PolyMatrix4.cpp 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. /*
  2. * PolyMatrix4.cpp
  3. * Poly
  4. *
  5. * Created by Ivan Safrin on 3/26/08.
  6. * Copyright 2008 __MyCompanyName__. All rights reserved.
  7. *
  8. */
  9. #include "PolyMatrix4.h"
  10. using namespace Polycode;
  11. Matrix4::Matrix4() {
  12. init();
  13. }
  14. void Matrix4::init() {
  15. memset(ml, 0, sizeof(Number)*16);
  16. ml[0] = 1;
  17. ml[5] = 1;
  18. ml[10] = 1;
  19. ml[15] = 1;
  20. }
  21. Matrix4::~Matrix4() {
  22. }
  23. Matrix4::Matrix4(Number *m) {
  24. memcpy(ml, m, sizeof(Number)*16);
  25. }
  26. Matrix4 Matrix4::inverse()
  27. {
  28. Number m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
  29. Number m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3];
  30. Number m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3];
  31. Number m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3];
  32. Number v0 = m20 * m31 - m21 * m30;
  33. Number v1 = m20 * m32 - m22 * m30;
  34. Number v2 = m20 * m33 - m23 * m30;
  35. Number v3 = m21 * m32 - m22 * m31;
  36. Number v4 = m21 * m33 - m23 * m31;
  37. Number v5 = m22 * m33 - m23 * m32;
  38. Number t00 = + (v5 * m11 - v4 * m12 + v3 * m13);
  39. Number t10 = - (v5 * m10 - v2 * m12 + v1 * m13);
  40. Number t20 = + (v4 * m10 - v2 * m11 + v0 * m13);
  41. Number t30 = - (v3 * m10 - v1 * m11 + v0 * m12);
  42. Number invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03);
  43. Number d00 = t00 * invDet;
  44. Number d10 = t10 * invDet;
  45. Number d20 = t20 * invDet;
  46. Number d30 = t30 * invDet;
  47. Number d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
  48. Number d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
  49. Number d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
  50. Number d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
  51. v0 = m10 * m31 - m11 * m30;
  52. v1 = m10 * m32 - m12 * m30;
  53. v2 = m10 * m33 - m13 * m30;
  54. v3 = m11 * m32 - m12 * m31;
  55. v4 = m11 * m33 - m13 * m31;
  56. v5 = m12 * m33 - m13 * m32;
  57. Number d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
  58. Number d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
  59. Number d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
  60. Number d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
  61. v0 = m21 * m10 - m20 * m11;
  62. v1 = m22 * m10 - m20 * m12;
  63. v2 = m23 * m10 - m20 * m13;
  64. v3 = m22 * m11 - m21 * m12;
  65. v4 = m23 * m11 - m21 * m13;
  66. v5 = m23 * m12 - m22 * m13;
  67. Number d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
  68. Number d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
  69. Number d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
  70. Number d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
  71. return Matrix4(
  72. d00, d01, d02, d03,
  73. d10, d11, d12, d13,
  74. d20, d21, d22, d23,
  75. d30, d31, d32, d33);
  76. }
  77. //-----------------------------------------------------------------------
  78. Matrix4 Matrix4::inverseAffine(void)
  79. {
  80. Number m10 = m[1][0], m11 = m[1][1], m12 = m[1][2];
  81. Number m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];
  82. Number t00 = m22 * m11 - m21 * m12;
  83. Number t10 = m20 * m12 - m22 * m10;
  84. Number t20 = m21 * m10 - m20 * m11;
  85. Number m00 = m[0][0], m01 = m[0][1], m02 = m[0][2];
  86. Number invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20);
  87. t00 *= invDet; t10 *= invDet; t20 *= invDet;
  88. m00 *= invDet; m01 *= invDet; m02 *= invDet;
  89. Number r00 = t00;
  90. Number r01 = m02 * m21 - m01 * m22;
  91. Number r02 = m01 * m12 - m02 * m11;
  92. Number r10 = t10;
  93. Number r11 = m00 * m22 - m02 * m20;
  94. Number r12 = m02 * m10 - m00 * m12;
  95. Number r20 = t20;
  96. Number r21 = m01 * m20 - m00 * m21;
  97. Number r22 = m00 * m11 - m01 * m10;
  98. Number m03 = m[0][3], m13 = m[1][3], m23 = m[2][3];
  99. Number r03 = - (r00 * m03 + r01 * m13 + r02 * m23);
  100. Number r13 = - (r10 * m03 + r11 * m13 + r12 * m23);
  101. Number r23 = - (r20 * m03 + r21 * m13 + r22 * m23);
  102. return Matrix4(
  103. r00, r01, r02, r03,
  104. r10, r11, r12, r13,
  105. r20, r21, r22, r23,
  106. 0, 0, 0, 1);
  107. }