소스 검색

Start a bitvector extension using sqlite3 bitvector functions

mingodad 9 년 전
부모
커밋
4a79f67281
2개의 변경된 파일636개의 추가작업 그리고 0개의 파일을 삭제
  1. 509 0
      SquiLu-ext/sq_bitvector.cpp
  2. 127 0
      SquiLu/samples/test-bitvector.nut

+ 509 - 0
SquiLu-ext/sq_bitvector.cpp

@@ -0,0 +1,509 @@
+#ifdef USE_BITVECTOR
+
+#include "squirrel.h"
+#include <string.h>
+#include <stdio.h>
+#include <stdlib.h>  /* for malloc */
+#include <assert.h>  /* for a few sanity tests */
+
+#include "sqlite3.h"
+
+//copy from sqliteInt.h
+#ifndef UINT32_TYPE
+# ifdef HAVE_UINT32_T
+#  define UINT32_TYPE uint32_t
+# else
+#  define UINT32_TYPE unsigned int
+# endif
+#endif
+#ifndef UINT16_TYPE
+# ifdef HAVE_UINT16_T
+#  define UINT16_TYPE uint16_t
+# else
+#  define UINT16_TYPE unsigned short int
+# endif
+#endif
+#ifndef INT16_TYPE
+# ifdef HAVE_INT16_T
+#  define INT16_TYPE int16_t
+# else
+#  define INT16_TYPE short int
+# endif
+#endif
+#ifndef UINT8_TYPE
+# ifdef HAVE_UINT8_T
+#  define UINT8_TYPE uint8_t
+# else
+#  define UINT8_TYPE unsigned char
+# endif
+#endif
+#ifndef INT8_TYPE
+# ifdef HAVE_INT8_T
+#  define INT8_TYPE int8_t
+# else
+#  define INT8_TYPE signed char
+# endif
+#endif
+#ifndef LONGDOUBLE_TYPE
+# define LONGDOUBLE_TYPE long double
+#endif
+//typedef sqlite_int64 i64;          /* 8-byte signed integer */
+//typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
+typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
+typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
+typedef INT16_TYPE i16;            /* 2-byte signed integer */
+typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
+typedef INT8_TYPE i8;              /* 1-byte signed integer */
+
+void *sqlite3MallocZero(size_t size)
+{
+    void *p = sq_malloc(size);
+    memset(p, 0, size);
+    return p;
+}
+
+/*
+** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
+** that can be stored in a u32 without loss of data.  The value
+** is 0x00000000ffffffff.  But because of quirks of some compilers, we
+** have to specify the value in the less intuitive manner shown:
+*/
+#define SQLITE_MAX_U32  ((((u64)1)<<32)-1)
+
+/*
+** On systems with ample stack space and that support alloca(), make
+** use of alloca() to obtain space for large automatic objects.  By default,
+** obtain space from malloc().
+**
+** The alloca() routine never returns NULL.  This will cause code paths
+** that deal with sqlite3StackAlloc() failures to be unreachable.
+*/
+# define sqlite3StackAllocRaw(D,N)   alloca(N)
+# define sqlite3StackAllocZero(D,N)  memset(alloca(N), 0, N)
+# define sqlite3StackFree(D,P)
+
+# define SQLITE_NOMEM_BKPT SQLITE_NOMEM
+# define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM
+
+/*
+** 2008 February 16
+**
+** The author disclaims copyright to this source code.  In place of
+** a legal notice, here is a blessing:
+**
+**    May you do good and not evil.
+**    May you find forgiveness for yourself and forgive others.
+**    May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an object that represents a fixed-length
+** bitmap.  Bits are numbered starting with 1.
+**
+** A bitmap is used to record which pages of a database file have been
+** journalled during a transaction, or which pages have the "dont-write"
+** property.  Usually only a few pages are meet either condition.
+** So the bitmap is usually sparse and has low cardinality.
+** But sometimes (for example when during a DROP of a large table) most
+** or all of the pages in a database can get journalled.  In those cases,
+** the bitmap becomes dense with high cardinality.  The algorithm needs
+** to handle both cases well.
+**
+** The size of the bitmap is fixed when the object is created.
+**
+** All bits are clear when the bitmap is created.  Individual bits
+** may be set or cleared one at a time.
+**
+** Test operations are about 100 times more common that set operations.
+** Clear operations are exceedingly rare.  There are usually between
+** 5 and 500 set operations per Bitvec object, though the number of sets can
+** sometimes grow into tens of thousands or larger.  The size of the
+** Bitvec object is the number of pages in the database file at the
+** start of a transaction, and is thus usually less than a few thousand,
+** but can be as large as 2 billion for a really big database.
+*/
+//#include "sqliteInt.h"
+
+/* Size of the Bitvec structure in bytes. */
+#define BITVEC_SZ        512
+
+/* Round the union size down to the nearest pointer boundary, since that's how
+** it will be aligned within the Bitvec struct. */
+#define BITVEC_USIZE \
+    (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
+
+/* Type of the array "element" for the bitmap representation.
+** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
+** Setting this to the "natural word" size of your CPU may improve
+** performance. */
+#define BITVEC_TELEM     u8
+/* Size, in bits, of the bitmap element. */
+#define BITVEC_SZELEM    8
+/* Number of elements in a bitmap array. */
+#define BITVEC_NELEM     (BITVEC_USIZE/sizeof(BITVEC_TELEM))
+/* Number of bits in the bitmap array. */
+#define BITVEC_NBIT      (BITVEC_NELEM*BITVEC_SZELEM)
+
+/* Number of u32 values in hash table. */
+#define BITVEC_NINT      (BITVEC_USIZE/sizeof(u32))
+/* Maximum number of entries in hash table before
+** sub-dividing and re-hashing. */
+#define BITVEC_MXHASH    (BITVEC_NINT/2)
+/* Hashing function for the aHash representation.
+** Empirical testing showed that the *37 multiplier
+** (an arbitrary prime)in the hash function provided
+** no fewer collisions than the no-op *1. */
+#define BITVEC_HASH(X)   (((X)*1)%BITVEC_NINT)
+
+#define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
+
+
+/*
+** A bitmap is an instance of the following structure.
+**
+** This bitmap records the existence of zero or more bits
+** with values between 1 and iSize, inclusive.
+**
+** There are three possible representations of the bitmap.
+** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
+** bitmap.  The least significant bit is bit 1.
+**
+** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
+** a hash table that will hold up to BITVEC_MXHASH distinct values.
+**
+** Otherwise, the value i is redirected into one of BITVEC_NPTR
+** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
+** handles up to iDivisor separate values of i.  apSub[0] holds
+** values between 1 and iDivisor.  apSub[1] holds values between
+** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
+** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
+** to hold deal with values between 1 and iDivisor.
+*/
+struct Bitvec {
+  u32 iSize;      /* Maximum bit index.  Max iSize is 4,294,967,296. */
+  u32 nSet;       /* Number of bits that are set - only valid for aHash
+                  ** element.  Max is BITVEC_NINT.  For BITVEC_SZ of 512,
+                  ** this would be 125. */
+  u32 iDivisor;   /* Number of bits handled by each apSub[] entry. */
+                  /* Should >=0 for apSub element. */
+                  /* Max iDivisor is max(u32) / BITVEC_NPTR + 1.  */
+                  /* For a BITVEC_SZ of 512, this would be 34,359,739. */
+  union {
+    BITVEC_TELEM aBitmap[BITVEC_NELEM];    /* Bitmap representation */
+    u32 aHash[BITVEC_NINT];      /* Hash table representation */
+    Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
+  } u;
+};
+
+/*
+** Create a new bitmap object able to handle bits between 0 and iSize,
+** inclusive.  Return a pointer to the new object.  Return NULL if
+** malloc fails.
+*/
+static Bitvec *sqlite3BitvecCreate(u32 iSize){
+  Bitvec *p;
+  assert( sizeof(*p)==BITVEC_SZ );
+  p = (Bitvec*)sqlite3MallocZero( sizeof(*p) );
+  if( p ){
+    p->iSize = iSize;
+  }
+  return p;
+}
+
+/*
+** Check to see if the i-th bit is set.  Return true or false.
+** If p is NULL (if the bitmap has not been created) or if
+** i is out of range, then return false.
+*/
+static int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){
+  assert( p!=0 );
+  i--;
+  if( i>=p->iSize ) return 0;
+  while( p->iDivisor ){
+    u32 bin = i/p->iDivisor;
+    i = i%p->iDivisor;
+    p = p->u.apSub[bin];
+    if (!p) {
+      return 0;
+    }
+  }
+  if( p->iSize<=BITVEC_NBIT ){
+    return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
+  } else{
+    u32 h = BITVEC_HASH(i++);
+    while( p->u.aHash[h] ){
+      if( p->u.aHash[h]==i ) return 1;
+      h = (h+1) % BITVEC_NINT;
+    }
+    return 0;
+  }
+}
+static int sqlite3BitvecTest(Bitvec *p, u32 i){
+  return p!=0 && sqlite3BitvecTestNotNull(p,i);
+}
+
+/*
+** Set the i-th bit.  Return 0 on success and an error code if
+** anything goes wrong.
+**
+** This routine might cause sub-bitmaps to be allocated.  Failing
+** to get the memory needed to hold the sub-bitmap is the only
+** that can go wrong with an insert, assuming p and i are valid.
+**
+** The calling function must ensure that p is a valid Bitvec object
+** and that the value for "i" is within range of the Bitvec object.
+** Otherwise the behavior is undefined.
+*/
+static int sqlite3BitvecSet(Bitvec *p, u32 i){
+  u32 h;
+  if( p==0 ) return SQLITE_OK;
+  assert( i>0 );
+  assert( i<=p->iSize );
+  i--;
+  while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
+    u32 bin = i/p->iDivisor;
+    i = i%p->iDivisor;
+    if( p->u.apSub[bin]==0 ){
+      p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
+      if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT;
+    }
+    p = p->u.apSub[bin];
+  }
+  if( p->iSize<=BITVEC_NBIT ){
+    p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
+    return SQLITE_OK;
+  }
+  h = BITVEC_HASH(i++);
+  /* if there wasn't a hash collision, and this doesn't */
+  /* completely fill the hash, then just add it without */
+  /* worring about sub-dividing and re-hashing. */
+  if( !p->u.aHash[h] ){
+    if (p->nSet<(BITVEC_NINT-1)) {
+      goto bitvec_set_end;
+    } else {
+      goto bitvec_set_rehash;
+    }
+  }
+  /* there was a collision, check to see if it's already */
+  /* in hash, if not, try to find a spot for it */
+  do {
+    if( p->u.aHash[h]==i ) return SQLITE_OK;
+    h++;
+    if( h>=BITVEC_NINT ) h = 0;
+  } while( p->u.aHash[h] );
+  /* we didn't find it in the hash.  h points to the first */
+  /* available free spot. check to see if this is going to */
+  /* make our hash too "full".  */
+bitvec_set_rehash:
+  if( p->nSet>=BITVEC_MXHASH ){
+    unsigned int j;
+    int rc;
+    u32 *aiValues = (u32*)sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
+    if( aiValues==0 ){
+      return SQLITE_NOMEM_BKPT;
+    }else{
+      memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
+      memset(p->u.apSub, 0, sizeof(p->u.apSub));
+      p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
+      rc = sqlite3BitvecSet(p, i);
+      for(j=0; j<BITVEC_NINT; j++){
+        if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
+      }
+      sqlite3StackFree(0, aiValues);
+      return rc;
+    }
+  }
+bitvec_set_end:
+  p->nSet++;
+  p->u.aHash[h] = i;
+  return SQLITE_OK;
+}
+
+/*
+** Clear the i-th bit.
+**
+** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
+** that BitvecClear can use to rebuilt its hash table.
+*/
+static void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
+  if( p==0 ) return;
+  assert( i>0 );
+  i--;
+  while( p->iDivisor ){
+    u32 bin = i/p->iDivisor;
+    i = i%p->iDivisor;
+    p = p->u.apSub[bin];
+    if (!p) {
+      return;
+    }
+  }
+  if( p->iSize<=BITVEC_NBIT ){
+    p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
+  }else{
+    unsigned int j;
+    u32 *aiValues = (u32*)pBuf;
+    memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
+    memset(p->u.aHash, 0, sizeof(p->u.aHash));
+    p->nSet = 0;
+    for(j=0; j<BITVEC_NINT; j++){
+      if( aiValues[j] && aiValues[j]!=(i+1) ){
+        u32 h = BITVEC_HASH(aiValues[j]-1);
+        p->nSet++;
+        while( p->u.aHash[h] ){
+          h++;
+          if( h>=BITVEC_NINT ) h = 0;
+        }
+        p->u.aHash[h] = aiValues[j];
+      }
+    }
+  }
+}
+
+/*
+** Destroy a bitmap object.  Reclaim all memory used.
+*/
+static void sqlite3BitvecDestroy(Bitvec *p){
+  if( p==0 ) return;
+  if( p->iDivisor ){
+    unsigned int i;
+    for(i=0; i<BITVEC_NPTR; i++){
+      sqlite3BitvecDestroy(p->u.apSub[i]);
+    }
+  }
+  sq_free(p, 0);
+}
+
+/*
+** Return the value of the iSize parameter specified when Bitvec *p
+** was created.
+*/
+static u32 sqlite3BitvecSize(Bitvec *p){
+  return p->iSize;
+}
+
+/*
+** Return the value of the BITVEC_SZ.
+*/
+static u32 sqlite3BITVEC_SZ(){
+  return BITVEC_SZ;
+}
+
+
+//SQ_OPT_STRING_STRLEN();
+
+static const SQChar SQ_LIBNAME[] = _SC("BitVector");
+
+static const SQChar BitVector_Tag[]   = _SC("BitVector_TAG");
+#define GET_BitVector_INSTANCE() SQ_GET_INSTANCE(v, 1, Bitvec, BitVector_Tag) \
+	if(self == NULL) return sq_throwerror(v, _SC("BitVector object already closed"));
+
+
+static SQRESULT BitVector_release_hook(SQUserPointer p, SQInteger size, void */*ep*/)
+{
+	Bitvec *self = (Bitvec*)p;
+	if(self) sqlite3BitvecDestroy(self);
+	return 0;
+}
+
+/*
+static SQRESULT BitVector_free(HSQUIRRELVM v)
+{
+	SQ_FUNC_VARS_NO_TOP(v);
+	GET_BitVector_INSTANCE();
+	BitVector_release_hook(self, 0, v);
+	sq_setinstanceup(v, 1, 0);
+	return 0;
+}
+*/
+
+static SQRESULT sq_BitVector_constructor(HSQUIRRELVM v){
+	SQ_FUNC_VARS_NO_TOP(v);
+	SQ_GET_INTEGER(v, 2, int_size);
+//	Bitvec *sqlite3BitvecCreate(u32)
+    Bitvec *bv = sqlite3BitvecCreate((u32)int_size);
+    SQInteger rc = sq_setinstanceup(v, 1, bv);
+    sq_setreleasehook(v,1, BitVector_release_hook);
+	return rc;
+}
+
+static SQRESULT sq_BitVector_clear(HSQUIRRELVM v){
+	SQ_FUNC_VARS_NO_TOP(v);
+	GET_BitVector_INSTANCE();
+
+	SQ_GET_INTEGER(v, 2, int_pos);
+//	void sqlite3BitvecClear(Bitvec*, u32, void*)
+    SQChar *bv_buf = sq_getscratchpad(v, sqlite3BITVEC_SZ());
+
+    sqlite3BitvecClear(self, int_pos, bv_buf);
+	return 0;
+}
+
+static SQRESULT sq_BitVector_set(HSQUIRRELVM v){
+	SQ_FUNC_VARS_NO_TOP(v);
+	GET_BitVector_INSTANCE();
+
+	SQ_GET_INTEGER(v, 2, int_pos);
+//	int sqlite3BitvecSet(Bitvec*, u32)
+    sq_pushinteger(v, sqlite3BitvecSet(self, (u32)int_pos));
+	return 1;
+}
+
+static SQRESULT sq_BitVector_size(HSQUIRRELVM v){
+	SQ_FUNC_VARS_NO_TOP(v);
+	GET_BitVector_INSTANCE();
+
+//	u32 sqlite3BitvecSize(Bitvec*)
+    sq_pushinteger(v, sqlite3BitvecSize(self));
+	return 1;
+}
+
+static SQRESULT sq_BitVector_test(HSQUIRRELVM v){
+	SQ_FUNC_VARS_NO_TOP(v);
+	GET_BitVector_INSTANCE();
+
+	SQ_GET_INTEGER(v, 2, int_pos);
+//	int sqlite3BitvecTest(Bitvec*, u32)
+    sq_pushinteger(v, sqlite3BitvecTest(self, (u32)int_pos));
+	return 1;
+}
+
+static SQRESULT sq_BitVector_test_not_null(HSQUIRRELVM v){
+	SQ_FUNC_VARS_NO_TOP(v);
+	GET_BitVector_INSTANCE();
+
+	SQ_GET_INTEGER(v, 2, int_pos);
+//	int sqlite3BitvecTestNotNull(Bitvec*, u32)
+    sq_pushinteger(v, sqlite3BitvecTestNotNull(self, (u32)int_pos));
+	return 1;
+}
+
+#define _DECL_BITVECTOR_FUNC(name,nparams,pmask) {_SC(#name),sq_BitVector_##name,nparams,pmask}
+static SQRegFunction BitVector_obj_funcs[]={
+
+	_DECL_BITVECTOR_FUNC(constructor, 2, _SC("xi")),
+	_DECL_BITVECTOR_FUNC(clear, 2, _SC("xi")),
+	_DECL_BITVECTOR_FUNC(set, 2, _SC("xi")),
+	_DECL_BITVECTOR_FUNC(size, 1, _SC("x")),
+	_DECL_BITVECTOR_FUNC(test, 2, _SC("xi")),
+	_DECL_BITVECTOR_FUNC(test_not_null, 2, _SC("xi")),
+	{0,0}
+};
+#undef _DECL_BITVECTOR_FUNC
+
+extern "C" {
+
+    /* This defines a function that opens up your library. */
+    SQRESULT sqext_register_BitVector (HSQUIRRELVM v) {
+        //add a namespace BitVector
+        sq_pushstring(v, SQ_LIBNAME, -1);
+        sq_newclass(v,SQFalse);
+        sq_settypetag(v,-1,(SQUserPointer)BitVector_Tag);
+
+        sq_insert_reg_funcs(v, BitVector_obj_funcs);
+
+        sq_newslot(v,-3,SQFalse); //add BitVector table to the root table
+
+        return SQ_OK;
+    }
+}
+
+#endif //USE_BITVECTOR

+ 127 - 0
SquiLu/samples/test-bitvector.nut

@@ -0,0 +1,127 @@
+auto bv_size = 8000000;
+auto step = 1;
+
+auto sqBitVect = blob((bv_size / 8) + 512);
+//sqBitVect.memset(0, 0, sqBitVect.len()-1);
+
+auto bitGet(bpos)
+{
+	auto cpos = bpos/8;
+	auto b8 = 1 << (bpos%8);
+	return sqBitVect[cpos] & b8;
+}
+
+auto bitSet(bpos)
+{
+	auto cpos = bpos/8;
+	auto b8 = 1 << (bpos%8);
+	sqBitVect[cpos] = sqBitVect[cpos] | b8;
+}
+ 
+auto bitClear(bpos)
+{
+	auto cpos = bpos/8;
+	auto b8 = 1 << (bpos%8);
+	sqBitVect[cpos] = sqBitVect[cpos] & (~b8);
+}
+ 
+auto bitTogle(bpos)
+{
+	auto cpos = bpos/8;
+	auto b8 = 1 << (bpos%8);
+	sqBitVect[cpos] = sqBitVect[cpos] ^ b8;
+}
+
+auto bit_pos = 3;
+
+auto cpos = bit_pos/8;
+auto m8 = (bit_pos%8);
+auto b8 = 1 << m8;
+
+print(bit_pos, cpos, m8, b8);
+
+print(bitGet(bit_pos));
+bitSet(bit_pos);
+print(bitGet(bit_pos));
+bitClear(bit_pos);
+print(bitGet(bit_pos));
+bitTogle(bit_pos);
+print(bitGet(bit_pos));
+
+print("===");
+++bit_pos;
+print(sqBitVect.bitGet(bit_pos));
+sqBitVect.bitSet(bit_pos);
+print(sqBitVect.bitGet(bit_pos));
+sqBitVect.bitClear(bit_pos);
+print(sqBitVect.bitGet(bit_pos));
+sqBitVect.bitTogle(bit_pos);
+print(sqBitVect.bitGet(bit_pos));
+
+//return;
+ 
+auto bv = BitVector(bv_size);
+print(bv);
+
+auto start_milli = os.getmillicount();
+
+for(auto i=0; i < bv_size; i+=step) bv.set(i);
+
+print("Time spent", os.getmillicount() - start_milli);
+start_milli = os.getmillicount();
+
+for(auto i=0; i < bv_size; i+=step) bv.test(i);
+
+print("Time spent", os.getmillicount() - start_milli);
+
+start_milli = os.getmillicount();
+
+for(auto i=0; i < bv_size; i+=step) bitSet(i);
+
+print("Time spent", os.getmillicount() - start_milli);
+
+start_milli = os.getmillicount();
+
+for(auto i=0; i < bv_size; i+=step) bitGet(i);
+
+print("Time spent", os.getmillicount() - start_milli);
+
+start_milli = os.getmillicount();
+
+for(auto i=0; i < bv_size; i+=step) sqBitVect.bitSet(i);
+
+print("Time spent", os.getmillicount() - start_milli);
+
+start_milli = os.getmillicount();
+
+for(auto i=0; i < bv_size; i+=step) sqBitVect.bitGet(i);
+
+print("Time spent", os.getmillicount() - start_milli);
+
+start_milli = os.getmillicount();
+auto cbitSet = sqBitVect.bitSet;
+auto cbitGet = sqBitVect.bitGet;
+
+for(auto i=0; i < bv_size; i+=step) rawcall(cbitSet, sqBitVect, i);
+
+print("Time spent", os.getmillicount() - start_milli);
+
+start_milli = os.getmillicount();
+
+for(auto i=0; i < bv_size; i+=step) rawcall(cbitGet, sqBitVect, i);
+
+print("Time spent", os.getmillicount() - start_milli);
+
+bv = array(bv_size);
+start_milli = os.getmillicount();
+
+for(auto i=0; i < bv_size; i+=step) bv[i] = true;
+
+print("Time spent", os.getmillicount() - start_milli);
+
+
+start_milli = os.getmillicount();
+
+for(auto i=0; i < bv_size; i+=step) bv[i];
+
+print("Time spent", os.getmillicount() - start_milli);