0 0.514492 0.857495 }
  1010. }
  1011. <Vertex> 354 { -0.164042 -0.660871 -10.7219
  1012. <Normal> { 0 0.287345 -0.957827 }
  1013. }
  1014. <Vertex> 355 { 0.164042 -0.660871 -10.7219
  1015. <Normal> { 0 0.287345 -0.957827 }
  1016. }
  1017. <Vertex> 356 { 0.164042 -0.742893 -10.7465
  1018. <Normal> { 0 0.287345 -0.957827 }
  1019. }
  1020. <Vertex> 357 { -0.164042 -0.742893 -10.7465
  1021. <Normal> { 0 0.287345 -0.957827 }
  1022. }
  1023. <Vertex> 358 { -0.164042 -0.742893 -10.7465
  1024. <Normal> { 0 0.768227 -0.640178 }
  1025. }
  1026. <Vertex> 359 { 0.164042 -0.742893 -10.7465
  1027. <Normal> { 0 0.768227 -0.640178 }
  1028. }
  1029. <Vertex> 360 { 0.164042 -0.783903 -10.7958
  1030. <Normal> { 0 0.768227 -0.640178 }
  1031. }
  1032. <Vertex> 361 { -0.164042 -0.783903 -10.7958
  1033. <Normal> { 0 0.768227 -0.640178 }
  1034. }
  1035. <Vertex> 362 { -0.164042 -0.783903 -10.5005
  1036. <Normal> { 0 1 0 }
  1037. }
  1038. <Vertex> 363 { 0.164042 -0.783903 -10.5005
  1039. <Normal> { 0 1 0 }
  1040. }
  1041. <Vertex> 364 { 0.164042 -0.783903 -10.5497
  1042. <Normal> { 0 1 0 }
  1043. }
  1044. <Vertex> 365 { -0.164042 -0.783903 -10.5497
  1045. <Normal> { 0 1 0 }
  1046. }
  1047. <Vertex> 366 { -0.164042 -0.783903 -10.7958
  1048. <Normal> { 0 1 0 }
  1049. }
  1050. <Vertex> 367 { 0.164042 -0.783903 -10.7958
  1051. <Normal> { 0 1 0 }
  1052. }
  1053. <Vertex> 368 { 0.164042 -0.783903 -10.845
  1054. <Normal> { 0 1 0 }
  1055. }
  1056. <Vertex> 369 { -0.164042 -0.783903 -10.845
  1057. <Normal> { 0 1 0 }
  1058. }
  1059. <Vertex> 370 { -0.164042 0.850776 -10.6005
  1060. <Normal> { -1 0 0 }
  1061. }
  1062. <Vertex> 371 { -0.164042 0.850776 -10.7728
  1063. <Normal> { -1 0 0 }
  1064. }
  1065. <Vertex> 372 { -0.164042 0.235618 -11.0238
  1066. <Normal> { -1 0 0 }
  1067. }
  1068. <Vertex> 373 { -0.164042 0.0272851 -10.9368
  1069. <Normal> { -1 0 0 }
  1070. }
  1071. <Vertex> 374 { 0.164042 0.235618 -11.0238
  1072. <Normal> { 1 0 0 }
  1073. }
  1074. <Vertex> 375 { 0.164042 0.850776 -10.7728
  1075. <Normal> { 1 0 0 }
  1076. }
  1077. <Vertex> 376 { 0.164042 0.850776 -10.6005
  1078. <Normal> { 1 0 0 }
  1079. }
  1080. <Vertex> 377 { 0.164042 0.0272851 -10.9368
  1081. <Normal> { 1 0 0 }
  1082. }
  1083. <Vertex> 378 { -0.164042 0.809765 -11.2649
  1084. <Normal> { -1 0 0 }
  1085. }
  1086. <Vertex> 379 { -0.164042 0.809765 -11.3387
  1087. <Normal> { -1 0 0 }
  1088. }
  1089. <Vertex> 380 { 0.164042 0.809765 -11.3387
  1090. <Normal> { 1 0 0 }
  1091. }
  1092. <Vertex> 381 { 0.164042 0.809765 -11.2649
  1093. <Normal> { 1 0 0 }
  1094. }
  1095. <Vertex> 382 { -0.164042 0.891786 -11.2403
  1096. <Normal> { -1 0 0 }
  1097. }
  1098. <Vertex> 383 { -0.164042 0.891786 -11.3879
  1099. <Normal> { -1 0 0 }
  1100. }
  1101. <Vertex> 384 { 0.164042 0.891786 -11.2403
  1102. <Normal> { 1 0 0 }
  1103. }
  1104. <Vertex> 385 { 0.164042 0.891786 -11.3879
  1105. <Normal> { 1 0 0 }
  1106. }
  1107. <Vertex> 386 { 0.164042 0.932797 -11.4372
  1108. <Normal> { 1 0 0 }
  1109. }
  1110. <Vertex> 387 { 0.164042 0.932797 -11.1911
  1111. <Normal> { 1 0 0 }
  1112. }
  1113. <Vertex> 388 { 0.164042 0.932797 -11.4864
  1114. <Normal> { 1 0 0 }
  1115. }
  1116. <Vertex> 389 { 0.164042 1.01482 -11.4864
  1117. <Normal> { 1 0 0 }
  1118. }
  1119. <Vertex> 390 { 0.164042 1.01482 -11.1419
  1120. <Normal> { 1 0 0 }
  1121. }
  1122. <Vertex> 391 { -0.164042 1.01482 -11.4864
  1123. <Normal> { 0 0 -1 }
  1124. }
  1125. <Vertex> 392 { 0.164042 1.01482 -11.4864
  1126. <Normal> { 0 0 -1 }
  1127. }
  1128. <Vertex> 393 { 0.164042 0.932797 -11.4864
  1129. <Normal> { 0 0 -1 }
  1130. }
  1131. <Vertex> 394 { -0.164042 0.932797 -11.4864
  1132. <Normal> { 0 0 -1 }
  1133. }
  1134. <Vertex> 395 { 0.164042 0.932797 -11.1419
  1135. <Normal> { 1 0 0 }
  1136. }
  1137. <Vertex> 396 { -0.164042 1.01482 -11.1419
  1138. <Normal> { -1 0 0 }
  1139. }
  1140. <Vertex> 397 { -0.164042 1.01482 -11.4864
  1141. <Normal> { -1 0 0 }
  1142. }
  1143. <Vertex> 398 { -0.164042 0.932797 -11.4864
  1144. <Normal> { -1 0 0 }
  1145. }
  1146. <Vertex> 399 { -0.164042 0.932797 -11.4372
  1147. <Normal> { -1 0 0 }
  1148. }
  1149. <Vertex> 400 { -0.164042 0.932797 -11.1911
  1150. <Normal> { -1 0 0 }
  1151. }
  1152. <Vertex> 401 { -0.164042 0.932797 -11.1419
  1153. <Normal> { -1 0 0 }
  1154. }
  1155. <Vertex> 402 { -0.164042 1.01482 -11.1419
  1156. <Normal> { 0 1 0 }
  1157. }
  1158. <Vertex> 403 { 0.164042 1.01482 -11.1419
  1159. <Normal> { 0 1 0 }
  1160. }
  1161. <Vertex> 404 { 0.164042 1.01482 -11.4864
  1162. <Normal> { 0 1 0 }
  1163. }
  1164. <Vertex> 405 { -0.164042 1.01482 -11.4864
  1165. <Normal> { 0 1 0 }
  1166. }
  1167. <Vertex> 406 { -0.164042 0.932797 -11.1419
  1168. <Normal> { 0 0 1 }
  1169. }
  1170. <Vertex> 407 { 0.164042 0.932797 -11.1419
  1171. <Normal> { 0 0 1 }
  1172. }
  1173. <Vertex> 408 { 0.164042 1.01482 -11.1419
  1174. <Normal> { 0 0 1 }
  1175. }
  1176. <Vertex> 409 { -0.164042 1.01482 -11.1419
  1177. <Normal> { 0 0 1 }
  1178. }
  1179. <Vertex> 410 { -0.164042 1.01482 -10.8466
  1180. <Normal> { 0 0 -1 }
  1181. }
  1182. <Vertex> 411 { 0.164042 1.01482 -10.8466
  1183. <Normal> { 0 0 -1 }
  1184. }
  1185. <Vertex> 412 { 0.164042 0.932797 -10.8466
  1186. <Normal> { 0 0 -1 }
  1187. }
  1188. <Vertex> 413 { -0.164042 0.932797 -10.8466
  1189. <Normal> { 0 0 -1 }
  1190. }
  1191. <Vertex> 414 { -0.164042 1.01482 -10.5021
  1192. <Normal> { 0 1 0 }
  1193. }
  1194. <Vertex> 415 { 0.164042 1.01482 -10.5021
  1195. <Normal> { 0 1 0 }
  1196. }
  1197. <Vertex> 416 { 0.164042 1.01482 -10.8466
  1198. <Normal> { 0 1 0 }
  1199. }
  1200. <Vertex> 417 { -0.164042 1.01482 -10.8466
  1201. <Normal> { 0 1 0 }
  1202. }
  1203. <Vertex> 418 { -0.164042 0.932797 -10.5513
  1204. <Normal> { -1 0 0 }
  1205. }
  1206. <Vertex> 419 { -0.164042 1.01482 -10.8466
  1207. <Normal> { -1 0 0 }
  1208. }
  1209. <Vertex> 420 { -0.164042 0.932797 -10.8466
  1210. <Normal> { -1 0 0 }
  1211. }
  1212. <Vertex> 421 { -0.164042 0.932797 -10.7974
  1213. <Normal> { -1 0 0 }
  1214. }
  1215. <Vertex> 422 { -0.164042 0.932797 -10.5021
  1216. <Normal> { -1 0 0 }
  1217. }
  1218. <Vertex> 423 { -0.164042 1.01482 -10.5021
  1219. <Normal> { -1 0 0 }
  1220. }
  1221. <Vertex> 424 { 0.164042 0.932797 -10.7974
  1222. <Normal> { 1 0 0 }
  1223. }
  1224. <Vertex> 425 { 0.164042 0.932797 -10.8466
  1225. <Normal> { 1 0 0 }
  1226. }
  1227. <Vertex> 426 { 0.164042 1.01482 -10.8466
  1228. <Normal> { 1 0 0 }
  1229. }
  1230. <Vertex> 427 { 0.164042 0.932797 -10.5513
  1231. <Normal> { 1 0 0 }
  1232. }
  1233. <Vertex> 428 { -0.164042 0.932797 -10.5021
  1234. <Normal> { 0 0 1 }
  1235. }
  1236. <Vertex> 429 { 0.164042 0.932797 -10.5021
  1237. <Normal> { 0 0 1 }
  1238. }
  1239. <Vertex> 430 { 0.164042 1.01482 -10.5021
  1240. <Normal> { 0 0 1 }
  1241. }
  1242. <Vertex> 431 { -0.164042 1.01482 -10.5021
  1243. <Normal> { 0 0 1 }
  1244. }
  1245. <Vertex> 432 { 0.164042 1.01482 -10.5021
  1246. <Normal> { 1 0 0 }
  1247. }
  1248. <Vertex> 433 { 0.164042 0.932797 -10.5021
  1249. <Normal> { 1 0 0 }
  1250. }
  1251. <Vertex> 434 { 0 0.1 -1 }
  1252. <Vertex> 435 { 0 0 -1 }
  1253. <Vertex> 436 { 0 0.1 -2 }
  1254. <Vertex> 437 { 0 0 -2 }
  1255. <Vertex> 438 { 0 0.1 -4 }
  1256. <Vertex> 439 { 0 0 -4 }
  1257. <Vertex> 440 { 0 0 -3 }
  1258. <Vertex> 441 { 0 0.1 -3 }
  1259. <Vertex> 442 { 0 0.1 -5 }
  1260. <Vertex> 443 { 0 0 -5 }
  1261. <Vertex> 444 { 0 0.1 -6 }
  1262. <Vertex> 445 { 0 0 -6 }
  1263. <Vertex> 446 { 0 0.1 -7 }
  1264. <Vertex> 447 { 0 0 -7 }
  1265. <Vertex> 448 { 0 0.1 -8 }
  1266. <Vertex> 449 { 0 0 -8 }
  1267. <Vertex> 450 { 0 0.1 -9 }
  1268. <Vertex> 451 { 0 0 -9 }
  1269. <Vertex> 452 { 0 0.1 -10 }
  1270. <Vertex> 453 { 0 0 -10 }
  1271. <Vertex> 454 { 0 0.2 -10 }
  1272. <Vertex> 455 { 0 0.2 -5 }
  1273. <Vertex> 456 { 0.00314569 10.8591 0
  1274. <Normal> { 0 1 0 }
  1275. }
  1276. <Vertex> 457 { 0.00314569 10.8591 0.328084
  1277. <Normal> { 0 1 0 }
  1278. }
  1279. <Vertex> 458 { 0.593697 10.8591 0.328084
  1280. <Normal> { 0 1 0 }
  1281. }
  1282. <Vertex> 459 { 0.593697 10.8591 0
  1283. <Normal> { 0 1 0 }
  1284. }
  1285. <Vertex> 460 { 0.642909 10.9083 0
  1286. <Normal> { -1 0 0 }
  1287. }
  1288. <Vertex> 461 { 0.642909 10.9083 0.328084
  1289. <Normal> { -1 0 0 }
  1290. }
  1291. <Vertex> 462 { 0.642909 10.9575 0.328084
  1292. <Normal> { -1 0 0 }
  1293. }
  1294. <Vertex> 463 { 0.642909 10.9575 0
  1295. <Normal> { -1 0 0 }
  1296. }
  1297. <Vertex> 464 { 0.593697 10.8591 0
  1298. <Normal> { -0.707108 0.707106 0 }
  1299. }
  1300. <Vertex> 465 { 0.593697 10.8591 0.328084
  1301. <Normal> { -0.707108 0.707106 0 }
  1302. }
  1303. <Vertex> 466 { 0.642909 10.9083 0.328084
  1304. <Normal> { -0.707108 0.707106 0 }
  1305. }
  1306. <Vertex> 467 { 0.642909 10.9083 0
  1307. <Normal> { -0.707108 0.707106 0 }
  1308. }
  1309. <Vertex> 468 { -0.193705 10.9083 0
  1310. <Normal> { -0.776114 0.630592 0 }
  1311. }
  1312. <Vertex> 469 { -0.193705 10.9083 0.328084
  1313. <Normal> { -0.776114 0.630592 0 }
  1314. }
  1315. <Vertex> 470 { 0.446059 11.6957 0.328084
  1316. <Normal> { -0.776114 0.630592 0 }
  1317. }
  1318. <Vertex> 471 { 0.446059 11.6957 0
  1319. <Normal> { -0.776114 0.630592 0 }
  1320. }
  1321. <Vertex> 472 { -0.242917 10.8591 0
  1322. <Normal> { -0.707106 0.707107 0 }
  1323. }
  1324. <Vertex> 473 { -0.242917 10.8591 0.328084
  1325. <Normal> { -0.707106 0.707107 0 }
  1326. }
  1327. <Vertex> 474 { -0.193705 10.9083 0.328084
  1328. <Normal> { -0.707106 0.707107 0 }
  1329. }
  1330. <Vertex> 475 { -0.193705 10.9083 0
  1331. <Normal> { -0.707106 0.707107 0 }
  1332. }
  1333. <Vertex> 476 { -0.29213 10.8591 0
  1334. <Normal> { 0 1 0 }
  1335. }
  1336. <Vertex> 477 { -0.29213 10.8591 0.328084
  1337. <Normal> { 0 1 0 }
  1338. }
  1339. <Vertex> 478 { -0.242917 10.8591 0.328084
  1340. <Normal> { 0 1 0 }
  1341. }
  1342. <Vertex> 479 { -0.242917 10.8591 0
  1343. <Normal> { 0 1 0 }
  1344. }
  1345. <Vertex> 480 { -0.046067 10.9083 0
  1346. <Normal> { 0.707106 0.707107 0 }
  1347. }
  1348. <Vertex> 481 { -0.046067 10.9083 0.328084
  1349. <Normal> { 0.707106 0.707107 0 }
  1350. }
  1351. <Vertex> 482 { 0.00314569 10.8591 0.328084
  1352. <Normal> { 0.707106 0.707107 0 }
  1353. }
  1354. <Vertex> 483 { 0.00314569 10.8591 0
  1355. <Normal> { 0.707106 0.707107 0 }
  1356. }
  1357. <Vertex> 484 { 0.446059 11.6957 0
  1358. <Normal> { -0.707106 -0.707108 0 }
  1359. }
  1360. <Vertex> 485 { 0.446059 11.6957 0.328084
  1361. <Normal> { -0.707106 -0.707108 0 }
  1362. }
  1363. <Vertex> 486 { 0.396846 11.7449 0.328084
  1364. <Normal> { -0.707106 -0.707108 0 }
  1365. }
  1366. <Vertex> 487 { 0.396846 11.7449 0
  1367. <Normal> { -0.707106 -0.707108 0 }
  1368. }
  1369. <Vertex> 488 { 0.396846 11.7449 0
  1370. <Normal> { 0 -1 0 }
  1371. }
  1372. <Vertex> 489 { 0.396846 11.7449 0.328084
  1373. <Normal> { 0 -1 0 }
  1374. }
  1375. <Vertex> 490 { -0.193705 11.7449 0.328084
  1376. <Normal> { 0 -1 0 }
  1377. }
  1378. <Vertex> 491 { -0.193705 11.7449 0
  1379. <Normal> { 0 -1 0 }
  1380. }
  1381. <Vertex> 492 { -0.193705 11.7449 0
  1382. <Normal> { 0.707106 -0.707108 0 }
  1383. }
  1384. <Vertex> 493 { -0.193705 11.7449 0.328084
  1385. <Normal> { 0.707106 -0.707108 0 }
  1386. }
  1387. <Vertex> 494 { -0.242917 11.6957 0.328084
  1388. <Normal> { 0.707106 -0.707108 0 }
  1389. }
  1390. <Vertex> 495 { -0.242917 11.6957 0
  1391. <Normal> { 0.707106 -0.707108 0 }
  1392. }
  1393. <Vertex> 496 { -0.242917 11.6957 0
  1394. <Normal> { 1 0 0 }
  1395. }
  1396. <Vertex> 497 { -0.242917 11.6957 0.328084
  1397. <Normal> { 1 0 0 }
  1398. }
  1399. <Vertex> 498 { -0.242917 11.6465 0.328084
  1400. <Normal> { 1 0 0 }
  1401. }
  1402. <Vertex> 499 { -0.242917 11.6465 0
  1403. <Normal> { 1 0 0 }
  1404. }
  1405. <Vertex> 500 { 0.692122 11.7449 0
  1406. <Normal> { 0 -1 0 }
  1407. }
  1408. <Vertex> 501 { 0.692122 11.7449 0.328084
  1409. <Normal> { 0 -1 0 }
  1410. }
  1411. <Vertex> 502 { 0.642909 11.7449 0.328084
  1412. <Normal> { 0 -1 0 }
  1413. }
  1414. <Vertex> 503 { 0.642909 11.7449 0
  1415. <Normal> { 0 -1 0 }
  1416. }
  1417. <Vertex> 504 { 0.642909 11.7449 0
  1418. <Normal> { 0.707108 -0.707106 0 }
  1419. }
  1420. <Vertex> 505 { 0.642909 11.7449 0.328084
  1421. <Normal> { 0.707108 -0.707106 0 }
  1422. }
  1423. <Vertex> 506 { 0.593697 11.6957 0.328084
  1424. <Normal> { 0.707108 -0.707106 0 }
  1425. }
  1426. <Vertex> 507 { 0.593697 11.6957 0
  1427. <Normal> { 0.707108 -0.707106 0 }
  1428. }
  1429. <Vertex> 508 { 0.593697 11.6957 0
  1430. <Normal> { 0.776114 -0.630593 0 }
  1431. }
  1432. <Vertex> 509 { 0.593697 11.6957 0.328084
  1433. <Normal> { 0.776114 -0.630593 0 }
  1434. }
  1435. <Vertex> 510 { -0.046067 10.9083 0.328084
  1436. <Normal> { 0.776114 -0.630593 0 }
  1437. }
  1438. <Vertex> 511 { -0.046067 10.9083 0
  1439. <Normal> { 0.776114 -0.630593 0 }
  1440. }
  1441. <Vertex> 512 { 0.593697 11.6957 0.328084
  1442. <Normal> { 0 0 1 }
  1443. }
  1444. <Vertex> 513 { 0.642909 11.7449 0.328084
  1445. <Normal> { 0 0 1 }
  1446. }
  1447. <Vertex> 514 { 0.446059 11.7941 0.328084
  1448. <Normal> { 0 0 1 }
  1449. }
  1450. <Vertex> 515 { 0.446059 11.6957 0.328084
  1451. <Normal> { 0 0 1 }
  1452. }
  1453. <Vertex> 516 { 0.692122 11.7449 0.328084
  1454. <Normal> { 0 0 1 }
  1455. }
  1456. <Vertex> 517 { 0.692122 11.7941 0.328084
  1457. <Normal> { 0 0 1 }
  1458. }
  1459. <Vertex> 518 { 0.692122 11.7941 0
  1460. <Normal> { 1 0 0 }
  1461. }
  1462. <Vertex> 519 { 0.692122 11.7941 0.328084
  1463. <Normal> { 1 0 0 }
  1464. }
  1465. <Vertex> 520 { 0.692122 11.7449 0.328084
  1466. <Normal> { 1 0 0 }
  1467. }
  1468. <Vertex> 521 { 0.692122 11.7449 0
  1469. <Normal> { 1 0 0 }
  1470. }
  1471. <Vertex> 522 { -0.29213 11.7941 0.328084
  1472. <Normal> { 0 0 1 }
  1473. }
  1474. <Vertex> 523 { -0.29213 11.6465 0.328084
  1475. <Normal> { 0 0 1 }
  1476. }
  1477. <Vertex> 524 { -0.242917 11.6465 0.328084
  1478. <Normal> { 0 0 1 }
  1479. }
  1480. <Vertex> 525 { -0.242917 11.6957 0.328084
  1481. <Normal> { 0 0 1 }
  1482. }
  1483. <Vertex> 526 { -0.193705 11.7449 0.328084
  1484. <Normal> { 0 0 1 }
  1485. }
  1486. <Vertex> 527 { 0.396846 11.7449 0.328084
  1487. <Normal> { 0 0 1 }
  1488. }
  1489. <Vertex> 528 { 0.446059 11.7941 0
  1490. <Normal> { 0 0 -1 }
  1491. }
  1492. <Vertex> 529 { 0.692122 11.7941 0
  1493. <Normal> { 0 0 -1 }
  1494. }
  1495. <Vertex> 530 { 0.692122 11.7449 0
  1496. <Normal> { 0 0 -1 }
  1497. }
  1498. <Vertex> 531 { 0.642909 11.7449 0
  1499. <Normal> { 0 0 -1 }
  1500. }
  1501. <Vertex> 532 { 0.446059 11.6957 0
  1502. <Normal> { 0 0 -1 }
  1503. }
  1504. <Vertex> 533 { 0.593697 11.6957 0
  1505. <Normal> { 0 0 -1 }
  1506. }
  1507. <Vertex> 534 { 0.396846 11.7449 0
  1508. <Normal> { 0 0 -1 }
  1509. }
  1510. <Vertex> 535 { -0.193705 11.7449 0
  1511. <Normal> { 0 0 -1 }
  1512. }
  1513. <Vertex> 536 { -0.29213 11.7941 0
  1514. <Normal> { 0 0 -1 }
  1515. }
  1516. <Vertex> 537 { -0.242917 11.6957 0
  1517. <Normal> { 0 0 -1 }
  1518. }
  1519. <Vertex> 538 { -0.242917 11.6465 0
  1520. <Normal> { 0 0 -1 }
  1521. }
  1522. <Vertex> 539 { -0.29213 11.6465 0
  1523. <Normal> { 0 0 -1 }
  1524. }
  1525. <Vertex> 540 { -0.29213 11.6465 0
  1526. <Normal> { -1 0 0 }
  1527. }
  1528. <Vertex> 541 { -0.29213 11.6465 0.328084
  1529. <Normal> { -1 0 0 }
  1530. }
  1531. <Vertex> 542 { -0.29213 11.7941 0.328084
  1532. <Normal> { -1 0 0 }
  1533. }
  1534. <Vertex> 543 { -0.29213 11.7941 0
  1535. <Normal> { -1 0 0 }
  1536. }
  1537. <Vertex> 544 { -0.29213 11.7941 0
  1538. <Normal> { 0 1 0 }
  1539. }
  1540. <Vertex> 545 { -0.29213 11.7941 0.328084
  1541. <Normal> { 0 1 0 }
  1542. }
  1543. <Vertex> 546 { 0.446059 11.7941 0.328084
  1544. <Normal> { 0 1 0 }
  1545. }
  1546. <Vertex> 547 { 0.446059 11.7941 0
  1547. <Normal> { 0 1 0 }
  1548. }
  1549. <Vertex> 548 { 0.692122 11.7941 0.328084
  1550. <Normal> { 0 1 0 }
  1551. }
  1552. <Vertex> 549 { 0.692122 11.7941 0
  1553. <Normal> { 0 1 0 }
  1554. }
  1555. <Vertex> 550 { -0.242917 11.6465 0
  1556. <Normal> { 0 -1 0 }
  1557. }
  1558. <Vertex> 551 { -0.242917 11.6465 0.328084
  1559. <Normal> { 0 -1 0 }
  1560. }
  1561. <Vertex> 552 { -0.29213 11.6465 0.328084
  1562. <Normal> { 0 -1 0 }
  1563. }
  1564. <Vertex> 553 { -0.29213 11.6465 0
  1565. <Normal> { 0 -1 0 }
  1566. }
  1567. <Vertex> 554 { 0.642909 10.9575 0
  1568. <Normal> { 0 1 0 }
  1569. }
  1570. <Vertex> 555 { 0.642909 10.9575 0.328084
  1571. <Normal> { 0 1 0 }
  1572. }
  1573. <Vertex> 556 { 0.692122 10.9575 0.328084
  1574. <Normal> { 0 1 0 }
  1575. }
  1576. <Vertex> 557 { 0.692122 10.9575 0
  1577. <Normal> { 0 1 0 }
  1578. }
  1579. <Vertex> 558 { -0.046067 10.8099 0
  1580. <Normal> { 0 -1 0 }
  1581. }
  1582. <Vertex> 559 { -0.046067 10.8099 0.328084
  1583. <Normal> { 0 -1 0 }
  1584. }
  1585. <Vertex> 560 { -0.29213 10.8099 0.328084
  1586. <Normal> { 0 -1 0 }
  1587. }
  1588. <Vertex> 561 { -0.29213 10.8099 0
  1589. <Normal> { 0 -1 0 }
  1590. }
  1591. <Vertex> 562 { 0.692122 10.8099 0
  1592. <Normal> { 0 -1 0 }
  1593. }
  1594. <Vertex> 563 { 0.692122 10.8099 0.328084
  1595. <Normal> { 0 -1 0 }
  1596. }
  1597. <Vertex> 564 { 0.692122 10.9575 0
  1598. <Normal> { 1 0 0 }
  1599. }
  1600. <Vertex> 565 { 0.692122 10.9575 0.328084
  1601. <Normal> { 1 0 0 }
  1602. }
  1603. <Vertex> 566 { 0.692122 10.8099 0.328084
  1604. <Normal> { 1 0 0 }
  1605. }
  1606. <Vertex> 567 { 0.692122 10.8099 0
  1607. <Normal> { 1 0 0 }
  1608. }
  1609. <Vertex> 568 { 0.593697 10.8591 0
  1610. <Normal> { 0 0 -1 }
  1611. }
  1612. <Vertex> 569 { 0.642909 10.9083 0
  1613. <Normal> { 0 0 -1 }
  1614. }
  1615. <Vertex> 570 { 0.692122 10.8099 0
  1616. <Normal> { 0 0 -1 }
  1617. }
  1618. <Vertex> 571 { 0.642909 10.9575 0
  1619. <Normal> { 0 0 -1 }
  1620. }
  1621. <Vertex> 572 { 0.692122 10.9575 0
  1622. <Normal> { 0 0 -1 }
  1623. }
  1624. <Vertex> 573 { 0.00314569 10.8591 0
  1625. <Normal> { 0 0 -1 }
  1626. }
  1627. <Vertex> 574 { -0.046067 10.8099 0
  1628. <Normal> { 0 0 -1 }
  1629. }
  1630. <Vertex> 575 { -0.046067 10.9083 0
  1631. <Normal> { 0 0 -1 }
  1632. }
  1633. <Vertex> 576 { -0.242917 10.8591 0
  1634. <Normal> { 0 0 -1 }
  1635. }
  1636. <Vertex> 577 { -0.193705 10.9083 0
  1637. <Normal> { 0 0 -1 }
  1638. }
  1639. <Vertex> 578 { -0.29213 10.8099 0
  1640. <Normal> { 0 0 -1 }
  1641. }
  1642. <Vertex> 579 { -0.29213 10.8591 0
  1643. <Normal> { 0 0 -1 }
  1644. }
  1645. <Vertex> 580 { -0.046067 10.8099 0.328084
  1646. <Normal> { 0 0 1 }
  1647. }
  1648. <Vertex> 581 { 0.00314569 10.8591 0.328084
  1649. <Normal> { 0 0 1 }
  1650. }
  1651. <Vertex> 582 { -0.046067 10.9083 0.328084
  1652. <Normal> { 0 0 1 }
  1653. }
  1654. <Vertex> 583 { 0.692122 10.8099 0.328084
  1655. <Normal> { 0 0 1 }
  1656. }
  1657. <Vertex> 584 { 0.593697 10.8591 0.328084
  1658. <Normal> { 0 0 1 }
  1659. }
  1660. <Vertex> 585 { 0.642909 10.9083 0.328084
  1661. <Normal> { 0 0 1 }
  1662. }
  1663. <Vertex> 586 { 0.692122 10.9575 0.328084
  1664. <Normal> { 0 0 1 }
  1665. }
  1666. <Vertex> 587 { 0.642909 10.9575 0.328084
  1667. <Normal> { 0 0 1 }
  1668. }
  1669. <Vertex> 588 { -0.29213 10.8099 0
  1670. <Normal> { -1 0 0 }
  1671. }
  1672. <Vertex> 589 { -0.29213 10.8099 0.328084
  1673. <Normal> { -1 0 0 }
  1674. }
  1675. <Vertex> 590 { -0.29213 10.8591 0.328084
  1676. <Normal> { -1 0 0 }
  1677. }
  1678. <Vertex> 591 { -0.29213 10.8591 0
  1679. <Normal> { -1 0 0 }
  1680. }
  1681. <Vertex> 592 { -0.242917 10.8591 0.328084
  1682. <Normal> { 0 0 1 }
  1683. }
  1684. <Vertex> 593 { -0.29213 10.8591 0.328084
  1685. <Normal> { 0 0 1 }
  1686. }
  1687. <Vertex> 594 { -0.29213 10.8099 0.328084
  1688. <Normal> { 0 0 1 }
  1689. }
  1690. <Vertex> 595 { -0.193705 10.9083 0.328084
  1691. <Normal> { 0 0 1 }
  1692. }
  1693. <Vertex> 596 { 0.1 1 0 }
  1694. <Vertex> 597 { 0 1 0 }
  1695. <Vertex> 598 { 0.1 0 0 }
  1696. <Vertex> 599 { 0.1 2 0 }
  1697. <Vertex> 600 { 0 2 0 }
  1698. <Vertex> 601 { 0.1 4 0 }
  1699. <Vertex> 602 { 0 4 0 }
  1700. <Vertex> 603 { 0 3 0 }
  1701. <Vertex> 604 { 0.1 3 0 }
  1702. <Vertex> 605 { 0.1 5 0 }
  1703. <Vertex> 606 { 0 5 0 }
  1704. <Vertex> 607 { 0.1 6 0 }
  1705. <Vertex> 608 { 0 6 0 }
  1706. <Vertex> 609 { 0.1 7 0 }
  1707. <Vertex> 610 { 0 7 0 }
  1708. <Vertex> 611 { 0.1 8 0 }
  1709. <Vertex> 612 { 0 8 0 }
  1710. <Vertex> 613 { 0.1 9 0 }
  1711. <Vertex> 614 { 0 9 0 }
  1712. <Vertex> 615 { 0.1 10 0 }
  1713. <Vertex> 616 { 0 10 0 }
  1714. <Vertex> 617 { 0.2 10 0 }
  1715. <Vertex> 618 { 0.2 5 0 }
  1716. <Vertex> 619 { 0.2 0 0 }
  1717. }
  1718. <Group> axis {
  1719. <Group> x-axis {
  1720. <model> { 1 }
  1721. <Group> x {
  1722. <Polygon> {
  1723. <RGBA> { 1 0 0 1 }
  1724. <VertexRef> { 1 2 3 4 <Ref> { V } }
  1725. }
  1726. <Polygon> {
  1727. <RGBA> { 1 0 0 1 }
  1728. <VertexRef> { 5 6 7 8 <Ref> { V } }
  1729. }
  1730. <Polygon> {
  1731. <RGBA> { 1 0 0 1 }
  1732. <VertexRef> { 9 10 11 12 <Ref> { V } }
  1733. }
  1734. <Polygon> {
  1735. <RGBA> { 1 0 0 1 }
  1736. <VertexRef> { 13 14 15 16 <Ref> { V } }
  1737. }
  1738. <Polygon> {
  1739. <RGBA> { 1 0 0 1 }
  1740. <VertexRef> { 17 18 19 20 <Ref> { V } }
  1741. }
  1742. <Polygon> {
  1743. <RGBA> { 1 0 0 1 }
  1744. <VertexRef> { 21 22 23 24 <Ref> { V } }
  1745. }
  1746. <Polygon> {
  1747. <RGBA> { 1 0 0 1 }
  1748. <VertexRef> { 25 26 27 28 <Ref> { V } }
  1749. }
  1750. <Polygon> {
  1751. <RGBA> { 1 0 0 1 }
  1752. <VertexRef> { 29 30 31 32 <Ref> { V } }
  1753. }
  1754. <Polygon> {
  1755. <RGBA> { 1 0 0 1 }
  1756. <VertexRef> { 33 34 35 36 <Ref> { V } }
  1757. }
  1758. <Polygon> {
  1759. <RGBA> { 1 0 0 1 }
  1760. <VertexRef> { 37 38 39 40 <Ref> { V } }
  1761. }
  1762. <Polygon> {
  1763. <RGBA> { 1 0 0 1 }
  1764. <VertexRef> { 41 42 43 44 <Ref> { V } }
  1765. }
  1766. <Polygon> {
  1767. <RGBA> { 1 0 0 1 }
  1768. <VertexRef> { 45 46 47 48 <Ref> { V } }
  1769. }
  1770. <Polygon> {
  1771. <RGBA> { 1 0 0 1 }
  1772. <VertexRef> { 49 50 51 52 <Ref> { V } }
  1773. }
  1774. <Polygon> {
  1775. <RGBA> { 1 0 0 1 }
  1776. <VertexRef> { 53 54 55 56 <Ref> { V } }
  1777. }
  1778. <Polygon> {
  1779. <RGBA> { 1 0 0 1 }
  1780. <VertexRef> { 57 58 59 60 <Ref> { V } }
  1781. }
  1782. <Polygon> {
  1783. <RGBA> { 1 0 0 1 }
  1784. <VertexRef> { 61 62 63 64 <Ref> { V } }
  1785. }
  1786. <Polygon> {
  1787. <RGBA> { 1 0 0 1 }
  1788. <VertexRef> { 65 66 67 68 <Ref> { V } }
  1789. }
  1790. <Polygon> {
  1791. <RGBA> { 1 0 0 1 }
  1792. <VertexRef> { 69 70 71 72 <Ref> { V } }
  1793. }
  1794. <Polygon> {
  1795. <RGBA> { 1 0 0 1 }
  1796. <VertexRef> { 73 74 75 76 <Ref> { V } }
  1797. }
  1798. <Polygon> {
  1799. <RGBA> { 1 0 0 1 }
  1800. <VertexRef> { 77 78 79 80 <Ref> { V } }
  1801. }
  1802. <Polygon> {
  1803. <RGBA> { 1 0 0 1 }
  1804. <VertexRef> { 81 82 83 84 <Ref> { V } }
  1805. }
  1806. <Polygon> {
  1807. <RGBA> { 1 0 0 1 }
  1808. <VertexRef> { 85 86 87 88 <Ref> { V } }
  1809. }
  1810. <Polygon> {
  1811. <RGBA> { 1 0 0 1 }
  1812. <VertexRef> { 89 90 91 92 <Ref> { V } }
  1813. }
  1814. <Polygon> {
  1815. <RGBA> { 1 0 0 1 }
  1816. <VertexRef> { 93 94 95 96 <Ref> { V } }
  1817. }
  1818. <Polygon> {
  1819. <RGBA> { 1 0 0 1 }
  1820. <VertexRef> { 97 98 99 100 <Ref> { V } }
  1821. }
  1822. <Polygon> {
  1823. <RGBA> { 1 0 0 1 }
  1824. <VertexRef> { 101 102 103 104 <Ref> { V } }
  1825. }
  1826. <Polygon> {
  1827. <RGBA> { 1 0 0 1 }
  1828. <VertexRef> { 105 106 107 108 <Ref> { V } }
  1829. }
  1830. <Polygon> {
  1831. <RGBA> { 1 0 0 1 }
  1832. <VertexRef> { 109 110 111 112 <Ref> { V } }
  1833. }
  1834. <Polygon> {
  1835. <RGBA> { 1 0 0 1 }
  1836. <VertexRef> { 113 114 115 116 <Ref> { V } }
  1837. }
  1838. <Polygon> {
  1839. <RGBA> { 1 0 0 1 }
  1840. <VertexRef> { 117 118 119 120 <Ref> { V } }
  1841. }
  1842. <Polygon> {
  1843. <RGBA> { 1 0 0 1 }
  1844. <VertexRef> { 121 122 123 124 <Ref> { V } }
  1845. }
  1846. <Polygon> {
  1847. <RGBA> { 1 0 0 1 }
  1848. <VertexRef> { 125 126 127 128 <Ref> { V } }
  1849. }
  1850. <Polygon> {
  1851. <RGBA> { 1 0 0 1 }
  1852. <VertexRef> { 129 130 124 <Ref> { V } }
  1853. }
  1854. <Polygon> {
  1855. <RGBA> { 1 0 0 1 }
  1856. <VertexRef> { 131 132 133 130 <Ref> { V } }
  1857. }
  1858. <Polygon> {
  1859. <RGBA> { 1 0 0 1 }
  1860. <VertexRef> { 134 135 136 137 <Ref> { V } }
  1861. }
  1862. <Polygon> {
  1863. <RGBA> { 1 0 0 1 }
  1864. <VertexRef> { 129 138 131 130 <Ref> { V } }
  1865. }
  1866. <Polygon> {
  1867. <RGBA> { 1 0 0 1 }
  1868. <VertexRef> { 123 129 124 <Ref> { V } }
  1869. }
  1870. <Polygon> {
  1871. <RGBA> { 1 0 0 1 }
  1872. <VertexRef> { 139 140 141 142 <Ref> { V } }
  1873. }
  1874. <Polygon> {
  1875. <RGBA> { 1 0 0 1 }
  1876. <VertexRef> { 125 139 143 <Ref> { V } }
  1877. }
  1878. <Polygon> {
  1879. <RGBA> { 1 0 0 1 }
  1880. <VertexRef> { 125 143 126 <Ref> { V } }
  1881. }
  1882. <Polygon> {
  1883. <RGBA> { 1 0 0 1 }
  1884. <VertexRef> { 139 142 144 143 <Ref> { V } }
  1885. }
  1886. <Polygon> {
  1887. <RGBA> { 1 0 0 1 }
  1888. <VertexRef> { 145 146 147 148 <Ref> { V } }
  1889. }
  1890. <Polygon> {
  1891. <RGBA> { 1 0 0 1 }
  1892. <VertexRef> { 149 150 151 152 <Ref> { V } }
  1893. }
  1894. <Polygon> {
  1895. <RGBA> { 1 0 0 1 }
  1896. <VertexRef> { 153 154 155 156 <Ref> { V } }
  1897. }
  1898. <Polygon> {
  1899. <RGBA> { 1 0 0 1 }
  1900. <VertexRef> { 157 158 159 160 <Ref> { V } }
  1901. }
  1902. <Polygon> {
  1903. <RGBA> { 1 0 0 1 }
  1904. <VertexRef> { 161 162 163 164 <Ref> { V } }
  1905. }
  1906. <Polygon> {
  1907. <RGBA> { 1 0 0 1 }
  1908. <VertexRef> { 165 161 166 <Ref> { V } }
  1909. }
  1910. <Polygon> {
  1911. <RGBA> { 1 0 0 1 }
  1912. <VertexRef> { 161 164 166 <Ref> { V } }
  1913. }
  1914. <Polygon> {
  1915. <RGBA> { 1 0 0 1 }
  1916. <VertexRef> { 163 167 168 164 <Ref> { V } }
  1917. }
  1918. <Polygon> {
  1919. <RGBA> { 1 0 0 1 }
  1920. <VertexRef> { 169 170 171 <Ref> { V } }
  1921. }
  1922. <Polygon> {
  1923. <RGBA> { 1 0 0 1 }
  1924. <VertexRef> { 172 173 174 170 <Ref> { V } }
  1925. }
  1926. <Polygon> {
  1927. <RGBA> { 1 0 0 1 }
  1928. <VertexRef> { 175 176 177 178 <Ref> { V } }
  1929. }
  1930. <Polygon> {
  1931. <RGBA> { 1 0 0 1 }
  1932. <VertexRef> { 172 179 180 173 <Ref> { V } }
  1933. }
  1934. <Polygon> {
  1935. <RGBA> { 1 0 0 1 }
  1936. <VertexRef> { 169 172 170 <Ref> { V } }
  1937. }
  1938. <Polygon> {
  1939. <RGBA> { 1 0 0 1 }
  1940. <VertexRef> { 106 169 171 <Ref> { V } }
  1941. }
  1942. <Polygon> {
  1943. <RGBA> { 1 0 0 1 }
  1944. <VertexRef> { 106 171 107 <Ref> { V } }
  1945. }
  1946. <Polygon> {
  1947. <RGBA> { 1 0 0 1 }
  1948. <VertexRef> { 165 166 111 <Ref> { V } }
  1949. }
  1950. <Polygon> {
  1951. <RGBA> { 1 0 0 1 }
  1952. <VertexRef> { 110 165 111 <Ref> { V } }
  1953. }
  1954. <Polygon> {
  1955. <RGBA> { 1 0 0 1 }
  1956. <VertexRef> { 181 182 183 184 <Ref> { V } }
  1957. }
  1958. <Polygon> {
  1959. <RGBA> { 1 0 0 1 }
  1960. <VertexRef> { 185 186 187 188 <Ref> { V } }
  1961. }
  1962. <Polygon> {
  1963. <RGBA> { 1 0 0 1 }
  1964. <VertexRef> { 189 190 191 192 <Ref> { V } }
  1965. }
  1966. <Polygon> {
  1967. <RGBA> { 1 0 0 1 }
  1968. <VertexRef> { 127 192 128 <Ref> { V } }
  1969. }
  1970. <Polygon> {
  1971. <RGBA> { 1 0 0 1 }
  1972. <VertexRef> { 127 189 192 <Ref> { V } }
  1973. }
  1974. <Polygon> {
  1975. <RGBA> { 1 0 0 1 }
  1976. <VertexRef> { 189 193 194 190 <Ref> { V } }
  1977. }
  1978. <Polygon> {
  1979. <RGBA> { 1 0 0 1 }
  1980. <VertexRef> { 121 195 122 <Ref> { V } }
  1981. }
  1982. <Polygon> {
  1983. <RGBA> { 1 0 0 1 }
  1984. <VertexRef> { 195 196 197 198 <Ref> { V } }
  1985. }
  1986. <Polygon> {
  1987. <RGBA> { 1 0 0 1 }
  1988. <VertexRef> { 199 200 201 202 <Ref> { V } }
  1989. }
  1990. <Polygon> {
  1991. <RGBA> { 1 0 0 1 }
  1992. <VertexRef> { 197 203 204 198 <Ref> { V } }
  1993. }
  1994. <Polygon> {
  1995. <RGBA> { 1 0 0 1 }
  1996. <VertexRef> { 195 198 122 <Ref> { V } }
  1997. }
  1998. <Polygon> {
  1999. <RGBA> { 1 0 0 1 }
  2000. <VertexRef> { 120 205 117 <Ref> { V } }
  2001. }
  2002. <Polygon> {
  2003. <RGBA> { 1 0 0 1 }
  2004. <VertexRef> { 205 206 117 <Ref> { V } }
  2005. }
  2006. <Polygon> {
  2007. <RGBA> { 1 0 0 1 }
  2008. <VertexRef> { 116 207 113 <Ref> { V } }
  2009. }
  2010. <Polygon> {
  2011. <RGBA> { 1 0 0 1 }
  2012. <VertexRef> { 116 208 207 <Ref> { V } }
  2013. }
  2014. <Polygon> {
  2015. <RGBA> { 1 0 0 1 }
  2016. <VertexRef> { 208 209 210 <Ref> { V } }
  2017. }
  2018. <Polygon> {
  2019. <RGBA> { 1 0 0 1 }
  2020. <VertexRef> { 209 211 212 213 <Ref> { V } }
  2021. }
  2022. <Polygon> {
  2023. <RGBA> { 1 0 0 1 }
  2024. <VertexRef> { 214 215 216 217 <Ref> { V } }
  2025. }
  2026. <Polygon> {
  2027. <RGBA> { 1 0 0 1 }
  2028. <VertexRef> { 209 213 218 210 <Ref> { V } }
  2029. }
  2030. <Polygon> {
  2031. <RGBA> { 1 0 0 1 }
  2032. <VertexRef> { 208 210 207 <Ref> { V } }
  2033. }
  2034. <Polygon> {
  2035. <RGBA> { 1 0 0 1 }
  2036. <VertexRef> { 219 220 221 222 <Ref> { V } }
  2037. }
  2038. <Polygon> {
  2039. <RGBA> { 1 0 0 1 }
  2040. <VertexRef> { 223 222 206 <Ref> { V } }
  2041. }
  2042. <Polygon> {
  2043. <RGBA> { 1 0 0 1 }
  2044. <VertexRef> { 205 223 206 <Ref> { V } }
  2045. }
  2046. <Polygon> {
  2047. <RGBA> { 1 0 0 1 }
  2048. <VertexRef> { 223 224 219 222 <Ref> { V } }
  2049. }
  2050. <Polygon> {
  2051. <RGBA> { 1 0 0 1 }
  2052. <VertexRef> { 225 226 227 228 <Ref> { V } }
  2053. }
  2054. <Polygon> {
  2055. <RGBA> { 1 0 0 1 }
  2056. <VertexRef> { 229 230 231 232 <Ref> { V } }
  2057. }
  2058. }
  2059. <Group> o5 {
  2060. <Polygon> {
  2061. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2062. <VertexRef> { 233 234 235 236 <Ref> { V } }
  2063. }
  2064. <Polygon> {
  2065. <RGBA> { 1 0 0 1 }
  2066. <VertexRef> { 237 238 234 233 <Ref> { V } }
  2067. }
  2068. <Polygon> {
  2069. <RGBA> { 1 0 0 1 }
  2070. <VertexRef> { 239 240 241 242 <Ref> { V } }
  2071. }
  2072. <Polygon> {
  2073. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2074. <VertexRef> { 242 241 238 237 <Ref> { V } }
  2075. }
  2076. <Polygon> {
  2077. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2078. <VertexRef> { 243 244 240 239 <Ref> { V } }
  2079. }
  2080. <Polygon> {
  2081. <RGBA> { 1 0 0 1 }
  2082. <VertexRef> { 245 246 244 243 <Ref> { V } }
  2083. }
  2084. <Polygon> {
  2085. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2086. <VertexRef> { 247 248 246 245 <Ref> { V } }
  2087. }
  2088. <Polygon> {
  2089. <RGBA> { 1 0 0 1 }
  2090. <VertexRef> { 249 250 248 247 <Ref> { V } }
  2091. }
  2092. <Polygon> {
  2093. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2094. <VertexRef> { 251 252 250 249 <Ref> { V } }
  2095. }
  2096. <Polygon> {
  2097. <RGBA> { 1 0 0 1 }
  2098. <VertexRef> { 253 254 252 251 <Ref> { V } }
  2099. }
  2100. }
  2101. <Group> o6 {
  2102. <Polygon> {
  2103. <RGBA> { 1 0 0 1 }
  2104. <VertexRef> { 255 253 243 256 <Ref> { V } }
  2105. }
  2106. <Polygon> {
  2107. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2108. <VertexRef> { 243 236 257 256 <Ref> { V } }
  2109. }
  2110. }
  2111. <Group> o7 {
  2112. <Polygon> {
  2113. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2114. <VertexRef> { 236 235 234 233 <Ref> { V } }
  2115. }
  2116. <Polygon> {
  2117. <RGBA> { 1 0 0 1 }
  2118. <VertexRef> { 233 234 238 237 <Ref> { V } }
  2119. }
  2120. <Polygon> {
  2121. <RGBA> { 1 0 0 1 }
  2122. <VertexRef> { 242 241 240 239 <Ref> { V } }
  2123. }
  2124. <Polygon> {
  2125. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2126. <VertexRef> { 237 238 241 242 <Ref> { V } }
  2127. }
  2128. <Polygon> {
  2129. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2130. <VertexRef> { 239 240 244 243 <Ref> { V } }
  2131. }
  2132. <Polygon> {
  2133. <RGBA> { 1 0 0 1 }
  2134. <VertexRef> { 243 244 246 245 <Ref> { V } }
  2135. }
  2136. <Polygon> {
  2137. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2138. <VertexRef> { 245 246 248 247 <Ref> { V } }
  2139. }
  2140. <Polygon> {
  2141. <RGBA> { 1 0 0 1 }
  2142. <VertexRef> { 247 248 250 249 <Ref> { V } }
  2143. }
  2144. <Polygon> {
  2145. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2146. <VertexRef> { 249 250 252 251 <Ref> { V } }
  2147. }
  2148. <Polygon> {
  2149. <RGBA> { 1 0 0 1 }
  2150. <VertexRef> { 251 252 254 253 <Ref> { V } }
  2151. }
  2152. }
  2153. <Group> o8 {
  2154. <Polygon> {
  2155. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2156. <VertexRef> { 256 243 253 255 <Ref> { V } }
  2157. }
  2158. <Polygon> {
  2159. <RGBA> { 1 0 0 1 }
  2160. <VertexRef> { 256 257 236 243 <Ref> { V } }
  2161. }
  2162. }
  2163. }
  2164. <Group> y-axis {
  2165. <model> { 1 }
  2166. <Group> y {
  2167. <Polygon> {
  2168. <RGBA> { 0 1 0 1 }
  2169. <VertexRef> { 258 259 260 261 <Ref> { V } }
  2170. }
  2171. <Polygon> {
  2172. <RGBA> { 0 1 0 1 }
  2173. <VertexRef> { 262 263 264 265 <Ref> { V } }
  2174. }
  2175. <Polygon> {
  2176. <RGBA> { 0 1 0 1 }
  2177. <VertexRef> { 266 267 268 269 <Ref> { V } }
  2178. }
  2179. <Polygon> {
  2180. <RGBA> { 0 1 0 1 }
  2181. <VertexRef> { 270 271 272 273 <Ref> { V } }
  2182. }
  2183. <Polygon> {
  2184. <RGBA> { 0 1 0 1 }
  2185. <VertexRef> { 274 275 276 277 <Ref> { V } }
  2186. }
  2187. <Polygon> {
  2188. <RGBA> { 0 1 0 1 }
  2189. <VertexRef> { 278 279 280 281 <Ref> { V } }
  2190. }
  2191. <Polygon> {
  2192. <RGBA> { 0 1 0 1 }
  2193. <VertexRef> { 282 283 284 285 <Ref> { V } }
  2194. }
  2195. <Polygon> {
  2196. <RGBA> { 0 1 0 1 }
  2197. <VertexRef> { 286 287 288 289 <Ref> { V } }
  2198. }
  2199. <Polygon> {
  2200. <RGBA> { 0 1 0 1 }
  2201. <VertexRef> { 290 291 292 293 <Ref> { V } }
  2202. }
  2203. <Polygon> {
  2204. <RGBA> { 0 1 0 1 }
  2205. <VertexRef> { 294 295 296 297 <Ref> { V } }
  2206. }
  2207. <Polygon> {
  2208. <RGBA> { 0 1 0 1 }
  2209. <VertexRef> { 298 299 300 301 <Ref> { V } }
  2210. }
  2211. <Polygon> {
  2212. <RGBA> { 0 1 0 1 }
  2213. <VertexRef> { 302 303 304 305 <Ref> { V } }
  2214. }
  2215. <Polygon> {
  2216. <RGBA> { 0 1 0 1 }
  2217. <VertexRef> { 306 307 308 309 <Ref> { V } }
  2218. }
  2219. <Polygon> {
  2220. <RGBA> { 0 1 0 1 }
  2221. <VertexRef> { 310 311 312 313 <Ref> { V } }
  2222. }
  2223. <Polygon> {
  2224. <RGBA> { 0 1 0 1 }
  2225. <VertexRef> { 314 315 316 317 <Ref> { V } }
  2226. }
  2227. <Polygon> {
  2228. <RGBA> { 0 1 0 1 }
  2229. <VertexRef> { 318 319 320 321 <Ref> { V } }
  2230. }
  2231. <Polygon> {
  2232. <RGBA> { 0 1 0 1 }
  2233. <VertexRef> { 322 323 324 325 <Ref> { V } }
  2234. }
  2235. <Polygon> {
  2236. <RGBA> { 0 1 0 1 }
  2237. <VertexRef> { 326 322 327 <Ref> { V } }
  2238. }
  2239. <Polygon> {
  2240. <RGBA> { 0 1 0 1 }
  2241. <VertexRef> { 322 325 327 <Ref> { V } }
  2242. }
  2243. <Polygon> {
  2244. <RGBA> { 0 1 0 1 }
  2245. <VertexRef> { 324 328 329 325 <Ref> { V } }
  2246. }
  2247. <Polygon> {
  2248. <RGBA> { 0 1 0 1 }
  2249. <VertexRef> { 330 331 332 <Ref> { V } }
  2250. }
  2251. <Polygon> {
  2252. <RGBA> { 0 1 0 1 }
  2253. <VertexRef> { 333 334 335 331 <Ref> { V } }
  2254. }
  2255. <Polygon> {
  2256. <RGBA> { 0 1 0 1 }
  2257. <VertexRef> { 336 337 338 339 <Ref> { V } }
  2258. }
  2259. <Polygon> {
  2260. <RGBA> { 0 1 0 1 }
  2261. <VertexRef> { 333 340 341 334 <Ref> { V } }
  2262. }
  2263. <Polygon> {
  2264. <RGBA> { 0 1 0 1 }
  2265. <VertexRef> { 330 333 331 <Ref> { V } }
  2266. }
  2267. <Polygon> {
  2268. <RGBA> { 0 1 0 1 }
  2269. <VertexRef> { 342 330 332 <Ref> { V } }
  2270. }
  2271. <Polygon> {
  2272. <RGBA> { 0 1 0 1 }
  2273. <VertexRef> { 342 332 343 <Ref> { V } }
  2274. }
  2275. <Polygon> {
  2276. <RGBA> { 0 1 0 1 }
  2277. <VertexRef> { 326 327 344 <Ref> { V } }
  2278. }
  2279. <Polygon> {
  2280. <RGBA> { 0 1 0 1 }
  2281. <VertexRef> { 345 326 344 <Ref> { V } }
  2282. }
  2283. <Polygon> {
  2284. <RGBA> { 0 1 0 1 }
  2285. <VertexRef> { 346 347 348 349 <Ref> { V } }
  2286. }
  2287. <Polygon> {
  2288. <RGBA> { 0 1 0 1 }
  2289. <VertexRef> { 350 351 352 353 <Ref> { V } }
  2290. }
  2291. <Polygon> {
  2292. <RGBA> { 0 1 0 1 }
  2293. <VertexRef> { 354 355 356 357 <Ref> { V } }
  2294. }
  2295. <Polygon> {
  2296. <RGBA> { 0 1 0 1 }
  2297. <VertexRef> { 358 359 360 361 <Ref> { V } }
  2298. }
  2299. <Polygon> {
  2300. <RGBA> { 0 1 0 1 }
  2301. <VertexRef> { 362 363 364 365 <Ref> { V } }
  2302. }
  2303. <Polygon> {
  2304. <RGBA> { 0 1 0 1 }
  2305. <VertexRef> { 366 367 368 369 <Ref> { V } }
  2306. }
  2307. <Polygon> {
  2308. <RGBA> { 0 1 0 1 }
  2309. <VertexRef> { 370 371 372 373 <Ref> { V } }
  2310. }
  2311. <Polygon> {
  2312. <RGBA> { 0 1 0 1 }
  2313. <VertexRef> { 374 375 376 377 <Ref> { V } }
  2314. }
  2315. <Polygon> {
  2316. <RGBA> { 0 1 0 1 }
  2317. <VertexRef> { 344 378 379 345 <Ref> { V } }
  2318. }
  2319. <Polygon> {
  2320. <RGBA> { 0 1 0 1 }
  2321. <VertexRef> { 343 380 381 342 <Ref> { V } }
  2322. }
  2323. <Polygon> {
  2324. <RGBA> { 0 1 0 1 }
  2325. <VertexRef> { 378 382 379 <Ref> { V } }
  2326. }
  2327. <Polygon> {
  2328. <RGBA> { 0 1 0 1 }
  2329. <VertexRef> { 382 383 379 <Ref> { V } }
  2330. }
  2331. <Polygon> {
  2332. <RGBA> { 0 1 0 1 }
  2333. <VertexRef> { 380 384 381 <Ref> { V } }
  2334. }
  2335. <Polygon> {
  2336. <RGBA> { 0 1 0 1 }
  2337. <VertexRef> { 380 385 384 <Ref> { V } }
  2338. }
  2339. <Polygon> {
  2340. <RGBA> { 0 1 0 1 }
  2341. <VertexRef> { 385 386 387 <Ref> { V } }
  2342. }
  2343. <Polygon> {
  2344. <RGBA> { 0 1 0 1 }
  2345. <VertexRef> { 386 388 389 390 <Ref> { V } }
  2346. }
  2347. <Polygon> {
  2348. <RGBA> { 0 1 0 1 }
  2349. <VertexRef> { 391 392 393 394 <Ref> { V } }
  2350. }
  2351. <Polygon> {
  2352. <RGBA> { 0 1 0 1 }
  2353. <VertexRef> { 386 390 395 387 <Ref> { V } }
  2354. }
  2355. <Polygon> {
  2356. <RGBA> { 0 1 0 1 }
  2357. <VertexRef> { 385 387 384 <Ref> { V } }
  2358. }
  2359. <Polygon> {
  2360. <RGBA> { 0 1 0 1 }
  2361. <VertexRef> { 396 397 398 399 <Ref> { V } }
  2362. }
  2363. <Polygon> {
  2364. <RGBA> { 0 1 0 1 }
  2365. <VertexRef> { 400 399 383 <Ref> { V } }
  2366. }
  2367. <Polygon> {
  2368. <RGBA> { 0 1 0 1 }
  2369. <VertexRef> { 382 400 383 <Ref> { V } }
  2370. }
  2371. <Polygon> {
  2372. <RGBA> { 0 1 0 1 }
  2373. <VertexRef> { 400 401 396 399 <Ref> { V } }
  2374. }
  2375. <Polygon> {
  2376. <RGBA> { 0 1 0 1 }
  2377. <VertexRef> { 402 403 404 405 <Ref> { V } }
  2378. }
  2379. <Polygon> {
  2380. <RGBA> { 0 1 0 1 }
  2381. <VertexRef> { 406 407 408 409 <Ref> { V } }
  2382. }
  2383. <Polygon> {
  2384. <RGBA> { 0 1 0 1 }
  2385. <VertexRef> { 410 411 412 413 <Ref> { V } }
  2386. }
  2387. <Polygon> {
  2388. <RGBA> { 0 1 0 1 }
  2389. <VertexRef> { 414 415 416 417 <Ref> { V } }
  2390. }
  2391. <Polygon> {
  2392. <RGBA> { 0 1 0 1 }
  2393. <VertexRef> { 418 419 420 421 <Ref> { V } }
  2394. }
  2395. <Polygon> {
  2396. <RGBA> { 0 1 0 1 }
  2397. <VertexRef> { 370 421 371 <Ref> { V } }
  2398. }
  2399. <Polygon> {
  2400. <RGBA> { 0 1 0 1 }
  2401. <VertexRef> { 370 418 421 <Ref> { V } }
  2402. }
  2403. <Polygon> {
  2404. <RGBA> { 0 1 0 1 }
  2405. <VertexRef> { 418 422 423 419 <Ref> { V } }
  2406. }
  2407. <Polygon> {
  2408. <RGBA> { 0 1 0 1 }
  2409. <VertexRef> { 375 424 376 <Ref> { V } }
  2410. }
  2411. <Polygon> {
  2412. <RGBA> { 0 1 0 1 }
  2413. <VertexRef> { 424 425 426 427 <Ref> { V } }
  2414. }
  2415. <Polygon> {
  2416. <RGBA> { 0 1 0 1 }
  2417. <VertexRef> { 428 429 430 431 <Ref> { V } }
  2418. }
  2419. <Polygon> {
  2420. <RGBA> { 0 1 0 1 }
  2421. <VertexRef> { 426 432 433 427 <Ref> { V } }
  2422. }
  2423. <Polygon> {
  2424. <RGBA> { 0 1 0 1 }
  2425. <VertexRef> { 424 427 376 <Ref> { V } }
  2426. }
  2427. }
  2428. <Group> o1 {
  2429. <Polygon> {
  2430. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2431. <VertexRef> { 434 435 257 236 <Ref> { V } }
  2432. }
  2433. <Polygon> {
  2434. <RGBA> { 0 1 0 1 }
  2435. <VertexRef> { 436 437 435 434 <Ref> { V } }
  2436. }
  2437. <Polygon> {
  2438. <RGBA> { 0 1 0 1 }
  2439. <VertexRef> { 438 439 440 441 <Ref> { V } }
  2440. }
  2441. <Polygon> {
  2442. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2443. <VertexRef> { 441 440 437 436 <Ref> { V } }
  2444. }
  2445. <Polygon> {
  2446. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2447. <VertexRef> { 442 443 439 438 <Ref> { V } }
  2448. }
  2449. <Polygon> {
  2450. <RGBA> { 0 1 0 1 }
  2451. <VertexRef> { 444 445 443 442 <Ref> { V } }
  2452. }
  2453. <Polygon> {
  2454. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2455. <VertexRef> { 446 447 445 444 <Ref> { V } }
  2456. }
  2457. <Polygon> {
  2458. <RGBA> { 0 1 0 1 }
  2459. <VertexRef> { 448 449 447 446 <Ref> { V } }
  2460. }
  2461. <Polygon> {
  2462. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2463. <VertexRef> { 450 451 449 448 <Ref> { V } }
  2464. }
  2465. <Polygon> {
  2466. <RGBA> { 0 1 0 1 }
  2467. <VertexRef> { 452 453 451 450 <Ref> { V } }
  2468. }
  2469. }
  2470. <Group> o2 {
  2471. <Polygon> {
  2472. <RGBA> { 0 1 0 1 }
  2473. <VertexRef> { 454 452 442 455 <Ref> { V } }
  2474. }
  2475. <Polygon> {
  2476. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2477. <VertexRef> { 442 236 235 455 <Ref> { V } }
  2478. }
  2479. }
  2480. <Group> o3 {
  2481. <Polygon> {
  2482. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2483. <VertexRef> { 236 257 435 434 <Ref> { V } }
  2484. }
  2485. <Polygon> {
  2486. <RGBA> { 0 1 0 1 }
  2487. <VertexRef> { 434 435 437 436 <Ref> { V } }
  2488. }
  2489. <Polygon> {
  2490. <RGBA> { 0 1 0 1 }
  2491. <VertexRef> { 441 440 439 438 <Ref> { V } }
  2492. }
  2493. <Polygon> {
  2494. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2495. <VertexRef> { 436 437 440 441 <Ref> { V } }
  2496. }
  2497. <Polygon> {
  2498. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2499. <VertexRef> { 438 439 443 442 <Ref> { V } }
  2500. }
  2501. <Polygon> {
  2502. <RGBA> { 0 1 0 1 }
  2503. <VertexRef> { 442 443 445 444 <Ref> { V } }
  2504. }
  2505. <Polygon> {
  2506. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2507. <VertexRef> { 444 445 447 446 <Ref> { V } }
  2508. }
  2509. <Polygon> {
  2510. <RGBA> { 0 1 0 1 }
  2511. <VertexRef> { 446 447 449 448 <Ref> { V } }
  2512. }
  2513. <Polygon> {
  2514. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2515. <VertexRef> { 448 449 451 450 <Ref> { V } }
  2516. }
  2517. <Polygon> {
  2518. <RGBA> { 0 1 0 1 }
  2519. <VertexRef> { 450 451 453 452 <Ref> { V } }
  2520. }
  2521. }
  2522. <Group> o4 {
  2523. <Polygon> {
  2524. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2525. <VertexRef> { 455 442 452 454 <Ref> { V } }
  2526. }
  2527. <Polygon> {
  2528. <RGBA> { 0 1 0 1 }
  2529. <VertexRef> { 455 235 236 442 <Ref> { V } }
  2530. }
  2531. }
  2532. }
  2533. <Group> z-axis {
  2534. <model> { 1 }
  2535. <Group> z {
  2536. <Polygon> {
  2537. <RGBA> { 0 0 1 1 }
  2538. <VertexRef> { 456 457 458 459 <Ref> { V } }
  2539. }
  2540. <Polygon> {
  2541. <RGBA> { 0 0 1 1 }
  2542. <VertexRef> { 460 461 462 463 <Ref> { V } }
  2543. }
  2544. <Polygon> {
  2545. <RGBA> { 0 0 1 1 }
  2546. <VertexRef> { 464 465 466 467 <Ref> { V } }
  2547. }
  2548. <Polygon> {
  2549. <RGBA> { 0 0 1 1 }
  2550. <VertexRef> { 468 469 470 471 <Ref> { V } }
  2551. }
  2552. <Polygon> {
  2553. <RGBA> { 0 0 1 1 }
  2554. <VertexRef> { 472 473 474 475 <Ref> { V } }
  2555. }
  2556. <Polygon> {
  2557. <RGBA> { 0 0 1 1 }
  2558. <VertexRef> { 476 477 478 479 <Ref> { V } }
  2559. }
  2560. <Polygon> {
  2561. <RGBA> { 0 0 1 1 }
  2562. <VertexRef> { 480 481 482 483 <Ref> { V } }
  2563. }
  2564. <Polygon> {
  2565. <RGBA> { 0 0 1 1 }
  2566. <VertexRef> { 484 485 486 487 <Ref> { V } }
  2567. }
  2568. <Polygon> {
  2569. <RGBA> { 0 0 1 1 }
  2570. <VertexRef> { 488 489 490 491 <Ref> { V } }
  2571. }
  2572. <Polygon> {
  2573. <RGBA> { 0 0 1 1 }
  2574. <VertexRef> { 492 493 494 495 <Ref> { V } }
  2575. }
  2576. <Polygon> {
  2577. <RGBA> { 0 0 1 1 }
  2578. <VertexRef> { 496 497 498 499 <Ref> { V } }
  2579. }
  2580. <Polygon> {
  2581. <RGBA> { 0 0 1 1 }
  2582. <VertexRef> { 500 501 502 503 <Ref> { V } }
  2583. }
  2584. <Polygon> {
  2585. <RGBA> { 0 0 1 1 }
  2586. <VertexRef> { 504 505 506 507 <Ref> { V } }
  2587. }
  2588. <Polygon> {
  2589. <RGBA> { 0 0 1 1 }
  2590. <VertexRef> { 508 509 510 511 <Ref> { V } }
  2591. }
  2592. <Polygon> {
  2593. <RGBA> { 0 0 1 1 }
  2594. <VertexRef> { 512 513 514 515 <Ref> { V } }
  2595. }
  2596. <Polygon> {
  2597. <RGBA> { 0 0 1 1 }
  2598. <VertexRef> { 513 516 517 514 <Ref> { V } }
  2599. }
  2600. <Polygon> {
  2601. <RGBA> { 0 0 1 1 }
  2602. <VertexRef> { 518 519 520 521 <Ref> { V } }
  2603. }
  2604. <Polygon> {
  2605. <RGBA> { 0 0 1 1 }
  2606. <VertexRef> { 522 523 524 525 <Ref> { V } }
  2607. }
  2608. <Polygon> {
  2609. <RGBA> { 0 0 1 1 }
  2610. <VertexRef> { 522 525 526 <Ref> { V } }
  2611. }
  2612. <Polygon> {
  2613. <RGBA> { 0 0 1 1 }
  2614. <VertexRef> { 514 522 526 527 <Ref> { V } }
  2615. }
  2616. <Polygon> {
  2617. <RGBA> { 0 0 1 1 }
  2618. <VertexRef> { 514 527 515 <Ref> { V } }
  2619. }
  2620. <Polygon> {
  2621. <RGBA> { 0 0 1 1 }
  2622. <VertexRef> { 528 529 530 531 <Ref> { V } }
  2623. }
  2624. <Polygon> {
  2625. <RGBA> { 0 0 1 1 }
  2626. <VertexRef> { 532 528 531 533 <Ref> { V } }
  2627. }
  2628. <Polygon> {
  2629. <RGBA> { 0 0 1 1 }
  2630. <VertexRef> { 532 534 528 <Ref> { V } }
  2631. }
  2632. <Polygon> {
  2633. <RGBA> { 0 0 1 1 }
  2634. <VertexRef> { 534 535 536 528 <Ref> { V } }
  2635. }
  2636. <Polygon> {
  2637. <RGBA> { 0 0 1 1 }
  2638. <VertexRef> { 537 538 539 536 <Ref> { V } }
  2639. }
  2640. <Polygon> {
  2641. <RGBA> { 0 0 1 1 }
  2642. <VertexRef> { 535 537 536 <Ref> { V } }
  2643. }
  2644. <Polygon> {
  2645. <RGBA> { 0 0 1 1 }
  2646. <VertexRef> { 540 541 542 543 <Ref> { V } }
  2647. }
  2648. <Polygon> {
  2649. <RGBA> { 0 0 1 1 }
  2650. <VertexRef> { 544 545 546 547 <Ref> { V } }
  2651. }
  2652. <Polygon> {
  2653. <RGBA> { 0 0 1 1 }
  2654. <VertexRef> { 547 546 548 549 <Ref> { V } }
  2655. }
  2656. <Polygon> {
  2657. <RGBA> { 0 0 1 1 }
  2658. <VertexRef> { 550 551 552 553 <Ref> { V } }
  2659. }
  2660. <Polygon> {
  2661. <RGBA> { 0 0 1 1 }
  2662. <VertexRef> { 554 555 556 557 <Ref> { V } }
  2663. }
  2664. <Polygon> {
  2665. <RGBA> { 0 0 1 1 }
  2666. <VertexRef> { 558 559 560 561 <Ref> { V } }
  2667. }
  2668. <Polygon> {
  2669. <RGBA> { 0 0 1 1 }
  2670. <VertexRef> { 562 563 559 558 <Ref> { V } }
  2671. }
  2672. <Polygon> {
  2673. <RGBA> { 0 0 1 1 }
  2674. <VertexRef> { 564 565 566 567 <Ref> { V } }
  2675. }
  2676. <Polygon> {
  2677. <RGBA> { 0 0 1 1 }
  2678. <VertexRef> { 568 569 570 <Ref> { V } }
  2679. }
  2680. <Polygon> {
  2681. <RGBA> { 0 0 1 1 }
  2682. <VertexRef> { 569 571 572 570 <Ref> { V } }
  2683. }
  2684. <Polygon> {
  2685. <RGBA> { 0 0 1 1 }
  2686. <VertexRef> { 573 568 570 574 <Ref> { V } }
  2687. }
  2688. <Polygon> {
  2689. <RGBA> { 0 0 1 1 }
  2690. <VertexRef> { 575 573 574 <Ref> { V } }
  2691. }
  2692. <Polygon> {
  2693. <RGBA> { 0 0 1 1 }
  2694. <VertexRef> { 575 574 576 577 <Ref> { V } }
  2695. }
  2696. <Polygon> {
  2697. <RGBA> { 0 0 1 1 }
  2698. <VertexRef> { 574 578 579 576 <Ref> { V } }
  2699. }
  2700. <Polygon> {
  2701. <RGBA> { 0 0 1 1 }
  2702. <VertexRef> { 533 575 577 532 <Ref> { V } }
  2703. }
  2704. <Polygon> {
  2705. <RGBA> { 0 0 1 1 }
  2706. <VertexRef> { 580 581 582 <Ref> { V } }
  2707. }
  2708. <Polygon> {
  2709. <RGBA> { 0 0 1 1 }
  2710. <VertexRef> { 580 583 584 581 <Ref> { V } }
  2711. }
  2712. <Polygon> {
  2713. <RGBA> { 0 0 1 1 }
  2714. <VertexRef> { 583 585 584 <Ref> { V } }
  2715. }
  2716. <Polygon> {
  2717. <RGBA> { 0 0 1 1 }
  2718. <VertexRef> { 583 586 587 585 <Ref> { V } }
  2719. }
  2720. <Polygon> {
  2721. <RGBA> { 0 0 1 1 }
  2722. <VertexRef> { 588 589 590 591 <Ref> { V } }
  2723. }
  2724. <Polygon> {
  2725. <RGBA> { 0 0 1 1 }
  2726. <VertexRef> { 592 593 594 580 <Ref> { V } }
  2727. }
  2728. <Polygon> {
  2729. <RGBA> { 0 0 1 1 }
  2730. <VertexRef> { 595 592 580 582 <Ref> { V } }
  2731. }
  2732. <Polygon> {
  2733. <RGBA> { 0 0 1 1 }
  2734. <VertexRef> { 515 595 582 512 <Ref> { V } }
  2735. }
  2736. }
  2737. <Group> o9 {
  2738. <Polygon> {
  2739. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2740. <VertexRef> { 596 597 257 598 <Ref> { V } }
  2741. }
  2742. <Polygon> {
  2743. <RGBA> { 0 0 1 1 }
  2744. <VertexRef> { 599 600 597 596 <Ref> { V } }
  2745. }
  2746. <Polygon> {
  2747. <RGBA> { 0 0 1 1 }
  2748. <VertexRef> { 601 602 603 604 <Ref> { V } }
  2749. }
  2750. <Polygon> {
  2751. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2752. <VertexRef> { 604 603 600 599 <Ref> { V } }
  2753. }
  2754. <Polygon> {
  2755. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2756. <VertexRef> { 605 606 602 601 <Ref> { V } }
  2757. }
  2758. <Polygon> {
  2759. <RGBA> { 0 0 1 1 }
  2760. <VertexRef> { 607 608 606 605 <Ref> { V } }
  2761. }
  2762. <Polygon> {
  2763. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2764. <VertexRef> { 609 610 608 607 <Ref> { V } }
  2765. }
  2766. <Polygon> {
  2767. <RGBA> { 0 0 1 1 }
  2768. <VertexRef> { 611 612 610 609 <Ref> { V } }
  2769. }
  2770. <Polygon> {
  2771. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2772. <VertexRef> { 613 614 612 611 <Ref> { V } }
  2773. }
  2774. <Polygon> {
  2775. <RGBA> { 0 0 1 1 }
  2776. <VertexRef> { 615 616 614 613 <Ref> { V } }
  2777. }
  2778. }
  2779. <Group> o10 {
  2780. <Polygon> {
  2781. <RGBA> { 0 0 1 1 }
  2782. <VertexRef> { 617 615 605 618 <Ref> { V } }
  2783. }
  2784. <Polygon> {
  2785. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2786. <VertexRef> { 605 598 619 618 <Ref> { V } }
  2787. }
  2788. }
  2789. <Group> o11 {
  2790. <Polygon> {
  2791. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2792. <VertexRef> { 598 257 597 596 <Ref> { V } }
  2793. }
  2794. <Polygon> {
  2795. <RGBA> { 0 0 1 1 }
  2796. <VertexRef> { 596 597 600 599 <Ref> { V } }
  2797. }
  2798. <Polygon> {
  2799. <RGBA> { 0 0 1 1 }
  2800. <VertexRef> { 604 603 602 601 <Ref> { V } }
  2801. }
  2802. <Polygon> {
  2803. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2804. <VertexRef> { 599 600 603 604 <Ref> { V } }
  2805. }
  2806. <Polygon> {
  2807. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2808. <VertexRef> { 601 602 606 605 <Ref> { V } }
  2809. }
  2810. <Polygon> {
  2811. <RGBA> { 0 0 1 1 }
  2812. <VertexRef> { 605 606 608 607 <Ref> { V } }
  2813. }
  2814. <Polygon> {
  2815. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2816. <VertexRef> { 607 608 610 609 <Ref> { V } }
  2817. }
  2818. <Polygon> {
  2819. <RGBA> { 0 0 1 1 }
  2820. <VertexRef> { 609 610 612 611 <Ref> { V } }
  2821. }
  2822. <Polygon> {
  2823. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2824. <VertexRef> { 611 612 614 613 <Ref> { V } }
  2825. }
  2826. <Polygon> {
  2827. <RGBA> { 0 0 1 1 }
  2828. <VertexRef> { 613 614 616 615 <Ref> { V } }
  2829. }
  2830. }
  2831. <Group> o12 {
  2832. <Polygon> {
  2833. <RGBA> { 0.988235 0.988235 0.988235 1 }
  2834. <VertexRef> { 618 605 615 617 <Ref> { V } }
  2835. }
  2836. <Polygon> {
  2837. <RGBA> { 0 0 1 1 }
  2838. <VertexRef> { 618 619 598 605 <Ref> { V } }
  2839. }
  2840. }
  2841. }
  2842. }