| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- #!/usr/bin/env python
- # Author: Shao Zhang and Phil Saltzman
- # Last Updated: 2015-03-13
- #
- # This tutorial is intended as a initial panda scripting lesson going over
- # display initialization, loading models, placing objects, and the scene graph.
- #
- # Step 4: In this step, we will load the rest of the planets up to Mars.
- # In addition to loading them, we will organize how the planets are grouped
- # hierarchically in the scene. This will help us rotate them in the next step
- # to give a rough simulation of the solar system. You can see them move by
- # running step_5_complete_solar_system.py.
- from direct.showbase.ShowBase import ShowBase
- base = ShowBase()
- from panda3d.core import NodePath, TextNode
- from direct.gui.DirectGui import *
- import sys
- class World(object):
- def __init__(self):
- # This is the initialization we had before
- self.title = OnscreenText( # Create the title
- text="Panda3D: Tutorial 1 - Solar System",
- parent=base.a2dBottomRight, align=TextNode.A_right,
- style=1, fg=(1, 1, 1, 1), pos=(-0.1, 0.1), scale=.07)
- base.setBackgroundColor(0, 0, 0) # Set the background to black
- base.disableMouse() # disable mouse control of the camera
- camera.setPos(0, 0, 45) # Set the camera position (X, Y, Z)
- camera.setHpr(0, -90, 0) # Set the camera orientation
- #(heading, pitch, roll) in degrees
- # This section has our variables. This time we are adding a variable to
- # control the relative size of the orbits.
- self.sizescale = 0.6 # relative size of planets
- self.orbitscale = 10 # relative size of orbits
- self.loadPlanets() # Load our models and make them render
- def loadPlanets(self):
- # Here is where we load all of the planets, and place them.
- # The first thing we do is create a dummy node for each planet. A dummy
- # node is simply a node path that does not have any geometry attached to it.
- # This is done by <NodePath>.attachNewNode('name_of_new_node')
- # We do this because positioning the planets around a circular orbit could
- # be done with a lot of messy sine and cosine operations. Instead, we define
- # our planets to be a given distance from a dummy node, and when we turn the
- # dummy, the planets will move along with it, kind of like turning the
- # center of a disc and having an object at its edge move. Most attributes,
- # like position, orientation, scale, texture, color, etc., are inherited
- # this way. Panda deals with the fact that the objects are not attached
- # directly to render (they are attached through other NodePaths to render),
- # and makes sure the attributes inherit.
- # This system of attaching NodePaths to each other is called the Scene
- # Graph
- self.orbit_root_mercury = render.attachNewNode('orbit_root_mercury')
- self.orbit_root_venus = render.attachNewNode('orbit_root_venus')
- self.orbit_root_mars = render.attachNewNode('orbit_root_mars')
- self.orbit_root_earth = render.attachNewNode('orbit_root_earth')
- # orbit_root_moon is like all the other orbit_root dummy nodes except that
- # it will be parented to orbit_root_earth so that the moon will orbit the
- # earth instead of the sun. So, the moon will first inherit
- # orbit_root_moon's position and then orbit_root_earth's. There is no hard
- # limit on how many objects can inherit from each other.
- self.orbit_root_moon = (
- self.orbit_root_earth.attachNewNode('orbit_root_moon'))
- ###############################################################
- # These are the same steps used to load the sky model that we used in the
- # last step
- # Load the model for the sky
- self.sky = loader.loadModel("models/solar_sky_sphere")
- # Load the texture for the sky.
- self.sky_tex = loader.loadTexture("models/stars_1k_tex.jpg")
- # Set the sky texture to the sky model
- self.sky.setTexture(self.sky_tex, 1)
- # Parent the sky model to the render node so that the sky is rendered
- self.sky.reparentTo(render)
- # Scale the size of the sky.
- self.sky.setScale(40)
- # These are the same steps we used to load the sun in the last step.
- # Again, we use loader.loadModel since we're using planet_sphere more
- # than once.
- self.sun = loader.loadModel("models/planet_sphere")
- self.sun_tex = loader.loadTexture("models/sun_1k_tex.jpg")
- self.sun.setTexture(self.sun_tex, 1)
- self.sun.reparentTo(render)
- self.sun.setScale(2 * self.sizescale)
- # Now we load the planets, which we load using the same steps we used to
- # load the sun. The only difference is that the models are not parented
- # directly to render for the reasons described above.
- # The values used for scale are the ratio of the planet's radius to Earth's
- # radius, multiplied by our global scale variable. In the same way, the
- # values used for orbit are the ratio of the planet's orbit to Earth's
- # orbit, multiplied by our global orbit scale variable
- # Load mercury
- self.mercury = loader.loadModel("models/planet_sphere")
- self.mercury_tex = loader.loadTexture("models/mercury_1k_tex.jpg")
- self.mercury.setTexture(self.mercury_tex, 1)
- self.mercury.reparentTo(self.orbit_root_mercury)
- # Set the position of mercury. By default, all nodes are pre assigned the
- # position (0, 0, 0) when they are first loaded. We didn't reposition the
- # sun and sky because they are centered in the solar system. Mercury,
- # however, needs to be offset so we use .setPos to offset the
- # position of mercury in the X direction with respect to its orbit radius.
- # We will do this for the rest of the planets.
- self.mercury.setPos(0.38 * self.orbitscale, 0, 0)
- self.mercury.setScale(0.385 * self.sizescale)
- # Load Venus
- self.venus = loader.loadModel("models/planet_sphere")
- self.venus_tex = loader.loadTexture("models/venus_1k_tex.jpg")
- self.venus.setTexture(self.venus_tex, 1)
- self.venus.reparentTo(self.orbit_root_venus)
- self.venus.setPos(0.72 * self.orbitscale, 0, 0)
- self.venus.setScale(0.923 * self.sizescale)
- # Load Mars
- self.mars = loader.loadModel("models/planet_sphere")
- self.mars_tex = loader.loadTexture("models/mars_1k_tex.jpg")
- self.mars.setTexture(self.mars_tex, 1)
- self.mars.reparentTo(self.orbit_root_mars)
- self.mars.setPos(1.52 * self.orbitscale, 0, 0)
- self.mars.setScale(0.515 * self.sizescale)
- # Load Earth
- self.earth = loader.loadModel("models/planet_sphere")
- self.earth_tex = loader.loadTexture("models/earth_1k_tex.jpg")
- self.earth.setTexture(self.earth_tex, 1)
- self.earth.reparentTo(self.orbit_root_earth)
- self.earth.setScale(self.sizescale)
- self.earth.setPos(self.orbitscale, 0, 0)
- # The center of the moon's orbit is exactly the same distance away from
- # The sun as the Earth's distance from the sun
- self.orbit_root_moon.setPos(self.orbitscale, 0, 0)
- # Load the moon
- self.moon = loader.loadModel("models/planet_sphere")
- self.moon_tex = loader.loadTexture("models/moon_1k_tex.jpg")
- self.moon.setTexture(self.moon_tex, 1)
- self.moon.reparentTo(self.orbit_root_moon)
- self.moon.setScale(0.1 * self.sizescale)
- self.moon.setPos(0.1 * self.orbitscale, 0, 0)
- # end loadPlanets()
- # end class world
- w = World()
- base.run()
|