/* * Copyright (c) 2008-2010 Stefan Krah. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "mpdecimal.h" #include #include #include #include "bits.h" #include "difradix2.h" #include "mptypes.h" #include "numbertheory.h" #include "transpose.h" #include "umodarith.h" #include "sixstep.h" /* * A variant of the six-step algorithm from: * * David H. Bailey: FFTs in External or Hierarchical Memory, Journal of * Supercomputing, vol. 4, no. 1 (March 1990), p. 23-35. * * URL: http://crd.lbl.gov/~dhbailey/dhbpapers/ */ /* forward transform with sign = -1 */ int six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) { struct fnt_params *tparams; mpd_size_t log2n, C, R; mpd_uint_t kernel; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_uint_t *x, w0, w1, wstep; mpd_size_t i, k; assert(ispower2(n)); assert(n >= 16); assert(n <= MPD_MAXTRANSFORM_2N); log2n = mpd_bsr(n); C = (ONE_UM << (log2n / 2)); /* number of columns */ R = (ONE_UM << (log2n - (log2n / 2))); /* number of rows */ /* view 'a' as an RxC matrix, transpose */ if (!transpose_pow2(a, R, C)) { return 0; } if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) { return 0; } for (x = a; x < a+n; x += R) { fnt_dif2(x, R, tparams); } if (!transpose_pow2(a, C, R)) { mpd_free(tparams); return 0; } SETMODULUS(modnum); kernel = _mpd_getkernel(n, -1, modnum); for (i = 1; i < R; i++) { w0 = 1; w1 = POWMOD(kernel, i); wstep = MULMOD(w1, w1); for (k = 0; k < C; k += 2) { mpd_uint_t x0 = a[i*C+k]; mpd_uint_t x1 = a[i*C+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); a[i*C+k] = x0; a[i*C+k+1] = x1; } } if (C != R) { mpd_free(tparams); if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) { return 0; } } for (x = a; x < a+n; x += C) { fnt_dif2(x, C, tparams); } mpd_free(tparams); #if 0 /* An unordered transform is sufficient for convolution. */ if (ordered) { if (!transpose_pow2(a, R, C)) { return 0; } } #endif return 1; } /* reverse transform, sign = 1 */ int inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) { struct fnt_params *tparams; mpd_size_t log2n, C, R; mpd_uint_t kernel; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_uint_t *x, w0, w1, wstep; mpd_size_t i, k; assert(ispower2(n)); assert(n >= 16); assert(n <= MPD_MAXTRANSFORM_2N); log2n = mpd_bsr(n); C = (ONE_UM << (log2n / 2)); /* number of columns */ R = (ONE_UM << (log2n - (log2n / 2))); /* number of rows */ #if 0 /* An unordered transform is sufficient for convolution. */ if (ordered) { if (!transpose_pow2(a, C, R)) { return 0; } } #endif if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) { return 0; } for (x = a; x < a+n; x += C) { fnt_dif2(x, C, tparams); } if (!transpose_pow2(a, R, C)) { mpd_free(tparams); return 0; } SETMODULUS(modnum); kernel = _mpd_getkernel(n, 1, modnum); for (i = 1; i < C; i++) { w0 = 1; w1 = POWMOD(kernel, i); wstep = MULMOD(w1, w1); for (k = 0; k < R; k += 2) { mpd_uint_t x0 = a[i*R+k]; mpd_uint_t x1 = a[i*R+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); a[i*R+k] = x0; a[i*R+k+1] = x1; } } if (R != C) { mpd_free(tparams); if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) { return 0; } } for (x = a; x < a+n; x += R) { fnt_dif2(x, R, tparams); } mpd_free(tparams); if (!transpose_pow2(a, C, R)) { return 0; } return 1; }