| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- /*
- Copyright (C) 2011 by Ivan Safrin
-
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
-
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE.
- */
- #include "PolyMatrix4.h"
- using namespace Polycode;
- Matrix4::Matrix4() {
- identity();
- }
- Matrix4::~Matrix4() {
- }
- Matrix4::Matrix4(const Number *m) {
- memcpy(ml, m, sizeof(Number)*16);
- }
- Matrix4 Matrix4::Inverse() const
- {
- Number m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
- Number m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3];
- Number m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3];
- Number m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3];
- Number v0 = m20 * m31 - m21 * m30;
- Number v1 = m20 * m32 - m22 * m30;
- Number v2 = m20 * m33 - m23 * m30;
- Number v3 = m21 * m32 - m22 * m31;
- Number v4 = m21 * m33 - m23 * m31;
- Number v5 = m22 * m33 - m23 * m32;
- Number t00 = + (v5 * m11 - v4 * m12 + v3 * m13);
- Number t10 = - (v5 * m10 - v2 * m12 + v1 * m13);
- Number t20 = + (v4 * m10 - v2 * m11 + v0 * m13);
- Number t30 = - (v3 * m10 - v1 * m11 + v0 * m12);
- Number invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03);
- Number d00 = t00 * invDet;
- Number d10 = t10 * invDet;
- Number d20 = t20 * invDet;
- Number d30 = t30 * invDet;
- Number d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
- Number d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
- Number d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
- Number d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
- v0 = m10 * m31 - m11 * m30;
- v1 = m10 * m32 - m12 * m30;
- v2 = m10 * m33 - m13 * m30;
- v3 = m11 * m32 - m12 * m31;
- v4 = m11 * m33 - m13 * m31;
- v5 = m12 * m33 - m13 * m32;
- Number d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
- Number d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
- Number d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
- Number d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
- v0 = m21 * m10 - m20 * m11;
- v1 = m22 * m10 - m20 * m12;
- v2 = m23 * m10 - m20 * m13;
- v3 = m22 * m11 - m21 * m12;
- v4 = m23 * m11 - m21 * m13;
- v5 = m23 * m12 - m22 * m13;
- Number d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
- Number d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
- Number d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
- Number d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
- return Matrix4(
- d00, d01, d02, d03,
- d10, d11, d12, d13,
- d20, d21, d22, d23,
- d30, d31, d32, d33);
- }
- Matrix4 Matrix4::inverseAffine(void) const
- {
- Number m10 = m[1][0], m11 = m[1][1], m12 = m[1][2];
- Number m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];
- Number t00 = m22 * m11 - m21 * m12;
- Number t10 = m20 * m12 - m22 * m10;
- Number t20 = m21 * m10 - m20 * m11;
- Number m00 = m[0][0], m01 = m[0][1], m02 = m[0][2];
- Number invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20);
- t00 *= invDet; t10 *= invDet; t20 *= invDet;
- m00 *= invDet; m01 *= invDet; m02 *= invDet;
- Number r00 = t00;
- Number r01 = m02 * m21 - m01 * m22;
- Number r02 = m01 * m12 - m02 * m11;
- Number r10 = t10;
- Number r11 = m00 * m22 - m02 * m20;
- Number r12 = m02 * m10 - m00 * m12;
- Number r20 = t20;
- Number r21 = m01 * m20 - m00 * m21;
- Number r22 = m00 * m11 - m01 * m10;
- Number m03 = m[0][3], m13 = m[1][3], m23 = m[2][3];
- Number r03 = - (r00 * m03 + r01 * m13 + r02 * m23);
- Number r13 = - (r10 * m03 + r11 * m13 + r12 * m23);
- Number r23 = - (r20 * m03 + r21 * m13 + r22 * m23);
- return Matrix4(
- r00, r01, r02, r03,
- r10, r11, r12, r13,
- r20, r21, r22, r23,
- 0, 0, 0, 1);
- }
- Number Matrix4::determinant() const {
- const Number *cols[4] = {m[0],m[1],m[2],m[3]};
- return generalDeterminant(cols, 4);
- }
- // Determinant function by Edward Popko
- // Source: http://paulbourke.net/miscellaneous/determinant/
- //==============================================================================
- // Recursive definition of determinate using expansion by minors.
- //
- // Notes: 1) arguments:
- // a (double **) pointer to a pointer of an arbitrary square matrix
- // n (int) dimension of the square matrix
- //
- // 2) Determinant is a recursive function, calling itself repeatedly
- // each time with a sub-matrix of the original till a terminal
- // 2X2 matrix is achieved and a simple determinat can be computed.
- // As the recursion works backwards, cumulative determinants are
- // found till untimately, the final determinate is returned to the
- // initial function caller.
- //
- // 3) m is a matrix (4X4 in example) and m13 is a minor of it.
- // A minor of m is a 3X3 in which a row and column of values
- // had been excluded. Another minor of the submartix is also
- // possible etc.
- // m a b c d m13 . . . .
- // e f g h e f . h row 1 column 3 is elminated
- // i j k l i j . l creating a 3 X 3 sub martix
- // m n o p m n . p
- //
- // 4) the following function finds the determinant of a matrix
- // by recursively minor-ing a row and column, each time reducing
- // the sub-matrix by one row/column. When a 2X2 matrix is
- // obtained, the determinat is a simple calculation and the
- // process of unstacking previous recursive calls begins.
- //
- // m n
- // o p determinant = m*p - n*o
- //
- // 5) this function uses dynamic memory allocation on each call to
- // build a m X m matrix this requires ** and * pointer variables
- // First memory allocation is ** and gets space for a list of other
- // pointers filled in by the second call to malloc.
- //
- // 6) C++ implements two dimensional arrays as an array of arrays
- // thus two dynamic malloc's are needed and have corresponsing
- // free() calles.
- //
- // 7) the final determinant value is the sum of sub determinants
- //
- //==============================================================================
- Number Matrix4::generalDeterminant(Number const* const*a,int n)
- {
- int i,j,j1,j2; // general loop and matrix subscripts
- Number det = 0; // init determinant
- Number **m = NULL; // pointer to pointers to implement 2d
- // square array
-
- if (n < 1) { } // error condition, should never get here
-
- else if (n == 1) { // should not get here
- det = a[0][0];
- }
-
- else if (n == 2) { // basic 2X2 sub-matrix determinate
- // definition. When n==2, this ends the
- det = a[0][0] * a[1][1] - a[1][0] * a[0][1];// the recursion series
- }
-
-
- // recursion continues, solve next sub-matrix
- else { // solve the next minor by building a
- // sub matrix
- det = 0; // initialize determinant of sub-matrix
-
- // for each column in sub-matrix
- for (j1 = 0; j1 < n; j1++) {
- // get space for the pointer list
- m = new Number*[n-1];
-
- for (i = 0; i < n-1; i++)
- m[i] = new Number[n-1];
- // i[0][1][2][3] first malloc
- // m -> + + + + space for 4 pointers
- // | | | | j second malloc
- // | | | +-> _ _ _ [0] pointers to
- // | | +----> _ _ _ [1] and memory for
- // | +-------> _ a _ [2] 4 doubles
- // +----------> _ _ _ [3]
- //
- // a[1][2]
- // build sub-matrix with minor elements excluded
- for (i = 1; i < n; i++) {
- j2 = 0; // start at first sum-matrix column position
- // loop to copy source matrix less one column
- for (j = 0; j < n; j++) {
- if (j == j1) continue; // don't copy the minor column element
-
- m[i-1][j2] = a[i][j]; // copy source element into new sub-matrix
- // i-1 because new sub-matrix is one row
- // (and column) smaller with excluded minors
- j2++; // move to next sub-matrix column position
- }
- }
-
- det += pow(-1.0,1.0 + j1 + 1.0) * a[0][j1] * generalDeterminant(m,n-1);
- // sum x raised to y power
- // recursively get determinant of next
- // sub-matrix which is now one
- // row & column smaller
-
- for (i = 0 ; i < n-1 ; i++) delete[] m[i];// free the storage allocated to
- // to this minor's set of pointers
- delete[] m; // free the storage for the original
- // pointer to pointer
- }
- }
- return(det) ;
- }
|