#ifdef USE_BITVECTOR #include "squirrel.h" #include #include #include /* for malloc */ #include /* for a few sanity tests */ #include "sqlite3.h" //copy from sqliteInt.h #ifndef UINT32_TYPE # ifdef HAVE_UINT32_T # define UINT32_TYPE uint32_t # else # define UINT32_TYPE unsigned int # endif #endif #ifndef UINT16_TYPE # ifdef HAVE_UINT16_T # define UINT16_TYPE uint16_t # else # define UINT16_TYPE unsigned short int # endif #endif #ifndef INT16_TYPE # ifdef HAVE_INT16_T # define INT16_TYPE int16_t # else # define INT16_TYPE short int # endif #endif #ifndef UINT8_TYPE # ifdef HAVE_UINT8_T # define UINT8_TYPE uint8_t # else # define UINT8_TYPE unsigned char # endif #endif #ifndef INT8_TYPE # ifdef HAVE_INT8_T # define INT8_TYPE int8_t # else # define INT8_TYPE signed char # endif #endif #ifndef LONGDOUBLE_TYPE # define LONGDOUBLE_TYPE long double #endif //typedef sqlite_int64 i64; /* 8-byte signed integer */ //typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ typedef INT16_TYPE i16; /* 2-byte signed integer */ typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ typedef INT8_TYPE i8; /* 1-byte signed integer */ void *sqlite3MallocZero(size_t size) { void *p = sq_malloc(size); memset(p, 0, size); return p; } /* ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value ** that can be stored in a u32 without loss of data. The value ** is 0x00000000ffffffff. But because of quirks of some compilers, we ** have to specify the value in the less intuitive manner shown: */ #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) /* ** On systems with ample stack space and that support alloca(), make ** use of alloca() to obtain space for large automatic objects. By default, ** obtain space from malloc(). ** ** The alloca() routine never returns NULL. This will cause code paths ** that deal with sqlite3StackAlloc() failures to be unreachable. */ # define sqlite3StackAllocRaw(D,N) alloca(N) # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) # define sqlite3StackFree(D,P) # define SQLITE_NOMEM_BKPT SQLITE_NOMEM # define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM /* ** 2008 February 16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements an object that represents a fixed-length ** bitmap. Bits are numbered starting with 1. ** ** A bitmap is used to record which pages of a database file have been ** journalled during a transaction, or which pages have the "dont-write" ** property. Usually only a few pages are meet either condition. ** So the bitmap is usually sparse and has low cardinality. ** But sometimes (for example when during a DROP of a large table) most ** or all of the pages in a database can get journalled. In those cases, ** the bitmap becomes dense with high cardinality. The algorithm needs ** to handle both cases well. ** ** The size of the bitmap is fixed when the object is created. ** ** All bits are clear when the bitmap is created. Individual bits ** may be set or cleared one at a time. ** ** Test operations are about 100 times more common that set operations. ** Clear operations are exceedingly rare. There are usually between ** 5 and 500 set operations per Bitvec object, though the number of sets can ** sometimes grow into tens of thousands or larger. The size of the ** Bitvec object is the number of pages in the database file at the ** start of a transaction, and is thus usually less than a few thousand, ** but can be as large as 2 billion for a really big database. */ //#include "sqliteInt.h" /* Size of the Bitvec structure in bytes. */ #define BITVEC_SZ 512 /* Round the union size down to the nearest pointer boundary, since that's how ** it will be aligned within the Bitvec struct. */ #define BITVEC_USIZE \ (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) /* Type of the array "element" for the bitmap representation. ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. ** Setting this to the "natural word" size of your CPU may improve ** performance. */ #define BITVEC_TELEM u8 /* Size, in bits, of the bitmap element. */ #define BITVEC_SZELEM 8 /* Number of elements in a bitmap array. */ #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) /* Number of bits in the bitmap array. */ #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) /* Number of u32 values in hash table. */ #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) /* Maximum number of entries in hash table before ** sub-dividing and re-hashing. */ #define BITVEC_MXHASH (BITVEC_NINT/2) /* Hashing function for the aHash representation. ** Empirical testing showed that the *37 multiplier ** (an arbitrary prime)in the hash function provided ** no fewer collisions than the no-op *1. */ #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) /* ** A bitmap is an instance of the following structure. ** ** This bitmap records the existence of zero or more bits ** with values between 1 and iSize, inclusive. ** ** There are three possible representations of the bitmap. ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight ** bitmap. The least significant bit is bit 1. ** ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is ** a hash table that will hold up to BITVEC_MXHASH distinct values. ** ** Otherwise, the value i is redirected into one of BITVEC_NPTR ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap ** handles up to iDivisor separate values of i. apSub[0] holds ** values between 1 and iDivisor. apSub[1] holds values between ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized ** to hold deal with values between 1 and iDivisor. */ struct Bitvec { u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ u32 nSet; /* Number of bits that are set - only valid for aHash ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, ** this would be 125. */ u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ /* Should >=0 for apSub element. */ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ /* For a BITVEC_SZ of 512, this would be 34,359,739. */ union { BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ u32 aHash[BITVEC_NINT]; /* Hash table representation */ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ } u; }; /* ** Create a new bitmap object able to handle bits between 0 and iSize, ** inclusive. Return a pointer to the new object. Return NULL if ** malloc fails. */ static Bitvec *sqlite3BitvecCreate(u32 iSize){ Bitvec *p; assert( sizeof(*p)==BITVEC_SZ ); p = (Bitvec*)sqlite3MallocZero( sizeof(*p) ); if( p ){ p->iSize = iSize; } return p; } /* ** Check to see if the i-th bit is set. Return true or false. ** If p is NULL (if the bitmap has not been created) or if ** i is out of range, then return false. */ static int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){ assert( p!=0 ); i--; if( i>=p->iSize ) return 0; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return 0; } } if( p->iSize<=BITVEC_NBIT ){ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; } else{ u32 h = BITVEC_HASH(i++); while( p->u.aHash[h] ){ if( p->u.aHash[h]==i ) return 1; h = (h+1) % BITVEC_NINT; } return 0; } } static int sqlite3BitvecTest(Bitvec *p, u32 i){ return p!=0 && sqlite3BitvecTestNotNull(p,i); } /* ** Set the i-th bit. Return 0 on success and an error code if ** anything goes wrong. ** ** This routine might cause sub-bitmaps to be allocated. Failing ** to get the memory needed to hold the sub-bitmap is the only ** that can go wrong with an insert, assuming p and i are valid. ** ** The calling function must ensure that p is a valid Bitvec object ** and that the value for "i" is within range of the Bitvec object. ** Otherwise the behavior is undefined. */ static int sqlite3BitvecSet(Bitvec *p, u32 i){ u32 h; if( p==0 ) return SQLITE_OK; assert( i>0 ); assert( i<=p->iSize ); i--; while((p->iSize > BITVEC_NBIT) && p->iDivisor) { u32 bin = i/p->iDivisor; i = i%p->iDivisor; if( p->u.apSub[bin]==0 ){ p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT; } p = p->u.apSub[bin]; } if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); return SQLITE_OK; } h = BITVEC_HASH(i++); /* if there wasn't a hash collision, and this doesn't */ /* completely fill the hash, then just add it without */ /* worring about sub-dividing and re-hashing. */ if( !p->u.aHash[h] ){ if (p->nSet<(BITVEC_NINT-1)) { goto bitvec_set_end; } else { goto bitvec_set_rehash; } } /* there was a collision, check to see if it's already */ /* in hash, if not, try to find a spot for it */ do { if( p->u.aHash[h]==i ) return SQLITE_OK; h++; if( h>=BITVEC_NINT ) h = 0; } while( p->u.aHash[h] ); /* we didn't find it in the hash. h points to the first */ /* available free spot. check to see if this is going to */ /* make our hash too "full". */ bitvec_set_rehash: if( p->nSet>=BITVEC_MXHASH ){ unsigned int j; int rc; u32 *aiValues = (u32*)sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); if( aiValues==0 ){ return SQLITE_NOMEM_BKPT; }else{ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); memset(p->u.apSub, 0, sizeof(p->u.apSub)); p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; rc = sqlite3BitvecSet(p, i); for(j=0; jnSet++; p->u.aHash[h] = i; return SQLITE_OK; } /* ** Clear the i-th bit. ** ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage ** that BitvecClear can use to rebuilt its hash table. */ static void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ if( p==0 ) return; assert( i>0 ); i--; while( p->iDivisor ){ u32 bin = i/p->iDivisor; i = i%p->iDivisor; p = p->u.apSub[bin]; if (!p) { return; } } if( p->iSize<=BITVEC_NBIT ){ p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); }else{ unsigned int j; u32 *aiValues = (u32*)pBuf; memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); memset(p->u.aHash, 0, sizeof(p->u.aHash)); p->nSet = 0; for(j=0; jnSet++; while( p->u.aHash[h] ){ h++; if( h>=BITVEC_NINT ) h = 0; } p->u.aHash[h] = aiValues[j]; } } } } /* ** Destroy a bitmap object. Reclaim all memory used. */ static void sqlite3BitvecDestroy(Bitvec *p){ if( p==0 ) return; if( p->iDivisor ){ unsigned int i; for(i=0; iu.apSub[i]); } } sq_free(p, 0); } /* ** Return the value of the iSize parameter specified when Bitvec *p ** was created. */ static u32 sqlite3BitvecSize(Bitvec *p){ return p->iSize; } /* ** Return the value of the BITVEC_SZ. */ static u32 sqlite3BITVEC_SZ(){ return BITVEC_SZ; } //SQ_OPT_STRING_STRLEN(); static const SQChar SQ_LIBNAME[] = _SC("BitVector"); static const SQChar BitVector_Tag[] = _SC("BitVector_TAG"); #define GET_BitVector_INSTANCE() SQ_GET_INSTANCE(v, 1, Bitvec, BitVector_Tag) \ if(self == NULL) return sq_throwerror(v, _SC("BitVector object already closed")); static SQRESULT BitVector_release_hook(SQUserPointer p, SQInteger size, void */*ep*/) { Bitvec *self = (Bitvec*)p; if(self) sqlite3BitvecDestroy(self); return 0; } /* static SQRESULT BitVector_free(HSQUIRRELVM v) { SQ_FUNC_VARS_NO_TOP(v); GET_BitVector_INSTANCE(); BitVector_release_hook(self, 0, v); sq_setinstanceup(v, 1, 0); return 0; } */ static SQRESULT sq_BitVector_constructor(HSQUIRRELVM v){ SQ_FUNC_VARS_NO_TOP(v); SQ_GET_INTEGER(v, 2, int_size); // Bitvec *sqlite3BitvecCreate(u32) Bitvec *bv = sqlite3BitvecCreate((u32)int_size); SQInteger rc = sq_setinstanceup(v, 1, bv); sq_setreleasehook(v,1, BitVector_release_hook); return rc; } static SQRESULT sq_BitVector_clear(HSQUIRRELVM v){ SQ_FUNC_VARS_NO_TOP(v); GET_BitVector_INSTANCE(); SQ_GET_INTEGER(v, 2, int_pos); // void sqlite3BitvecClear(Bitvec*, u32, void*) SQChar *bv_buf = sq_getscratchpad(v, sqlite3BITVEC_SZ()); sqlite3BitvecClear(self, int_pos, bv_buf); return 0; } static SQRESULT sq_BitVector_set(HSQUIRRELVM v){ SQ_FUNC_VARS_NO_TOP(v); GET_BitVector_INSTANCE(); SQ_GET_INTEGER(v, 2, int_pos); // int sqlite3BitvecSet(Bitvec*, u32) sq_pushinteger(v, sqlite3BitvecSet(self, (u32)int_pos)); return 1; } static SQRESULT sq_BitVector_size(HSQUIRRELVM v){ SQ_FUNC_VARS_NO_TOP(v); GET_BitVector_INSTANCE(); // u32 sqlite3BitvecSize(Bitvec*) sq_pushinteger(v, sqlite3BitvecSize(self)); return 1; } static SQRESULT sq_BitVector_test(HSQUIRRELVM v){ SQ_FUNC_VARS_NO_TOP(v); GET_BitVector_INSTANCE(); SQ_GET_INTEGER(v, 2, int_pos); // int sqlite3BitvecTest(Bitvec*, u32) sq_pushinteger(v, sqlite3BitvecTest(self, (u32)int_pos)); return 1; } static SQRESULT sq_BitVector_test_not_null(HSQUIRRELVM v){ SQ_FUNC_VARS_NO_TOP(v); GET_BitVector_INSTANCE(); SQ_GET_INTEGER(v, 2, int_pos); // int sqlite3BitvecTestNotNull(Bitvec*, u32) sq_pushinteger(v, sqlite3BitvecTestNotNull(self, (u32)int_pos)); return 1; } #define _DECL_BITVECTOR_FUNC(name,nparams,pmask) {_SC(#name),sq_BitVector_##name,nparams,pmask} static SQRegFunction BitVector_obj_funcs[]={ _DECL_BITVECTOR_FUNC(constructor, 2, _SC("xi")), _DECL_BITVECTOR_FUNC(clear, 2, _SC("xi")), _DECL_BITVECTOR_FUNC(set, 2, _SC("xi")), _DECL_BITVECTOR_FUNC(size, 1, _SC("x")), _DECL_BITVECTOR_FUNC(test, 2, _SC("xi")), _DECL_BITVECTOR_FUNC(test_not_null, 2, _SC("xi")), {0,0} }; #undef _DECL_BITVECTOR_FUNC extern "C" { /* This defines a function that opens up your library. */ SQRESULT sqext_register_BitVector (HSQUIRRELVM v) { //add a namespace BitVector sq_pushstring(v, SQ_LIBNAME, -1); sq_newclass(v,SQFalse); sq_settypetag(v,-1,(SQUserPointer)BitVector_Tag); sq_insert_reg_funcs(v, BitVector_obj_funcs); sq_newslot(v,-3,SQFalse); //add BitVector table to the root table return SQ_OK; } } #endif //USE_BITVECTOR