|
|
@@ -0,0 +1,586 @@
|
|
|
+/*
|
|
|
+Open Asset Import Library (ASSIMP)
|
|
|
+----------------------------------------------------------------------
|
|
|
+
|
|
|
+Copyright (c) 2006-2010, ASSIMP Development Team
|
|
|
+All rights reserved.
|
|
|
+
|
|
|
+Redistribution and use of this software in source and binary forms,
|
|
|
+with or without modification, are permitted provided that the
|
|
|
+following conditions are met:
|
|
|
+
|
|
|
+* Redistributions of source code must retain the above
|
|
|
+ copyright notice, this list of conditions and the
|
|
|
+ following disclaimer.
|
|
|
+
|
|
|
+* Redistributions in binary form must reproduce the above
|
|
|
+ copyright notice, this list of conditions and the
|
|
|
+ following disclaimer in the documentation and/or other
|
|
|
+ materials provided with the distribution.
|
|
|
+
|
|
|
+* Neither the name of the ASSIMP team, nor the names of its
|
|
|
+ contributors may be used to endorse or promote products
|
|
|
+ derived from this software without specific prior
|
|
|
+ written permission of the ASSIMP Development Team.
|
|
|
+
|
|
|
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
+
|
|
|
+----------------------------------------------------------------------
|
|
|
+*/
|
|
|
+
|
|
|
+/** @file LWOAnimation.cpp
|
|
|
+ * @brief LWOAnimationResolver utility class
|
|
|
+ *
|
|
|
+ * It's a very generic implementation of LightWave's system of
|
|
|
+ * componentwise-animated stuff. The one and only fully free
|
|
|
+ * implementation of LightWave envelopes of which I know.
|
|
|
+*/
|
|
|
+
|
|
|
+#include <functional>
|
|
|
+#include "AssimpPCH.h"
|
|
|
+#if (!defined ASSIMP_BUILD_NO_LWO_IMPORTER) && (!defined ASSIMP_BUILD_NO_LWS_IMPORTER)
|
|
|
+
|
|
|
+// internal headers
|
|
|
+#include "LWOFileData.h"
|
|
|
+
|
|
|
+using namespace Assimp;
|
|
|
+using namespace Assimp::LWO;
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Construct an animation resolver from a given list of envelopes
|
|
|
+AnimResolver::AnimResolver(std::list<Envelope>& _envelopes,double tick)
|
|
|
+ : envelopes (_envelopes)
|
|
|
+ , sample_rate (0.)
|
|
|
+{
|
|
|
+ trans_x = trans_y = trans_z = NULL;
|
|
|
+ rotat_x = rotat_y = rotat_z = NULL;
|
|
|
+ scale_x = scale_y = scale_z = NULL;
|
|
|
+
|
|
|
+ first = last = 150392.;
|
|
|
+
|
|
|
+ // find transformation envelopes
|
|
|
+ for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
|
|
|
+
|
|
|
+ (*it).old_first = 0;
|
|
|
+ (*it).old_last = (*it).keys.size()-1;
|
|
|
+
|
|
|
+ if ((*it).keys.empty()) continue;
|
|
|
+ switch ((*it).type) {
|
|
|
+
|
|
|
+ // translation
|
|
|
+ case LWO::EnvelopeType_Position_X:
|
|
|
+ trans_x = &*it;break;
|
|
|
+ case LWO::EnvelopeType_Position_Y:
|
|
|
+ trans_y = &*it;break;
|
|
|
+ case LWO::EnvelopeType_Position_Z:
|
|
|
+ trans_z = &*it;break;
|
|
|
+
|
|
|
+ // rotation
|
|
|
+ case LWO::EnvelopeType_Rotation_Heading:
|
|
|
+ rotat_x = &*it;break;
|
|
|
+ case LWO::EnvelopeType_Rotation_Pitch:
|
|
|
+ rotat_y = &*it;break;
|
|
|
+ case LWO::EnvelopeType_Rotation_Bank:
|
|
|
+ rotat_z = &*it;break;
|
|
|
+
|
|
|
+ // scaling
|
|
|
+ case LWO::EnvelopeType_Scaling_X:
|
|
|
+ scale_x = &*it;break;
|
|
|
+ case LWO::EnvelopeType_Scaling_Y:
|
|
|
+ scale_y = &*it;break;
|
|
|
+ case LWO::EnvelopeType_Scaling_Z:
|
|
|
+ scale_z = &*it;break;
|
|
|
+ default:
|
|
|
+ continue;
|
|
|
+ };
|
|
|
+
|
|
|
+ // convert from seconds to ticks
|
|
|
+ for (std::vector<LWO::Key>::iterator d = (*it).keys.begin(); d != (*it).keys.end(); ++d)
|
|
|
+ (*d).time *= tick;
|
|
|
+
|
|
|
+ // set default animation range (minimum and maximum time value for which we have a keyframe)
|
|
|
+ first = std::min(first, (*it).keys.front().time );
|
|
|
+ last = std::max(last, (*it).keys.back().time );
|
|
|
+ }
|
|
|
+
|
|
|
+ // deferred setup of animation range to increase performance.
|
|
|
+ // typically the application will want to specify its own.
|
|
|
+ need_to_setup = true;
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Reset all envelopes to their original contents
|
|
|
+void AnimResolver::ClearAnimRangeSetup()
|
|
|
+{
|
|
|
+ for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
|
|
|
+
|
|
|
+ (*it).keys.erase((*it).keys.begin(),(*it).keys.begin()+(*it).old_first);
|
|
|
+ (*it).keys.erase((*it).keys.begin()+(*it).old_last+1,(*it).keys.end());
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Insert additional keys to match LWO's pre& post behaviours.
|
|
|
+void AnimResolver::UpdateAnimRangeSetup()
|
|
|
+{
|
|
|
+ // XXX doesn't work yet (hangs if more than one envelope channels needs to be interpolated)
|
|
|
+
|
|
|
+ for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
|
|
|
+ if ((*it).keys.empty()) continue;
|
|
|
+
|
|
|
+ const double my_first = (*it).keys.front().time;
|
|
|
+ const double my_last = (*it).keys.back().time;
|
|
|
+
|
|
|
+ const double delta = my_last-my_first;
|
|
|
+ const size_t old_size = (*it).keys.size();
|
|
|
+
|
|
|
+ const float value_delta = (*it).keys.back().value - (*it).keys.front().value;
|
|
|
+
|
|
|
+ // NOTE: We won't handle reset, linear and constant here.
|
|
|
+ // See DoInterpolation() for their implementation.
|
|
|
+
|
|
|
+ // process pre behaviour
|
|
|
+ switch ((*it).pre) {
|
|
|
+ case LWO::PrePostBehaviour_OffsetRepeat:
|
|
|
+ case LWO::PrePostBehaviour_Repeat:
|
|
|
+ case LWO::PrePostBehaviour_Oscillate:
|
|
|
+ {
|
|
|
+ const double start_time = delta - fmod(my_first-first,delta);
|
|
|
+ std::vector<LWO::Key>::iterator n = std::find_if((*it).keys.begin(),(*it).keys.end(),
|
|
|
+ std::bind1st(std::greater<double>(),start_time)),m;
|
|
|
+
|
|
|
+ size_t ofs = 0;
|
|
|
+ if (n != (*it).keys.end()) {
|
|
|
+ // copy from here - don't use iterators, insert() would invalidate them
|
|
|
+ ofs = (*it).keys.end()-n;
|
|
|
+ (*it).keys.insert((*it).keys.begin(),ofs,LWO::Key());
|
|
|
+
|
|
|
+ std::copy((*it).keys.end()-ofs,(*it).keys.end(),(*it).keys.begin());
|
|
|
+ }
|
|
|
+
|
|
|
+ // do full copies. again, no iterators
|
|
|
+ const unsigned int num = (unsigned int)((my_first-first) / delta);
|
|
|
+ (*it).keys.resize((*it).keys.size() + num*old_size);
|
|
|
+
|
|
|
+ n = (*it).keys.begin()+ofs;
|
|
|
+ bool reverse = false;
|
|
|
+ for (unsigned int i = 0; i < num; ++i) {
|
|
|
+ m = n+old_size*(i+1);
|
|
|
+ std::copy(n,n+old_size,m);
|
|
|
+
|
|
|
+ if ((*it).pre == LWO::PrePostBehaviour_Oscillate && (reverse = !reverse))
|
|
|
+ std::reverse(m,m+old_size-1);
|
|
|
+ }
|
|
|
+
|
|
|
+ // update time values
|
|
|
+ n = (*it).keys.end() - (old_size+1);
|
|
|
+ double cur_minus = delta;
|
|
|
+ unsigned int tt = 1;
|
|
|
+ for (const double tmp = delta*(num+1);cur_minus <= tmp;cur_minus += delta,++tt) {
|
|
|
+ m = (delta == tmp ? (*it).keys.begin() : n - (old_size+1));
|
|
|
+ for (;m != n; --n) {
|
|
|
+ (*n).time -= cur_minus;
|
|
|
+
|
|
|
+ // offset repeat? add delta offset to key value
|
|
|
+ if ((*it).pre == LWO::PrePostBehaviour_OffsetRepeat) {
|
|
|
+ (*n).value += tt * value_delta;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ // silence compiler warning
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ // process post behaviour
|
|
|
+ switch ((*it).post) {
|
|
|
+
|
|
|
+ case LWO::PrePostBehaviour_OffsetRepeat:
|
|
|
+ case LWO::PrePostBehaviour_Repeat:
|
|
|
+ case LWO::PrePostBehaviour_Oscillate:
|
|
|
+
|
|
|
+ break;
|
|
|
+
|
|
|
+ default:
|
|
|
+ // silence compiler warning
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Extract bind pose matrix
|
|
|
+void AnimResolver::ExtractBindPose(aiMatrix4x4& out)
|
|
|
+{
|
|
|
+ // If we have no envelopes, return identity
|
|
|
+ if (envelopes.empty()) {
|
|
|
+ out = aiMatrix4x4();
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ aiVector3D angles, scaling(1.f,1.f,1.f), translation;
|
|
|
+
|
|
|
+ if (trans_x) translation.x = trans_x->keys[0].value;
|
|
|
+ if (trans_y) translation.y = trans_y->keys[0].value;
|
|
|
+ if (trans_z) translation.z = trans_z->keys[0].value;
|
|
|
+
|
|
|
+ if (rotat_x) angles.x = rotat_x->keys[0].value;
|
|
|
+ if (rotat_y) angles.y = rotat_y->keys[0].value;
|
|
|
+ if (rotat_z) angles.z = rotat_z->keys[0].value;
|
|
|
+
|
|
|
+ if (scale_x) scaling.x = scale_x->keys[0].value;
|
|
|
+ if (scale_y) scaling.y = scale_y->keys[0].value;
|
|
|
+ if (scale_z) scaling.z = scale_z->keys[0].value;
|
|
|
+
|
|
|
+ // build the final matrix
|
|
|
+ aiMatrix4x4 s,r,t;
|
|
|
+
|
|
|
+ r.FromEulerAnglesXYZ(angles);
|
|
|
+ //aiMatrix4x4::RotationY(angles.y,r);
|
|
|
+ // fixme: make FromEulerAngles static, too
|
|
|
+ aiMatrix4x4::Translation(translation,t);
|
|
|
+ aiMatrix4x4::Scaling(scaling,s);
|
|
|
+ out = s*r*t;
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Do a single interpolation on a channel
|
|
|
+void AnimResolver::DoInterpolation(std::vector<LWO::Key>::const_iterator cur,
|
|
|
+ LWO::Envelope* envl,double time, float& fill)
|
|
|
+{
|
|
|
+ if (envl->keys.size() == 1) {
|
|
|
+ fill = envl->keys[0].value;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // check whether we're at the beginning of the animation track
|
|
|
+ if (cur == envl->keys.begin()) {
|
|
|
+
|
|
|
+ // ok ... this depends on pre behaviour now
|
|
|
+ // we don't need to handle repeat&offset repeat&oszillate here, see UpdateAnimRangeSetup()
|
|
|
+ switch (envl->pre)
|
|
|
+ {
|
|
|
+ case LWO::PrePostBehaviour_Linear:
|
|
|
+ DoInterpolation2(cur,cur+1,time,fill);
|
|
|
+ return;
|
|
|
+
|
|
|
+ case LWO::PrePostBehaviour_Reset:
|
|
|
+ fill = 0.f;
|
|
|
+ return;
|
|
|
+
|
|
|
+ default : //case LWO::PrePostBehaviour_Constant:
|
|
|
+ fill = (*cur).value;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // check whether we're at the end of the animation track
|
|
|
+ else if (cur == envl->keys.end()-1 && time > envl->keys.rbegin()->time) {
|
|
|
+ // ok ... this depends on post behaviour now
|
|
|
+ switch (envl->post)
|
|
|
+ {
|
|
|
+ case LWO::PrePostBehaviour_Linear:
|
|
|
+ DoInterpolation2(cur,cur-1,time,fill);
|
|
|
+ return;
|
|
|
+
|
|
|
+ case LWO::PrePostBehaviour_Reset:
|
|
|
+ fill = 0.f;
|
|
|
+ return;
|
|
|
+
|
|
|
+ default : //case LWO::PrePostBehaviour_Constant:
|
|
|
+ fill = (*cur).value;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Otherwise do a simple interpolation
|
|
|
+ DoInterpolation2(cur-1,cur,time,fill);
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Almost the same, except we won't handle pre/post conditions here
|
|
|
+void AnimResolver::DoInterpolation2(std::vector<LWO::Key>::const_iterator beg,
|
|
|
+ std::vector<LWO::Key>::const_iterator end,double time, float& fill)
|
|
|
+{
|
|
|
+ switch ((*end).inter) {
|
|
|
+
|
|
|
+ case LWO::IT_STEP:
|
|
|
+ // no interpolation at all - take the value of the last key
|
|
|
+ fill = (*beg).value;
|
|
|
+ return;
|
|
|
+ default:
|
|
|
+
|
|
|
+ // silence compiler warning
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ // linear interpolation - default
|
|
|
+ fill = (*beg).value + ((*end).value - (*beg).value)*(float)(((time - (*beg).time) / ((*end).time - (*beg).time)));
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Subsample animation track by given key values
|
|
|
+void AnimResolver::SubsampleAnimTrack(std::vector<aiVectorKey>& /*out*/,
|
|
|
+ double /*time*/ ,double /*sample_delta*/ )
|
|
|
+{
|
|
|
+ //ai_assert(out.empty() && sample_delta);
|
|
|
+
|
|
|
+ //const double time_start = out.back().mTime;
|
|
|
+// for ()
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Track interpolation
|
|
|
+void AnimResolver::InterpolateTrack(std::vector<aiVectorKey>& out,aiVectorKey& fill,double time)
|
|
|
+{
|
|
|
+ // subsample animation track?
|
|
|
+ if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
|
|
|
+ SubsampleAnimTrack(out,time, sample_delta);
|
|
|
+ }
|
|
|
+
|
|
|
+ fill.mTime = time;
|
|
|
+
|
|
|
+ // get x
|
|
|
+ if ((*cur_x).time == time) {
|
|
|
+ fill.mValue.x = (*cur_x).value;
|
|
|
+
|
|
|
+ if (cur_x != envl_x->keys.end()-1) /* increment x */
|
|
|
+ ++cur_x;
|
|
|
+ else end_x = true;
|
|
|
+ }
|
|
|
+ else DoInterpolation(cur_x,envl_x,time,(float&)fill.mValue.x);
|
|
|
+
|
|
|
+ // get y
|
|
|
+ if ((*cur_y).time == time) {
|
|
|
+ fill.mValue.y = (*cur_y).value;
|
|
|
+
|
|
|
+ if (cur_y != envl_y->keys.end()-1) /* increment y */
|
|
|
+ ++cur_y;
|
|
|
+ else end_y = true;
|
|
|
+ }
|
|
|
+ else DoInterpolation(cur_y,envl_y,time,(float&)fill.mValue.y);
|
|
|
+
|
|
|
+ // get z
|
|
|
+ if ((*cur_z).time == time) {
|
|
|
+ fill.mValue.z = (*cur_z).value;
|
|
|
+
|
|
|
+ if (cur_z != envl_z->keys.end()-1) /* increment z */
|
|
|
+ ++cur_z;
|
|
|
+ else end_x = true;
|
|
|
+ }
|
|
|
+ else DoInterpolation(cur_z,envl_z,time,(float&)fill.mValue.z);
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Build linearly subsampled keys from three single envelopes, one for each component (x,y,z)
|
|
|
+void AnimResolver::GetKeys(std::vector<aiVectorKey>& out,
|
|
|
+ LWO::Envelope* _envl_x,
|
|
|
+ LWO::Envelope* _envl_y,
|
|
|
+ LWO::Envelope* _envl_z,
|
|
|
+ unsigned int _flags)
|
|
|
+{
|
|
|
+ envl_x = _envl_x;
|
|
|
+ envl_y = _envl_y;
|
|
|
+ envl_z = _envl_z;
|
|
|
+ flags = _flags;
|
|
|
+
|
|
|
+ // generate default channels if none are given
|
|
|
+ LWO::Envelope def_x, def_y, def_z;
|
|
|
+ LWO::Key key_dummy;
|
|
|
+ key_dummy.time = 0.f;
|
|
|
+ if ((envl_x && envl_x->type == LWO::EnvelopeType_Scaling_X) ||
|
|
|
+ (envl_y && envl_y->type == LWO::EnvelopeType_Scaling_Y) ||
|
|
|
+ (envl_z && envl_z->type == LWO::EnvelopeType_Scaling_Z)) {
|
|
|
+ key_dummy.value = 1.f;
|
|
|
+ }
|
|
|
+ else key_dummy.value = 0.f;
|
|
|
+
|
|
|
+ if (!envl_x) {
|
|
|
+ envl_x = &def_x;
|
|
|
+ envl_x->keys.push_back(key_dummy);
|
|
|
+ }
|
|
|
+ if (!envl_y) {
|
|
|
+ envl_y = &def_y;
|
|
|
+ envl_y->keys.push_back(key_dummy);
|
|
|
+ }
|
|
|
+ if (!envl_z) {
|
|
|
+ envl_z = &def_z;
|
|
|
+ envl_z->keys.push_back(key_dummy);
|
|
|
+ }
|
|
|
+
|
|
|
+ // guess how many keys we'll get
|
|
|
+ size_t reserve;
|
|
|
+ double sr = 1.;
|
|
|
+ if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
|
|
|
+ if (!sample_rate)
|
|
|
+ sr = 100.f;
|
|
|
+ else sr = sample_rate;
|
|
|
+ sample_delta = 1.f / sr;
|
|
|
+
|
|
|
+ reserve = (size_t)(
|
|
|
+ std::max( envl_x->keys.end()->time,
|
|
|
+ std::max( envl_y->keys.end()->time, envl_z->keys.end()->time )) * sr);
|
|
|
+ }
|
|
|
+ else reserve = std::max(envl_x->keys.size(),std::max(envl_x->keys.size(),envl_z->keys.size()));
|
|
|
+ out.reserve(reserve+(reserve>>1));
|
|
|
+
|
|
|
+ // Iterate through all three arrays at once - it's tricky, but
|
|
|
+ // rather interesting to implement.
|
|
|
+ double lasttime = std::min(envl_x->keys[0].time,std::min(envl_y->keys[0].time,envl_z->keys[0].time));
|
|
|
+
|
|
|
+ cur_x = envl_x->keys.begin();
|
|
|
+ cur_y = envl_y->keys.begin();
|
|
|
+ cur_z = envl_z->keys.begin();
|
|
|
+
|
|
|
+ end_x = end_y = end_z = false;
|
|
|
+ while (1) {
|
|
|
+
|
|
|
+ aiVectorKey fill;
|
|
|
+
|
|
|
+ if ((*cur_x).time == (*cur_y).time && (*cur_x).time == (*cur_z).time ) {
|
|
|
+
|
|
|
+ // we have a keyframe for all of them defined .. great,
|
|
|
+ // we don't need to fucking interpolate here ...
|
|
|
+ fill.mTime = (*cur_x).time;
|
|
|
+
|
|
|
+ fill.mValue.x = (*cur_x).value;
|
|
|
+ fill.mValue.y = (*cur_y).value;
|
|
|
+ fill.mValue.z = (*cur_z).value;
|
|
|
+
|
|
|
+ // subsample animation track
|
|
|
+ if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
|
|
|
+ //SubsampleAnimTrack(out,cur_x, cur_y, cur_z, d, sample_delta);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cur_x != envl_x->keys.end()-1)
|
|
|
+ ++cur_x;
|
|
|
+ else end_x = true;
|
|
|
+ if (cur_y != envl_y->keys.end()-1)
|
|
|
+ ++cur_y;
|
|
|
+ else end_y = true;
|
|
|
+ if (cur_z != envl_z->keys.end()-1)
|
|
|
+ ++cur_z;
|
|
|
+ else end_z = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Find key with lowest time value
|
|
|
+ else if ((*cur_x).time <= (*cur_y).time && !end_x) {
|
|
|
+
|
|
|
+ if ((*cur_z).time <= (*cur_x).time && !end_z) {
|
|
|
+ InterpolateTrack(out,fill,(*cur_z).time);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ InterpolateTrack(out,fill,(*cur_x).time);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if ((*cur_z).time <= (*cur_y).time && !end_z) {
|
|
|
+ InterpolateTrack(out,fill,(*cur_z).time);
|
|
|
+ }
|
|
|
+ else if (!end_y) {
|
|
|
+ // welcome on the server, y
|
|
|
+ InterpolateTrack(out,fill,(*cur_y).time);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ // we have reached the end of at least 2 channels,
|
|
|
+ // only one is remaining. Extrapolate the 2.
|
|
|
+ if (end_y) {
|
|
|
+ InterpolateTrack(out,fill,(end_x ? (*cur_z) : (*cur_x)).time);
|
|
|
+ }
|
|
|
+ else if (end_x) {
|
|
|
+ InterpolateTrack(out,fill,(end_z ? (*cur_y) : (*cur_z)).time);
|
|
|
+ }
|
|
|
+ else { // if (end_z)
|
|
|
+ InterpolateTrack(out,fill,(end_y ? (*cur_x) : (*cur_y)).time);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ lasttime = fill.mTime;
|
|
|
+ out.push_back(fill);
|
|
|
+
|
|
|
+ if( end_x && end_y && end_z ) /* finished? */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (flags & AI_LWO_ANIM_FLAG_START_AT_ZERO) {
|
|
|
+ for (std::vector<aiVectorKey>::iterator it = out.begin(); it != out.end(); ++it)
|
|
|
+ (*it).mTime -= first;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// ------------------------------------------------------------------------------------------------
|
|
|
+// Extract animation channel
|
|
|
+void AnimResolver::ExtractAnimChannel(aiNodeAnim** out, unsigned int flags /*= 0*/)
|
|
|
+{
|
|
|
+ *out = NULL;
|
|
|
+
|
|
|
+
|
|
|
+ //FIXME: crashes if more than one component is animated at different timings, to be resolved.
|
|
|
+ return;
|
|
|
+
|
|
|
+#if 0
|
|
|
+ // If we have no envelopes, return NULL
|
|
|
+ if (envelopes.empty()) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // We won't spawn an animation channel if we don't have at least one envelope with more than one keyframe defined.
|
|
|
+ const bool trans = (trans_x && trans_x->keys.size() > 1 || trans_y && trans_y->keys.size() > 1 || trans_z && trans_z->keys.size() > 1);
|
|
|
+ const bool rotat = (rotat_x && rotat_x->keys.size() > 1 || rotat_y && rotat_y->keys.size() > 1 || rotat_z && rotat_z->keys.size() > 1);
|
|
|
+ const bool scale = (scale_x && scale_x->keys.size() > 1 || scale_y && scale_y->keys.size() > 1 || scale_z && scale_z->keys.size() > 1);
|
|
|
+ if (!trans && !rotat && !scale)
|
|
|
+ return;
|
|
|
+
|
|
|
+ // Allocate the output animation
|
|
|
+ aiNodeAnim* anim = *out = new aiNodeAnim();
|
|
|
+
|
|
|
+ // Setup default animation setup if necessary
|
|
|
+ if (need_to_setup) {
|
|
|
+ UpdateAnimRangeSetup();
|
|
|
+ need_to_setup = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // copy translation keys
|
|
|
+ if (trans) {
|
|
|
+ std::vector<aiVectorKey> keys;
|
|
|
+ GetKeys(keys,trans_x,trans_y,trans_z,flags);
|
|
|
+
|
|
|
+ anim->mPositionKeys = new aiVectorKey[ anim->mNumPositionKeys = keys.size() ];
|
|
|
+ std::copy(keys.begin(),keys.end(),anim->mPositionKeys);
|
|
|
+ }
|
|
|
+
|
|
|
+ // copy rotation keys
|
|
|
+ if (rotat) {
|
|
|
+ std::vector<aiVectorKey> keys;
|
|
|
+ GetKeys(keys,rotat_x,rotat_y,rotat_z,flags);
|
|
|
+
|
|
|
+ anim->mRotationKeys = new aiQuatKey[ anim->mNumRotationKeys = keys.size() ];
|
|
|
+
|
|
|
+ // convert heading, pitch, bank to quaternion
|
|
|
+ for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
|
|
|
+ aiQuatKey& qk = anim->mRotationKeys[i];
|
|
|
+ qk.mTime = keys[i].mTime;
|
|
|
+ qk.mValue = aiQuaternion( keys[i].mValue.x ,keys[i].mValue.z ,keys[i].mValue.y );
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // copy scaling keys
|
|
|
+ if (scale) {
|
|
|
+ std::vector<aiVectorKey> keys;
|
|
|
+ GetKeys(keys,scale_x,scale_y,scale_z,flags);
|
|
|
+
|
|
|
+ anim->mScalingKeys = new aiVectorKey[ anim->mNumScalingKeys = keys.size() ];
|
|
|
+ std::copy(keys.begin(),keys.end(),anim->mScalingKeys);
|
|
|
+ }
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+#endif // no lwo or no lws
|