2
0
Эх сурвалжийг харах

Matrix4 now has determinant and transpose functions.

"General Determinant" function comes from the site of Paul Bourke, who says "you may freely use the code in which ever way you see fit. Credits to authors welcome though".
mcc 13 жил өмнө
parent
commit
025f56124e

+ 24 - 2
Core/Contents/Include/PolyMatrix4.h

@@ -242,7 +242,17 @@ namespace Polycode {
 				*az = fabs(angle_z);
 				*az = fabs(angle_z);
 
 
 			}
 			}
-
+		
+			/**
+			 * Returns the transpose of the matrix.
+			 */
+			inline Matrix4 transpose() const {
+				return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0],
+							   m[0][1], m[1][1], m[2][1], m[3][1],
+							   m[0][2], m[1][2], m[2][2], m[3][2],
+							   m[0][3], m[1][3], m[2][3], m[3][3]);
+			}
+			
 			/**
 			/**
 			* Returns the inverse of the matrix.
 			* Returns the inverse of the matrix.
 			*/
 			*/
@@ -252,7 +262,19 @@ namespace Polycode {
 			* Returns the affine inverse of the matrix.
 			* Returns the affine inverse of the matrix.
 			*/			
 			*/			
 			Matrix4 inverseAffine() const;
 			Matrix4 inverseAffine() const;
-	
+		
+			/**
+			* Returns the determinant of the matrix.
+			*/
+			Number determinant() const;
+		
+			/**
+			 * Returns the determinant of any general (square) matrix.
+			 * @param a A square matrix as an array of pointers to rows (or columns).
+			 * @param n The number of dimensions in matrix A.
+			 */
+			static Number generalDeterminant(Number const* const*a, int n);
+		
 		protected:
 		protected:
 		
 		
 	};
 	};

+ 211 - 91
Core/Contents/Source/PolyMatrix4.cpp

@@ -36,107 +36,227 @@ Matrix4::Matrix4(const Number *m) {
 	memcpy(ml, m, sizeof(Number)*16);
 	memcpy(ml, m, sizeof(Number)*16);
 }
 }
 
 
-	Matrix4 Matrix4::inverse() const
-    {
-        Number m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
-        Number m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3];
-        Number m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3];
-        Number m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3];
-
-        Number v0 = m20 * m31 - m21 * m30;
-        Number v1 = m20 * m32 - m22 * m30;
-        Number v2 = m20 * m33 - m23 * m30;
-        Number v3 = m21 * m32 - m22 * m31;
-        Number v4 = m21 * m33 - m23 * m31;
-        Number v5 = m22 * m33 - m23 * m32;
-
-        Number t00 = + (v5 * m11 - v4 * m12 + v3 * m13);
-        Number t10 = - (v5 * m10 - v2 * m12 + v1 * m13);
-        Number t20 = + (v4 * m10 - v2 * m11 + v0 * m13);
-        Number t30 = - (v3 * m10 - v1 * m11 + v0 * m12);
-
-        Number invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03);
-
-        Number d00 = t00 * invDet;
-        Number d10 = t10 * invDet;
-        Number d20 = t20 * invDet;
-        Number d30 = t30 * invDet;
-
-        Number d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
-        Number d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
-        Number d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
-        Number d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
-
-        v0 = m10 * m31 - m11 * m30;
-        v1 = m10 * m32 - m12 * m30;
-        v2 = m10 * m33 - m13 * m30;
-        v3 = m11 * m32 - m12 * m31;
-        v4 = m11 * m33 - m13 * m31;
-        v5 = m12 * m33 - m13 * m32;
-
-        Number d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
-        Number d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
-        Number d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
-        Number d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
-
-        v0 = m21 * m10 - m20 * m11;
-        v1 = m22 * m10 - m20 * m12;
-        v2 = m23 * m10 - m20 * m13;
-        v3 = m22 * m11 - m21 * m12;
-        v4 = m23 * m11 - m21 * m13;
-        v5 = m23 * m12 - m22 * m13;
-
-        Number d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
-        Number d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
-        Number d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
-        Number d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
-
-        return Matrix4(
-            d00, d01, d02, d03,
-            d10, d11, d12, d13,
-            d20, d21, d22, d23,
-            d30, d31, d32, d33);
-    }
-    //-----------------------------------------------------------------------
-	Matrix4 Matrix4::inverseAffine(void) const
-    {
+Matrix4 Matrix4::inverse() const
+{
+	Number m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
+	Number m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3];
+	Number m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3];
+	Number m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3];
+
+	Number v0 = m20 * m31 - m21 * m30;
+	Number v1 = m20 * m32 - m22 * m30;
+	Number v2 = m20 * m33 - m23 * m30;
+	Number v3 = m21 * m32 - m22 * m31;
+	Number v4 = m21 * m33 - m23 * m31;
+	Number v5 = m22 * m33 - m23 * m32;
+
+	Number t00 = + (v5 * m11 - v4 * m12 + v3 * m13);
+	Number t10 = - (v5 * m10 - v2 * m12 + v1 * m13);
+	Number t20 = + (v4 * m10 - v2 * m11 + v0 * m13);
+	Number t30 = - (v3 * m10 - v1 * m11 + v0 * m12);
+
+	Number invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03);
+
+	Number d00 = t00 * invDet;
+	Number d10 = t10 * invDet;
+	Number d20 = t20 * invDet;
+	Number d30 = t30 * invDet;
+
+	Number d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
+	Number d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
+	Number d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
+	Number d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
+
+	v0 = m10 * m31 - m11 * m30;
+	v1 = m10 * m32 - m12 * m30;
+	v2 = m10 * m33 - m13 * m30;
+	v3 = m11 * m32 - m12 * m31;
+	v4 = m11 * m33 - m13 * m31;
+	v5 = m12 * m33 - m13 * m32;
+
+	Number d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
+	Number d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
+	Number d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
+	Number d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
+
+	v0 = m21 * m10 - m20 * m11;
+	v1 = m22 * m10 - m20 * m12;
+	v2 = m23 * m10 - m20 * m13;
+	v3 = m22 * m11 - m21 * m12;
+	v4 = m23 * m11 - m21 * m13;
+	v5 = m23 * m12 - m22 * m13;
 
 
-        Number m10 = m[1][0], m11 = m[1][1], m12 = m[1][2];
-        Number m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];
+	Number d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
+	Number d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
+	Number d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
+	Number d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
 
 
-        Number t00 = m22 * m11 - m21 * m12;
-        Number t10 = m20 * m12 - m22 * m10;
-        Number t20 = m21 * m10 - m20 * m11;
+	return Matrix4(
+		d00, d01, d02, d03,
+		d10, d11, d12, d13,
+		d20, d21, d22, d23,
+		d30, d31, d32, d33);
+}
+
+Matrix4 Matrix4::inverseAffine(void) const
+{
+
+	Number m10 = m[1][0], m11 = m[1][1], m12 = m[1][2];
+	Number m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];
 
 
-        Number m00 = m[0][0], m01 = m[0][1], m02 = m[0][2];
+	Number t00 = m22 * m11 - m21 * m12;
+	Number t10 = m20 * m12 - m22 * m10;
+	Number t20 = m21 * m10 - m20 * m11;
 
 
-        Number invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20);
+	Number m00 = m[0][0], m01 = m[0][1], m02 = m[0][2];
 
 
-        t00 *= invDet; t10 *= invDet; t20 *= invDet;
+	Number invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20);
 
 
-        m00 *= invDet; m01 *= invDet; m02 *= invDet;
+	t00 *= invDet; t10 *= invDet; t20 *= invDet;
 
 
-        Number r00 = t00;
-        Number r01 = m02 * m21 - m01 * m22;
-        Number r02 = m01 * m12 - m02 * m11;
+	m00 *= invDet; m01 *= invDet; m02 *= invDet;
 
 
-        Number r10 = t10;
-        Number r11 = m00 * m22 - m02 * m20;
-        Number r12 = m02 * m10 - m00 * m12;
+	Number r00 = t00;
+	Number r01 = m02 * m21 - m01 * m22;
+	Number r02 = m01 * m12 - m02 * m11;
 
 
-        Number r20 = t20;
-        Number r21 = m01 * m20 - m00 * m21;
-        Number r22 = m00 * m11 - m01 * m10;
+	Number r10 = t10;
+	Number r11 = m00 * m22 - m02 * m20;
+	Number r12 = m02 * m10 - m00 * m12;
 
 
-        Number m03 = m[0][3], m13 = m[1][3], m23 = m[2][3];
+	Number r20 = t20;
+	Number r21 = m01 * m20 - m00 * m21;
+	Number r22 = m00 * m11 - m01 * m10;
 
 
-        Number r03 = - (r00 * m03 + r01 * m13 + r02 * m23);
-        Number r13 = - (r10 * m03 + r11 * m13 + r12 * m23);
-        Number r23 = - (r20 * m03 + r21 * m13 + r22 * m23);
+	Number m03 = m[0][3], m13 = m[1][3], m23 = m[2][3];
 
 
-        return Matrix4(
-            r00, r01, r02, r03,
-            r10, r11, r12, r13,
-            r20, r21, r22, r23,
-              0,   0,   0,   1);
+	Number r03 = - (r00 * m03 + r01 * m13 + r02 * m23);
+	Number r13 = - (r10 * m03 + r11 * m13 + r12 * m23);
+	Number r23 = - (r20 * m03 + r21 * m13 + r22 * m23);
+
+	return Matrix4(
+		r00, r01, r02, r03,
+		r10, r11, r12, r13,
+		r20, r21, r22, r23,
+		  0,   0,   0,   1);
+}
+
+Number Matrix4::determinant() const {
+	const Number *cols[4] = {m[0],m[1],m[2],m[3]};
+	return generalDeterminant(cols, 4);
+}
+
+// Determinant function by Edward Popko
+// Source: http://paulbourke.net/miscellaneous/determinant/
+//==============================================================================
+// Recursive definition of determinate using expansion by minors.
+//
+// Notes: 1) arguments:
+//             a (double **) pointer to a pointer of an arbitrary square matrix
+//             n (int) dimension of the square matrix
+//
+//        2) Determinant is a recursive function, calling itself repeatedly
+//           each time with a sub-matrix of the original till a terminal
+//           2X2 matrix is achieved and a simple determinat can be computed.
+//           As the recursion works backwards, cumulative determinants are
+//           found till untimately, the final determinate is returned to the
+//           initial function caller.
+//
+//        3) m is a matrix (4X4 in example)  and m13 is a minor of it.
+//           A minor of m is a 3X3 in which a row and column of values
+//           had been excluded.   Another minor of the submartix is also
+//           possible etc.
+//             m  a b c d   m13 . . . .
+//                e f g h       e f . h     row 1 column 3 is elminated
+//                i j k l       i j . l     creating a 3 X 3 sub martix
+//                m n o p       m n . p
+//
+//        4) the following function finds the determinant of a matrix
+//           by recursively minor-ing a row and column, each time reducing
+//           the sub-matrix by one row/column.  When a 2X2 matrix is
+//           obtained, the determinat is a simple calculation and the
+//           process of unstacking previous recursive calls begins.
+//
+//                m n
+//                o p  determinant = m*p - n*o
+//
+//        5) this function uses dynamic memory allocation on each call to
+//           build a m X m matrix  this requires **  and * pointer variables
+//           First memory allocation is ** and gets space for a list of other
+//           pointers filled in by the second call to malloc.
+//
+//        6) C++ implements two dimensional arrays as an array of arrays
+//           thus two dynamic malloc's are needed and have corresponsing
+//           free() calles.
+//
+//        7) the final determinant value is the sum of sub determinants
+//
+//==============================================================================
+Number Matrix4::generalDeterminant(Number const* const*a,int n)
+{
+    int i,j,j1,j2;                    // general loop and matrix subscripts
+    Number det = 0;                   // init determinant
+    Number **m = NULL;                // pointer to pointers to implement 2d
+	// square array
+	
+    if (n < 1)    {   }                // error condition, should never get here
+	
+    else if (n == 1) {                 // should not get here
+        det = a[0][0];
+	}
+	
+    else if (n == 2)  {                // basic 2X2 sub-matrix determinate
+		// definition. When n==2, this ends the
+        det = a[0][0] * a[1][1] - a[1][0] * a[0][1];// the recursion series
+	}
+	
+	
+	// recursion continues, solve next sub-matrix
+    else {                             // solve the next minor by building a
+		// sub matrix
+        det = 0;                      // initialize determinant of sub-matrix
+		
+		// for each column in sub-matrix
+        for (j1 = 0; j1 < n; j1++) {
+			// get space for the pointer list
+            m = new Number*[n-1];
+			
+            for (i = 0; i < n-1; i++)
+                m[i] = new Number[n-1];
+			//     i[0][1][2][3]  first malloc
+			//  m -> +  +  +  +   space for 4 pointers
+			//       |  |  |  |          j  second malloc
+			//       |  |  |  +-> _ _ _ [0] pointers to
+			//       |  |  +----> _ _ _ [1] and memory for
+			//       |  +-------> _ a _ [2] 4 doubles
+			//       +----------> _ _ _ [3]
+			//
+			//                   a[1][2]
+			// build sub-matrix with minor elements excluded
+            for (i = 1; i < n; i++) {
+                j2 = 0;               // start at first sum-matrix column position
+				// loop to copy source matrix less one column
+                for (j = 0; j < n; j++) {
+                    if (j == j1) continue; // don't copy the minor column element
+					
+                    m[i-1][j2] = a[i][j];   // copy source element into new sub-matrix
+					// i-1 because new sub-matrix is one row
+					// (and column) smaller with excluded minors
+                    j2++;                  // move to next sub-matrix column position
+				}
+			}
+			
+            det += pow(-1.0,1.0 + j1 + 1.0) * a[0][j1] * generalDeterminant(m,n-1);
+			// sum x raised to y power
+			// recursively get determinant of next
+			// sub-matrix which is now one
+			// row & column smaller
+			
+            for (i = 0 ; i < n-1 ; i++) delete[] m[i];// free the storage allocated to
+			// to this minor's set of pointers
+            delete[] m;                       // free the storage for the original
+			// pointer to pointer
+        }
     }
     }
+    return(det) ;
+}