btGjkEpa3.h 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2014 Erwin Coumans http://continuousphysics.com/Bullet/
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the
  6. use of this software.
  7. Permission is granted to anyone to use this software for any purpose,
  8. including commercial applications, and to alter it and redistribute it
  9. freely,
  10. subject to the following restrictions:
  11. 1. The origin of this software must not be misrepresented; you must not
  12. claim that you wrote the original software. If you use this software in a
  13. product, an acknowledgment in the product documentation would be appreciated
  14. but is not required.
  15. 2. Altered source versions must be plainly marked as such, and must not be
  16. misrepresented as being the original software.
  17. 3. This notice may not be removed or altered from any source distribution.
  18. */
  19. /*
  20. Initial GJK-EPA collision solver by Nathanael Presson, 2008
  21. Improvements and refactoring by Erwin Coumans, 2008-2014
  22. */
  23. #ifndef BT_GJK_EPA3_H
  24. #define BT_GJK_EPA3_H
  25. #include "LinearMath/btTransform.h"
  26. #include "btGjkCollisionDescription.h"
  27. struct btGjkEpaSolver3
  28. {
  29. struct sResults
  30. {
  31. enum eStatus
  32. {
  33. Separated, /* Shapes doesnt penetrate */
  34. Penetrating, /* Shapes are penetrating */
  35. GJK_Failed, /* GJK phase fail, no big issue, shapes are probably just 'touching' */
  36. EPA_Failed /* EPA phase fail, bigger problem, need to save parameters, and debug */
  37. } status;
  38. btVector3 witnesses[2];
  39. btVector3 normal;
  40. btScalar distance;
  41. };
  42. };
  43. #if defined(DEBUG) || defined (_DEBUG)
  44. #include <stdio.h> //for debug printf
  45. #ifdef __SPU__
  46. #include <spu_printf.h>
  47. #define printf spu_printf
  48. #endif //__SPU__
  49. #endif
  50. // Config
  51. /* GJK */
  52. #define GJK_MAX_ITERATIONS 128
  53. #define GJK_ACCURARY ((btScalar)0.0001)
  54. #define GJK_MIN_DISTANCE ((btScalar)0.0001)
  55. #define GJK_DUPLICATED_EPS ((btScalar)0.0001)
  56. #define GJK_SIMPLEX2_EPS ((btScalar)0.0)
  57. #define GJK_SIMPLEX3_EPS ((btScalar)0.0)
  58. #define GJK_SIMPLEX4_EPS ((btScalar)0.0)
  59. /* EPA */
  60. #define EPA_MAX_VERTICES 64
  61. #define EPA_MAX_FACES (EPA_MAX_VERTICES*2)
  62. #define EPA_MAX_ITERATIONS 255
  63. #define EPA_ACCURACY ((btScalar)0.0001)
  64. #define EPA_FALLBACK (10*EPA_ACCURACY)
  65. #define EPA_PLANE_EPS ((btScalar)0.00001)
  66. #define EPA_INSIDE_EPS ((btScalar)0.01)
  67. // Shorthands
  68. typedef unsigned int U;
  69. typedef unsigned char U1;
  70. // MinkowskiDiff
  71. template <typename btConvexTemplate>
  72. struct MinkowskiDiff
  73. {
  74. const btConvexTemplate* m_convexAPtr;
  75. const btConvexTemplate* m_convexBPtr;
  76. btMatrix3x3 m_toshape1;
  77. btTransform m_toshape0;
  78. bool m_enableMargin;
  79. MinkowskiDiff(const btConvexTemplate& a, const btConvexTemplate& b)
  80. :m_convexAPtr(&a),
  81. m_convexBPtr(&b)
  82. {
  83. }
  84. void EnableMargin(bool enable)
  85. {
  86. m_enableMargin = enable;
  87. }
  88. inline btVector3 Support0(const btVector3& d) const
  89. {
  90. return m_convexAPtr->getLocalSupportWithMargin(d);
  91. }
  92. inline btVector3 Support1(const btVector3& d) const
  93. {
  94. return m_toshape0*m_convexBPtr->getLocalSupportWithMargin(m_toshape1*d);
  95. }
  96. inline btVector3 Support(const btVector3& d) const
  97. {
  98. return(Support0(d)-Support1(-d));
  99. }
  100. btVector3 Support(const btVector3& d,U index) const
  101. {
  102. if(index)
  103. return(Support1(d));
  104. else
  105. return(Support0(d));
  106. }
  107. };
  108. enum eGjkStatus
  109. {
  110. eGjkValid,
  111. eGjkInside,
  112. eGjkFailed
  113. };
  114. // GJK
  115. template <typename btConvexTemplate>
  116. struct GJK
  117. {
  118. /* Types */
  119. struct sSV
  120. {
  121. btVector3 d,w;
  122. };
  123. struct sSimplex
  124. {
  125. sSV* c[4];
  126. btScalar p[4];
  127. U rank;
  128. };
  129. /* Fields */
  130. MinkowskiDiff<btConvexTemplate> m_shape;
  131. btVector3 m_ray;
  132. btScalar m_distance;
  133. sSimplex m_simplices[2];
  134. sSV m_store[4];
  135. sSV* m_free[4];
  136. U m_nfree;
  137. U m_current;
  138. sSimplex* m_simplex;
  139. eGjkStatus m_status;
  140. /* Methods */
  141. GJK(const btConvexTemplate& a, const btConvexTemplate& b)
  142. :m_shape(a,b)
  143. {
  144. Initialize();
  145. }
  146. void Initialize()
  147. {
  148. m_ray = btVector3(0,0,0);
  149. m_nfree = 0;
  150. m_status = eGjkFailed;
  151. m_current = 0;
  152. m_distance = 0;
  153. }
  154. eGjkStatus Evaluate(const MinkowskiDiff<btConvexTemplate>& shapearg,const btVector3& guess)
  155. {
  156. U iterations=0;
  157. btScalar sqdist=0;
  158. btScalar alpha=0;
  159. btVector3 lastw[4];
  160. U clastw=0;
  161. /* Initialize solver */
  162. m_free[0] = &m_store[0];
  163. m_free[1] = &m_store[1];
  164. m_free[2] = &m_store[2];
  165. m_free[3] = &m_store[3];
  166. m_nfree = 4;
  167. m_current = 0;
  168. m_status = eGjkValid;
  169. m_shape = shapearg;
  170. m_distance = 0;
  171. /* Initialize simplex */
  172. m_simplices[0].rank = 0;
  173. m_ray = guess;
  174. const btScalar sqrl= m_ray.length2();
  175. appendvertice(m_simplices[0],sqrl>0?-m_ray:btVector3(1,0,0));
  176. m_simplices[0].p[0] = 1;
  177. m_ray = m_simplices[0].c[0]->w;
  178. sqdist = sqrl;
  179. lastw[0] =
  180. lastw[1] =
  181. lastw[2] =
  182. lastw[3] = m_ray;
  183. /* Loop */
  184. do {
  185. const U next=1-m_current;
  186. sSimplex& cs=m_simplices[m_current];
  187. sSimplex& ns=m_simplices[next];
  188. /* Check zero */
  189. const btScalar rl=m_ray.length();
  190. if(rl<GJK_MIN_DISTANCE)
  191. {/* Touching or inside */
  192. m_status=eGjkInside;
  193. break;
  194. }
  195. /* Append new vertice in -'v' direction */
  196. appendvertice(cs,-m_ray);
  197. const btVector3& w=cs.c[cs.rank-1]->w;
  198. bool found=false;
  199. for(U i=0;i<4;++i)
  200. {
  201. if((w-lastw[i]).length2()<GJK_DUPLICATED_EPS)
  202. { found=true;break; }
  203. }
  204. if(found)
  205. {/* Return old simplex */
  206. removevertice(m_simplices[m_current]);
  207. break;
  208. }
  209. else
  210. {/* Update lastw */
  211. lastw[clastw=(clastw+1)&3]=w;
  212. }
  213. /* Check for termination */
  214. const btScalar omega=btDot(m_ray,w)/rl;
  215. alpha=btMax(omega,alpha);
  216. if(((rl-alpha)-(GJK_ACCURARY*rl))<=0)
  217. {/* Return old simplex */
  218. removevertice(m_simplices[m_current]);
  219. break;
  220. }
  221. /* Reduce simplex */
  222. btScalar weights[4];
  223. U mask=0;
  224. switch(cs.rank)
  225. {
  226. case 2: sqdist=projectorigin( cs.c[0]->w,
  227. cs.c[1]->w,
  228. weights,mask);break;
  229. case 3: sqdist=projectorigin( cs.c[0]->w,
  230. cs.c[1]->w,
  231. cs.c[2]->w,
  232. weights,mask);break;
  233. case 4: sqdist=projectorigin( cs.c[0]->w,
  234. cs.c[1]->w,
  235. cs.c[2]->w,
  236. cs.c[3]->w,
  237. weights,mask);break;
  238. }
  239. if(sqdist>=0)
  240. {/* Valid */
  241. ns.rank = 0;
  242. m_ray = btVector3(0,0,0);
  243. m_current = next;
  244. for(U i=0,ni=cs.rank;i<ni;++i)
  245. {
  246. if(mask&(1<<i))
  247. {
  248. ns.c[ns.rank] = cs.c[i];
  249. ns.p[ns.rank++] = weights[i];
  250. m_ray += cs.c[i]->w*weights[i];
  251. }
  252. else
  253. {
  254. m_free[m_nfree++] = cs.c[i];
  255. }
  256. }
  257. if(mask==15) m_status=eGjkInside;
  258. }
  259. else
  260. {/* Return old simplex */
  261. removevertice(m_simplices[m_current]);
  262. break;
  263. }
  264. m_status=((++iterations)<GJK_MAX_ITERATIONS)?m_status:eGjkFailed;
  265. } while(m_status==eGjkValid);
  266. m_simplex=&m_simplices[m_current];
  267. switch(m_status)
  268. {
  269. case eGjkValid: m_distance=m_ray.length();break;
  270. case eGjkInside: m_distance=0;break;
  271. default:
  272. {
  273. }
  274. }
  275. return(m_status);
  276. }
  277. bool EncloseOrigin()
  278. {
  279. switch(m_simplex->rank)
  280. {
  281. case 1:
  282. {
  283. for(U i=0;i<3;++i)
  284. {
  285. btVector3 axis=btVector3(0,0,0);
  286. axis[i]=1;
  287. appendvertice(*m_simplex, axis);
  288. if(EncloseOrigin()) return(true);
  289. removevertice(*m_simplex);
  290. appendvertice(*m_simplex,-axis);
  291. if(EncloseOrigin()) return(true);
  292. removevertice(*m_simplex);
  293. }
  294. }
  295. break;
  296. case 2:
  297. {
  298. const btVector3 d=m_simplex->c[1]->w-m_simplex->c[0]->w;
  299. for(U i=0;i<3;++i)
  300. {
  301. btVector3 axis=btVector3(0,0,0);
  302. axis[i]=1;
  303. const btVector3 p=btCross(d,axis);
  304. if(p.length2()>0)
  305. {
  306. appendvertice(*m_simplex, p);
  307. if(EncloseOrigin()) return(true);
  308. removevertice(*m_simplex);
  309. appendvertice(*m_simplex,-p);
  310. if(EncloseOrigin()) return(true);
  311. removevertice(*m_simplex);
  312. }
  313. }
  314. }
  315. break;
  316. case 3:
  317. {
  318. const btVector3 n=btCross(m_simplex->c[1]->w-m_simplex->c[0]->w,
  319. m_simplex->c[2]->w-m_simplex->c[0]->w);
  320. if(n.length2()>0)
  321. {
  322. appendvertice(*m_simplex,n);
  323. if(EncloseOrigin()) return(true);
  324. removevertice(*m_simplex);
  325. appendvertice(*m_simplex,-n);
  326. if(EncloseOrigin()) return(true);
  327. removevertice(*m_simplex);
  328. }
  329. }
  330. break;
  331. case 4:
  332. {
  333. if(btFabs(det( m_simplex->c[0]->w-m_simplex->c[3]->w,
  334. m_simplex->c[1]->w-m_simplex->c[3]->w,
  335. m_simplex->c[2]->w-m_simplex->c[3]->w))>0)
  336. return(true);
  337. }
  338. break;
  339. }
  340. return(false);
  341. }
  342. /* Internals */
  343. void getsupport(const btVector3& d,sSV& sv) const
  344. {
  345. sv.d = d/d.length();
  346. sv.w = m_shape.Support(sv.d);
  347. }
  348. void removevertice(sSimplex& simplex)
  349. {
  350. m_free[m_nfree++]=simplex.c[--simplex.rank];
  351. }
  352. void appendvertice(sSimplex& simplex,const btVector3& v)
  353. {
  354. simplex.p[simplex.rank]=0;
  355. simplex.c[simplex.rank]=m_free[--m_nfree];
  356. getsupport(v,*simplex.c[simplex.rank++]);
  357. }
  358. static btScalar det(const btVector3& a,const btVector3& b,const btVector3& c)
  359. {
  360. return( a.y()*b.z()*c.x()+a.z()*b.x()*c.y()-
  361. a.x()*b.z()*c.y()-a.y()*b.x()*c.z()+
  362. a.x()*b.y()*c.z()-a.z()*b.y()*c.x());
  363. }
  364. static btScalar projectorigin( const btVector3& a,
  365. const btVector3& b,
  366. btScalar* w,U& m)
  367. {
  368. const btVector3 d=b-a;
  369. const btScalar l=d.length2();
  370. if(l>GJK_SIMPLEX2_EPS)
  371. {
  372. const btScalar t(l>0?-btDot(a,d)/l:0);
  373. if(t>=1) { w[0]=0;w[1]=1;m=2;return(b.length2()); }
  374. else if(t<=0) { w[0]=1;w[1]=0;m=1;return(a.length2()); }
  375. else { w[0]=1-(w[1]=t);m=3;return((a+d*t).length2()); }
  376. }
  377. return(-1);
  378. }
  379. static btScalar projectorigin( const btVector3& a,
  380. const btVector3& b,
  381. const btVector3& c,
  382. btScalar* w,U& m)
  383. {
  384. static const U imd3[]={1,2,0};
  385. const btVector3* vt[]={&a,&b,&c};
  386. const btVector3 dl[]={a-b,b-c,c-a};
  387. const btVector3 n=btCross(dl[0],dl[1]);
  388. const btScalar l=n.length2();
  389. if(l>GJK_SIMPLEX3_EPS)
  390. {
  391. btScalar mindist=-1;
  392. btScalar subw[2]={0.f,0.f};
  393. U subm(0);
  394. for(U i=0;i<3;++i)
  395. {
  396. if(btDot(*vt[i],btCross(dl[i],n))>0)
  397. {
  398. const U j=imd3[i];
  399. const btScalar subd(projectorigin(*vt[i],*vt[j],subw,subm));
  400. if((mindist<0)||(subd<mindist))
  401. {
  402. mindist = subd;
  403. m = static_cast<U>(((subm&1)?1<<i:0)+((subm&2)?1<<j:0));
  404. w[i] = subw[0];
  405. w[j] = subw[1];
  406. w[imd3[j]] = 0;
  407. }
  408. }
  409. }
  410. if(mindist<0)
  411. {
  412. const btScalar d=btDot(a,n);
  413. const btScalar s=btSqrt(l);
  414. const btVector3 p=n*(d/l);
  415. mindist = p.length2();
  416. m = 7;
  417. w[0] = (btCross(dl[1],b-p)).length()/s;
  418. w[1] = (btCross(dl[2],c-p)).length()/s;
  419. w[2] = 1-(w[0]+w[1]);
  420. }
  421. return(mindist);
  422. }
  423. return(-1);
  424. }
  425. static btScalar projectorigin( const btVector3& a,
  426. const btVector3& b,
  427. const btVector3& c,
  428. const btVector3& d,
  429. btScalar* w,U& m)
  430. {
  431. static const U imd3[]={1,2,0};
  432. const btVector3* vt[]={&a,&b,&c,&d};
  433. const btVector3 dl[]={a-d,b-d,c-d};
  434. const btScalar vl=det(dl[0],dl[1],dl[2]);
  435. const bool ng=(vl*btDot(a,btCross(b-c,a-b)))<=0;
  436. if(ng&&(btFabs(vl)>GJK_SIMPLEX4_EPS))
  437. {
  438. btScalar mindist=-1;
  439. btScalar subw[3]={0.f,0.f,0.f};
  440. U subm(0);
  441. for(U i=0;i<3;++i)
  442. {
  443. const U j=imd3[i];
  444. const btScalar s=vl*btDot(d,btCross(dl[i],dl[j]));
  445. if(s>0)
  446. {
  447. const btScalar subd=projectorigin(*vt[i],*vt[j],d,subw,subm);
  448. if((mindist<0)||(subd<mindist))
  449. {
  450. mindist = subd;
  451. m = static_cast<U>((subm&1?1<<i:0)+
  452. (subm&2?1<<j:0)+
  453. (subm&4?8:0));
  454. w[i] = subw[0];
  455. w[j] = subw[1];
  456. w[imd3[j]] = 0;
  457. w[3] = subw[2];
  458. }
  459. }
  460. }
  461. if(mindist<0)
  462. {
  463. mindist = 0;
  464. m = 15;
  465. w[0] = det(c,b,d)/vl;
  466. w[1] = det(a,c,d)/vl;
  467. w[2] = det(b,a,d)/vl;
  468. w[3] = 1-(w[0]+w[1]+w[2]);
  469. }
  470. return(mindist);
  471. }
  472. return(-1);
  473. }
  474. };
  475. enum eEpaStatus
  476. {
  477. eEpaValid,
  478. eEpaTouching,
  479. eEpaDegenerated,
  480. eEpaNonConvex,
  481. eEpaInvalidHull,
  482. eEpaOutOfFaces,
  483. eEpaOutOfVertices,
  484. eEpaAccuraryReached,
  485. eEpaFallBack,
  486. eEpaFailed
  487. };
  488. // EPA
  489. template <typename btConvexTemplate>
  490. struct EPA
  491. {
  492. /* Types */
  493. struct sFace
  494. {
  495. btVector3 n;
  496. btScalar d;
  497. typename GJK<btConvexTemplate>::sSV* c[3];
  498. sFace* f[3];
  499. sFace* l[2];
  500. U1 e[3];
  501. U1 pass;
  502. };
  503. struct sList
  504. {
  505. sFace* root;
  506. U count;
  507. sList() : root(0),count(0) {}
  508. };
  509. struct sHorizon
  510. {
  511. sFace* cf;
  512. sFace* ff;
  513. U nf;
  514. sHorizon() : cf(0),ff(0),nf(0) {}
  515. };
  516. /* Fields */
  517. eEpaStatus m_status;
  518. typename GJK<btConvexTemplate>::sSimplex m_result;
  519. btVector3 m_normal;
  520. btScalar m_depth;
  521. typename GJK<btConvexTemplate>::sSV m_sv_store[EPA_MAX_VERTICES];
  522. sFace m_fc_store[EPA_MAX_FACES];
  523. U m_nextsv;
  524. sList m_hull;
  525. sList m_stock;
  526. /* Methods */
  527. EPA()
  528. {
  529. Initialize();
  530. }
  531. static inline void bind(sFace* fa,U ea,sFace* fb,U eb)
  532. {
  533. fa->e[ea]=(U1)eb;fa->f[ea]=fb;
  534. fb->e[eb]=(U1)ea;fb->f[eb]=fa;
  535. }
  536. static inline void append(sList& list,sFace* face)
  537. {
  538. face->l[0] = 0;
  539. face->l[1] = list.root;
  540. if(list.root) list.root->l[0]=face;
  541. list.root = face;
  542. ++list.count;
  543. }
  544. static inline void remove(sList& list,sFace* face)
  545. {
  546. if(face->l[1]) face->l[1]->l[0]=face->l[0];
  547. if(face->l[0]) face->l[0]->l[1]=face->l[1];
  548. if(face==list.root) list.root=face->l[1];
  549. --list.count;
  550. }
  551. void Initialize()
  552. {
  553. m_status = eEpaFailed;
  554. m_normal = btVector3(0,0,0);
  555. m_depth = 0;
  556. m_nextsv = 0;
  557. for(U i=0;i<EPA_MAX_FACES;++i)
  558. {
  559. append(m_stock,&m_fc_store[EPA_MAX_FACES-i-1]);
  560. }
  561. }
  562. eEpaStatus Evaluate(GJK<btConvexTemplate>& gjk,const btVector3& guess)
  563. {
  564. typename GJK<btConvexTemplate>::sSimplex& simplex=*gjk.m_simplex;
  565. if((simplex.rank>1)&&gjk.EncloseOrigin())
  566. {
  567. /* Clean up */
  568. while(m_hull.root)
  569. {
  570. sFace* f = m_hull.root;
  571. remove(m_hull,f);
  572. append(m_stock,f);
  573. }
  574. m_status = eEpaValid;
  575. m_nextsv = 0;
  576. /* Orient simplex */
  577. if(gjk.det( simplex.c[0]->w-simplex.c[3]->w,
  578. simplex.c[1]->w-simplex.c[3]->w,
  579. simplex.c[2]->w-simplex.c[3]->w)<0)
  580. {
  581. btSwap(simplex.c[0],simplex.c[1]);
  582. btSwap(simplex.p[0],simplex.p[1]);
  583. }
  584. /* Build initial hull */
  585. sFace* tetra[]={newface(simplex.c[0],simplex.c[1],simplex.c[2],true),
  586. newface(simplex.c[1],simplex.c[0],simplex.c[3],true),
  587. newface(simplex.c[2],simplex.c[1],simplex.c[3],true),
  588. newface(simplex.c[0],simplex.c[2],simplex.c[3],true)};
  589. if(m_hull.count==4)
  590. {
  591. sFace* best=findbest();
  592. sFace outer=*best;
  593. U pass=0;
  594. U iterations=0;
  595. bind(tetra[0],0,tetra[1],0);
  596. bind(tetra[0],1,tetra[2],0);
  597. bind(tetra[0],2,tetra[3],0);
  598. bind(tetra[1],1,tetra[3],2);
  599. bind(tetra[1],2,tetra[2],1);
  600. bind(tetra[2],2,tetra[3],1);
  601. m_status=eEpaValid;
  602. for(;iterations<EPA_MAX_ITERATIONS;++iterations)
  603. {
  604. if(m_nextsv<EPA_MAX_VERTICES)
  605. {
  606. sHorizon horizon;
  607. typename GJK<btConvexTemplate>::sSV* w=&m_sv_store[m_nextsv++];
  608. bool valid=true;
  609. best->pass = (U1)(++pass);
  610. gjk.getsupport(best->n,*w);
  611. const btScalar wdist=btDot(best->n,w->w)-best->d;
  612. if(wdist>EPA_ACCURACY)
  613. {
  614. for(U j=0;(j<3)&&valid;++j)
  615. {
  616. valid&=expand( pass,w,
  617. best->f[j],best->e[j],
  618. horizon);
  619. }
  620. if(valid&&(horizon.nf>=3))
  621. {
  622. bind(horizon.cf,1,horizon.ff,2);
  623. remove(m_hull,best);
  624. append(m_stock,best);
  625. best=findbest();
  626. outer=*best;
  627. } else { m_status=eEpaInvalidHull;break; }
  628. } else { m_status=eEpaAccuraryReached;break; }
  629. } else { m_status=eEpaOutOfVertices;break; }
  630. }
  631. const btVector3 projection=outer.n*outer.d;
  632. m_normal = outer.n;
  633. m_depth = outer.d;
  634. m_result.rank = 3;
  635. m_result.c[0] = outer.c[0];
  636. m_result.c[1] = outer.c[1];
  637. m_result.c[2] = outer.c[2];
  638. m_result.p[0] = btCross( outer.c[1]->w-projection,
  639. outer.c[2]->w-projection).length();
  640. m_result.p[1] = btCross( outer.c[2]->w-projection,
  641. outer.c[0]->w-projection).length();
  642. m_result.p[2] = btCross( outer.c[0]->w-projection,
  643. outer.c[1]->w-projection).length();
  644. const btScalar sum=m_result.p[0]+m_result.p[1]+m_result.p[2];
  645. m_result.p[0] /= sum;
  646. m_result.p[1] /= sum;
  647. m_result.p[2] /= sum;
  648. return(m_status);
  649. }
  650. }
  651. /* Fallback */
  652. m_status = eEpaFallBack;
  653. m_normal = -guess;
  654. const btScalar nl=m_normal.length();
  655. if(nl>0)
  656. m_normal = m_normal/nl;
  657. else
  658. m_normal = btVector3(1,0,0);
  659. m_depth = 0;
  660. m_result.rank=1;
  661. m_result.c[0]=simplex.c[0];
  662. m_result.p[0]=1;
  663. return(m_status);
  664. }
  665. bool getedgedist(sFace* face, typename GJK<btConvexTemplate>::sSV* a, typename GJK<btConvexTemplate>::sSV* b, btScalar& dist)
  666. {
  667. const btVector3 ba = b->w - a->w;
  668. const btVector3 n_ab = btCross(ba, face->n); // Outward facing edge normal direction, on triangle plane
  669. const btScalar a_dot_nab = btDot(a->w, n_ab); // Only care about the sign to determine inside/outside, so not normalization required
  670. if(a_dot_nab < 0)
  671. {
  672. // Outside of edge a->b
  673. const btScalar ba_l2 = ba.length2();
  674. const btScalar a_dot_ba = btDot(a->w, ba);
  675. const btScalar b_dot_ba = btDot(b->w, ba);
  676. if(a_dot_ba > 0)
  677. {
  678. // Pick distance vertex a
  679. dist = a->w.length();
  680. }
  681. else if(b_dot_ba < 0)
  682. {
  683. // Pick distance vertex b
  684. dist = b->w.length();
  685. }
  686. else
  687. {
  688. // Pick distance to edge a->b
  689. const btScalar a_dot_b = btDot(a->w, b->w);
  690. dist = btSqrt(btMax((a->w.length2() * b->w.length2() - a_dot_b * a_dot_b) / ba_l2, (btScalar)0));
  691. }
  692. return true;
  693. }
  694. return false;
  695. }
  696. sFace* newface(typename GJK<btConvexTemplate>::sSV* a,typename GJK<btConvexTemplate>::sSV* b,typename GJK<btConvexTemplate>::sSV* c,bool forced)
  697. {
  698. if(m_stock.root)
  699. {
  700. sFace* face=m_stock.root;
  701. remove(m_stock,face);
  702. append(m_hull,face);
  703. face->pass = 0;
  704. face->c[0] = a;
  705. face->c[1] = b;
  706. face->c[2] = c;
  707. face->n = btCross(b->w-a->w,c->w-a->w);
  708. const btScalar l=face->n.length();
  709. const bool v=l>EPA_ACCURACY;
  710. if(v)
  711. {
  712. if(!(getedgedist(face, a, b, face->d) ||
  713. getedgedist(face, b, c, face->d) ||
  714. getedgedist(face, c, a, face->d)))
  715. {
  716. // Origin projects to the interior of the triangle
  717. // Use distance to triangle plane
  718. face->d = btDot(a->w, face->n) / l;
  719. }
  720. face->n /= l;
  721. if(forced || (face->d >= -EPA_PLANE_EPS))
  722. {
  723. return face;
  724. }
  725. else
  726. m_status=eEpaNonConvex;
  727. }
  728. else
  729. m_status=eEpaDegenerated;
  730. remove(m_hull, face);
  731. append(m_stock, face);
  732. return 0;
  733. }
  734. m_status = m_stock.root ? eEpaOutOfVertices : eEpaOutOfFaces;
  735. return 0;
  736. }
  737. sFace* findbest()
  738. {
  739. sFace* minf=m_hull.root;
  740. btScalar mind=minf->d*minf->d;
  741. for(sFace* f=minf->l[1];f;f=f->l[1])
  742. {
  743. const btScalar sqd=f->d*f->d;
  744. if(sqd<mind)
  745. {
  746. minf=f;
  747. mind=sqd;
  748. }
  749. }
  750. return(minf);
  751. }
  752. bool expand(U pass,typename GJK<btConvexTemplate>::sSV* w,sFace* f,U e,sHorizon& horizon)
  753. {
  754. static const U i1m3[]={1,2,0};
  755. static const U i2m3[]={2,0,1};
  756. if(f->pass!=pass)
  757. {
  758. const U e1=i1m3[e];
  759. if((btDot(f->n,w->w)-f->d)<-EPA_PLANE_EPS)
  760. {
  761. sFace* nf=newface(f->c[e1],f->c[e],w,false);
  762. if(nf)
  763. {
  764. bind(nf,0,f,e);
  765. if(horizon.cf) bind(horizon.cf,1,nf,2); else horizon.ff=nf;
  766. horizon.cf=nf;
  767. ++horizon.nf;
  768. return(true);
  769. }
  770. }
  771. else
  772. {
  773. const U e2=i2m3[e];
  774. f->pass = (U1)pass;
  775. if( expand(pass,w,f->f[e1],f->e[e1],horizon)&&
  776. expand(pass,w,f->f[e2],f->e[e2],horizon))
  777. {
  778. remove(m_hull,f);
  779. append(m_stock,f);
  780. return(true);
  781. }
  782. }
  783. }
  784. return(false);
  785. }
  786. };
  787. template <typename btConvexTemplate>
  788. static void Initialize( const btConvexTemplate& a, const btConvexTemplate& b,
  789. btGjkEpaSolver3::sResults& results,
  790. MinkowskiDiff<btConvexTemplate>& shape)
  791. {
  792. /* Results */
  793. results.witnesses[0] =
  794. results.witnesses[1] = btVector3(0,0,0);
  795. results.status = btGjkEpaSolver3::sResults::Separated;
  796. /* Shape */
  797. shape.m_toshape1 = b.getWorldTransform().getBasis().transposeTimes(a.getWorldTransform().getBasis());
  798. shape.m_toshape0 = a.getWorldTransform().inverseTimes(b.getWorldTransform());
  799. }
  800. //
  801. // Api
  802. //
  803. //
  804. template <typename btConvexTemplate>
  805. bool btGjkEpaSolver3_Distance(const btConvexTemplate& a, const btConvexTemplate& b,
  806. const btVector3& guess,
  807. btGjkEpaSolver3::sResults& results)
  808. {
  809. MinkowskiDiff<btConvexTemplate> shape(a,b);
  810. Initialize(a,b,results,shape);
  811. GJK<btConvexTemplate> gjk(a,b);
  812. eGjkStatus gjk_status=gjk.Evaluate(shape,guess);
  813. if(gjk_status==eGjkValid)
  814. {
  815. btVector3 w0=btVector3(0,0,0);
  816. btVector3 w1=btVector3(0,0,0);
  817. for(U i=0;i<gjk.m_simplex->rank;++i)
  818. {
  819. const btScalar p=gjk.m_simplex->p[i];
  820. w0+=shape.Support( gjk.m_simplex->c[i]->d,0)*p;
  821. w1+=shape.Support(-gjk.m_simplex->c[i]->d,1)*p;
  822. }
  823. results.witnesses[0] = a.getWorldTransform()*w0;
  824. results.witnesses[1] = a.getWorldTransform()*w1;
  825. results.normal = w0-w1;
  826. results.distance = results.normal.length();
  827. results.normal /= results.distance>GJK_MIN_DISTANCE?results.distance:1;
  828. return(true);
  829. }
  830. else
  831. {
  832. results.status = gjk_status==eGjkInside?
  833. btGjkEpaSolver3::sResults::Penetrating :
  834. btGjkEpaSolver3::sResults::GJK_Failed ;
  835. return(false);
  836. }
  837. }
  838. template <typename btConvexTemplate>
  839. bool btGjkEpaSolver3_Penetration(const btConvexTemplate& a,
  840. const btConvexTemplate& b,
  841. const btVector3& guess,
  842. btGjkEpaSolver3::sResults& results)
  843. {
  844. MinkowskiDiff<btConvexTemplate> shape(a,b);
  845. Initialize(a,b,results,shape);
  846. GJK<btConvexTemplate> gjk(a,b);
  847. eGjkStatus gjk_status=gjk.Evaluate(shape,-guess);
  848. switch(gjk_status)
  849. {
  850. case eGjkInside:
  851. {
  852. EPA<btConvexTemplate> epa;
  853. eEpaStatus epa_status=epa.Evaluate(gjk,-guess);
  854. if(epa_status!=eEpaFailed)
  855. {
  856. btVector3 w0=btVector3(0,0,0);
  857. for(U i=0;i<epa.m_result.rank;++i)
  858. {
  859. w0+=shape.Support(epa.m_result.c[i]->d,0)*epa.m_result.p[i];
  860. }
  861. results.status = btGjkEpaSolver3::sResults::Penetrating;
  862. results.witnesses[0] = a.getWorldTransform()*w0;
  863. results.witnesses[1] = a.getWorldTransform()*(w0-epa.m_normal*epa.m_depth);
  864. results.normal = -epa.m_normal;
  865. results.distance = -epa.m_depth;
  866. return(true);
  867. } else results.status=btGjkEpaSolver3::sResults::EPA_Failed;
  868. }
  869. break;
  870. case eGjkFailed:
  871. results.status=btGjkEpaSolver3::sResults::GJK_Failed;
  872. break;
  873. default:
  874. {
  875. }
  876. }
  877. return(false);
  878. }
  879. #if 0
  880. int btComputeGjkEpaPenetration2(const btCollisionDescription& colDesc, btDistanceInfo* distInfo)
  881. {
  882. btGjkEpaSolver3::sResults results;
  883. btVector3 guess = colDesc.m_firstDir;
  884. bool res = btGjkEpaSolver3::Penetration(colDesc.m_objA,colDesc.m_objB,
  885. colDesc.m_transformA,colDesc.m_transformB,
  886. colDesc.m_localSupportFuncA,colDesc.m_localSupportFuncB,
  887. guess,
  888. results);
  889. if (res)
  890. {
  891. if ((results.status==btGjkEpaSolver3::sResults::Penetrating) || results.status==GJK::eStatus::Inside)
  892. {
  893. //normal could be 'swapped'
  894. distInfo->m_distance = results.distance;
  895. distInfo->m_normalBtoA = results.normal;
  896. btVector3 tmpNormalInB = results.witnesses[1]-results.witnesses[0];
  897. btScalar lenSqr = tmpNormalInB.length2();
  898. if (lenSqr <= (SIMD_EPSILON*SIMD_EPSILON))
  899. {
  900. tmpNormalInB = results.normal;
  901. lenSqr = results.normal.length2();
  902. }
  903. if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
  904. {
  905. tmpNormalInB /= btSqrt(lenSqr);
  906. btScalar distance2 = -(results.witnesses[0]-results.witnesses[1]).length();
  907. //only replace valid penetrations when the result is deeper (check)
  908. //if ((distance2 < results.distance))
  909. {
  910. distInfo->m_distance = distance2;
  911. distInfo->m_pointOnA= results.witnesses[0];
  912. distInfo->m_pointOnB= results.witnesses[1];
  913. distInfo->m_normalBtoA= tmpNormalInB;
  914. return 0;
  915. }
  916. }
  917. }
  918. }
  919. return -1;
  920. }
  921. #endif
  922. template <typename btConvexTemplate, typename btDistanceInfoTemplate>
  923. int btComputeGjkDistance(const btConvexTemplate& a, const btConvexTemplate& b,
  924. const btGjkCollisionDescription& colDesc, btDistanceInfoTemplate* distInfo)
  925. {
  926. btGjkEpaSolver3::sResults results;
  927. btVector3 guess = colDesc.m_firstDir;
  928. bool isSeparated = btGjkEpaSolver3_Distance( a,b,
  929. guess,
  930. results);
  931. if (isSeparated)
  932. {
  933. distInfo->m_distance = results.distance;
  934. distInfo->m_pointOnA= results.witnesses[0];
  935. distInfo->m_pointOnB= results.witnesses[1];
  936. distInfo->m_normalBtoA= results.normal;
  937. return 0;
  938. }
  939. return -1;
  940. }
  941. /* Symbols cleanup */
  942. #undef GJK_MAX_ITERATIONS
  943. #undef GJK_ACCURARY
  944. #undef GJK_MIN_DISTANCE
  945. #undef GJK_DUPLICATED_EPS
  946. #undef GJK_SIMPLEX2_EPS
  947. #undef GJK_SIMPLEX3_EPS
  948. #undef GJK_SIMPLEX4_EPS
  949. #undef EPA_MAX_VERTICES
  950. #undef EPA_MAX_FACES
  951. #undef EPA_MAX_ITERATIONS
  952. #undef EPA_ACCURACY
  953. #undef EPA_FALLBACK
  954. #undef EPA_PLANE_EPS
  955. #undef EPA_INSIDE_EPS
  956. #endif //BT_GJK_EPA3_H