|
|
Variable timestep logic updates are preferable to fixed timestep, because they are only executed once per frame. In contrast, if the rendering framerate is low, several physics simulation steps will be performed on each frame to keep up the apparent passage if time, and if this also causes a lot of logic code to be executed for each step, the program may bog down further if the CPU can not handle the load. Note that the Engine's \ref Engine::SetMinFps "minimum FPS", by default 10, sets a hard cap for the timestep to prevent spiraling down to a complete halt; if exceeded, animation and physics will instead appear to slow down.
|
|
Variable timestep logic updates are preferable to fixed timestep, because they are only executed once per frame. In contrast, if the rendering framerate is low, several physics simulation steps will be performed on each frame to keep up the apparent passage if time, and if this also causes a lot of logic code to be executed for each step, the program may bog down further if the CPU can not handle the load. Note that the Engine's \ref Engine::SetMinFps "minimum FPS", by default 10, sets a hard cap for the timestep to prevent spiraling down to a complete halt; if exceeded, animation and physics will instead appear to slow down.
|
|
|
|
|
+- It is also possible to automatically pause update events and audio when the window is minimized. Use \ref Engine::SetPauseMinimized "SetPauseMinimized()" to control this behaviour. By default it is not enabled on desktop, and enabled on mobile devices (Android and iOS.) For singleplayer games this is recommended to avoid unwanted progression while away from the program. However in a multiplayer game this should not be used, as the missing scene updates would likely desync the client with the server.
|