|
@@ -0,0 +1,2151 @@
|
|
|
|
|
+//
|
|
|
|
|
+// Copyright (c) 2009-2010 Mikko Mononen [email protected]
|
|
|
|
|
+//
|
|
|
|
|
+// This software is provided 'as-is', without any express or implied
|
|
|
|
|
+// warranty. In no event will the authors be held liable for any damages
|
|
|
|
|
+// arising from the use of this software.
|
|
|
|
|
+// Permission is granted to anyone to use this software for any purpose,
|
|
|
|
|
+// including commercial applications, and to alter it and redistribute it
|
|
|
|
|
+// freely, subject to the following restrictions:
|
|
|
|
|
+// 1. The origin of this software must not be misrepresented; you must not
|
|
|
|
|
+// claim that you wrote the original software. If you use this software
|
|
|
|
|
+// in a product, an acknowledgment in the product documentation would be
|
|
|
|
|
+// appreciated but is not required.
|
|
|
|
|
+// 2. Altered source versions must be plainly marked as such, and must not be
|
|
|
|
|
+// misrepresented as being the original software.
|
|
|
|
|
+// 3. This notice may not be removed or altered from any source distribution.
|
|
|
|
|
+//
|
|
|
|
|
+
|
|
|
|
|
+#include "DetourCommon.h"
|
|
|
|
|
+#include "DetourMath.h"
|
|
|
|
|
+#include "DetourStatus.h"
|
|
|
|
|
+#include "DetourAssert.h"
|
|
|
|
|
+#include "DetourTileCacheBuilder.h"
|
|
|
|
|
+#include <string.h>
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+template<class T> class dtFixedArray
|
|
|
|
|
+{
|
|
|
|
|
+ dtTileCacheAlloc* m_alloc;
|
|
|
|
|
+ T* m_ptr;
|
|
|
|
|
+ const int m_size;
|
|
|
|
|
+ inline T* operator=(T* p);
|
|
|
|
|
+ inline void operator=(dtFixedArray<T>& p);
|
|
|
|
|
+ inline dtFixedArray();
|
|
|
|
|
+public:
|
|
|
|
|
+ inline dtFixedArray(dtTileCacheAlloc* a, const int s) : m_alloc(a), m_ptr((T*)a->alloc(sizeof(T)*s)), m_size(s) {}
|
|
|
|
|
+ inline ~dtFixedArray() { if (m_alloc) m_alloc->free(m_ptr); }
|
|
|
|
|
+ inline operator T*() { return m_ptr; }
|
|
|
|
|
+ inline int size() const { return m_size; }
|
|
|
|
|
+};
|
|
|
|
|
+
|
|
|
|
|
+inline int getDirOffsetX(int dir)
|
|
|
|
|
+{
|
|
|
|
|
+ const int offset[4] = { -1, 0, 1, 0, };
|
|
|
|
|
+ return offset[dir&0x03];
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+inline int getDirOffsetY(int dir)
|
|
|
|
|
+{
|
|
|
|
|
+ const int offset[4] = { 0, 1, 0, -1 };
|
|
|
|
|
+ return offset[dir&0x03];
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static const int MAX_VERTS_PER_POLY = 6; // TODO: use the DT_VERTS_PER_POLYGON
|
|
|
|
|
+static const int MAX_REM_EDGES = 48; // TODO: make this an expression.
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+dtTileCacheContourSet* dtAllocTileCacheContourSet(dtTileCacheAlloc* alloc)
|
|
|
|
|
+{
|
|
|
|
|
+ dtAssert(alloc);
|
|
|
|
|
+
|
|
|
|
|
+ dtTileCacheContourSet* cset = (dtTileCacheContourSet*)alloc->alloc(sizeof(dtTileCacheContourSet));
|
|
|
|
|
+ memset(cset, 0, sizeof(dtTileCacheContourSet));
|
|
|
|
|
+ return cset;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+void dtFreeTileCacheContourSet(dtTileCacheAlloc* alloc, dtTileCacheContourSet* cset)
|
|
|
|
|
+{
|
|
|
|
|
+ dtAssert(alloc);
|
|
|
|
|
+
|
|
|
|
|
+ if (!cset) return;
|
|
|
|
|
+ for (int i = 0; i < cset->nconts; ++i)
|
|
|
|
|
+ alloc->free(cset->conts[i].verts);
|
|
|
|
|
+ alloc->free(cset->conts);
|
|
|
|
|
+ alloc->free(cset);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+dtTileCachePolyMesh* dtAllocTileCachePolyMesh(dtTileCacheAlloc* alloc)
|
|
|
|
|
+{
|
|
|
|
|
+ dtAssert(alloc);
|
|
|
|
|
+
|
|
|
|
|
+ dtTileCachePolyMesh* lmesh = (dtTileCachePolyMesh*)alloc->alloc(sizeof(dtTileCachePolyMesh));
|
|
|
|
|
+ memset(lmesh, 0, sizeof(dtTileCachePolyMesh));
|
|
|
|
|
+ return lmesh;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+void dtFreeTileCachePolyMesh(dtTileCacheAlloc* alloc, dtTileCachePolyMesh* lmesh)
|
|
|
|
|
+{
|
|
|
|
|
+ dtAssert(alloc);
|
|
|
|
|
+
|
|
|
|
|
+ if (!lmesh) return;
|
|
|
|
|
+ alloc->free(lmesh->verts);
|
|
|
|
|
+ alloc->free(lmesh->polys);
|
|
|
|
|
+ alloc->free(lmesh->flags);
|
|
|
|
|
+ alloc->free(lmesh->areas);
|
|
|
|
|
+ alloc->free(lmesh);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+struct dtLayerSweepSpan
|
|
|
|
|
+{
|
|
|
|
|
+ unsigned short ns; // number samples
|
|
|
|
|
+ unsigned char id; // region id
|
|
|
|
|
+ unsigned char nei; // neighbour id
|
|
|
|
|
+};
|
|
|
|
|
+
|
|
|
|
|
+static const int DT_LAYER_MAX_NEIS = 16;
|
|
|
|
|
+
|
|
|
|
|
+struct dtLayerMonotoneRegion
|
|
|
|
|
+{
|
|
|
|
|
+ int area;
|
|
|
|
|
+ unsigned char neis[DT_LAYER_MAX_NEIS];
|
|
|
|
|
+ unsigned char nneis;
|
|
|
|
|
+ unsigned char regId;
|
|
|
|
|
+ unsigned char areaId;
|
|
|
|
|
+};
|
|
|
|
|
+
|
|
|
|
|
+struct dtTempContour
|
|
|
|
|
+{
|
|
|
|
|
+ inline dtTempContour(unsigned char* vbuf, const int nvbuf,
|
|
|
|
|
+ unsigned short* pbuf, const int npbuf) :
|
|
|
|
|
+ verts(vbuf), nverts(0), cverts(nvbuf),
|
|
|
|
|
+ poly(pbuf), npoly(0), cpoly(npbuf)
|
|
|
|
|
+ {
|
|
|
|
|
+ }
|
|
|
|
|
+ unsigned char* verts;
|
|
|
|
|
+ int nverts;
|
|
|
|
|
+ int cverts;
|
|
|
|
|
+ unsigned short* poly;
|
|
|
|
|
+ int npoly;
|
|
|
|
|
+ int cpoly;
|
|
|
|
|
+};
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+inline bool overlapRangeExl(const unsigned short amin, const unsigned short amax,
|
|
|
|
|
+ const unsigned short bmin, const unsigned short bmax)
|
|
|
|
|
+{
|
|
|
|
|
+ return (amin >= bmax || amax <= bmin) ? false : true;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static void addUniqueLast(unsigned char* a, unsigned char& an, unsigned char v)
|
|
|
|
|
+{
|
|
|
|
|
+ const int n = (int)an;
|
|
|
|
|
+ if (n > 0 && a[n-1] == v) return;
|
|
|
|
|
+ a[an] = v;
|
|
|
|
|
+ an++;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+inline bool isConnected(const dtTileCacheLayer& layer,
|
|
|
|
|
+ const int ia, const int ib, const int walkableClimb)
|
|
|
|
|
+{
|
|
|
|
|
+ if (layer.areas[ia] != layer.areas[ib]) return false;
|
|
|
|
|
+ if (dtAbs((int)layer.heights[ia] - (int)layer.heights[ib]) > walkableClimb) return false;
|
|
|
|
|
+ return true;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static bool canMerge(unsigned char oldRegId, unsigned char newRegId, const dtLayerMonotoneRegion* regs, const int nregs)
|
|
|
|
|
+{
|
|
|
|
|
+ int count = 0;
|
|
|
|
|
+ for (int i = 0; i < nregs; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ const dtLayerMonotoneRegion& reg = regs[i];
|
|
|
|
|
+ if (reg.regId != oldRegId) continue;
|
|
|
|
|
+ const int nnei = (int)reg.nneis;
|
|
|
|
|
+ for (int j = 0; j < nnei; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (regs[reg.neis[j]].regId == newRegId)
|
|
|
|
|
+ count++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ return count == 1;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+dtStatus dtBuildTileCacheRegions(dtTileCacheAlloc* alloc,
|
|
|
|
|
+ dtTileCacheLayer& layer,
|
|
|
|
|
+ const int walkableClimb)
|
|
|
|
|
+{
|
|
|
|
|
+ dtAssert(alloc);
|
|
|
|
|
+
|
|
|
|
|
+ const int w = (int)layer.header->width;
|
|
|
|
|
+ const int h = (int)layer.header->height;
|
|
|
|
|
+
|
|
|
|
|
+ memset(layer.regs,0xff,sizeof(unsigned char)*w*h);
|
|
|
|
|
+
|
|
|
|
|
+ const int nsweeps = w;
|
|
|
|
|
+ dtFixedArray<dtLayerSweepSpan> sweeps(alloc, nsweeps);
|
|
|
|
|
+ if (!sweeps)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+ memset(sweeps,0,sizeof(dtLayerSweepSpan)*nsweeps);
|
|
|
|
|
+
|
|
|
|
|
+ // Partition walkable area into monotone regions.
|
|
|
|
|
+ unsigned char prevCount[256];
|
|
|
|
|
+ unsigned char regId = 0;
|
|
|
|
|
+
|
|
|
|
|
+ for (int y = 0; y < h; ++y)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (regId > 0)
|
|
|
|
|
+ memset(prevCount,0,sizeof(unsigned char)*regId);
|
|
|
|
|
+ unsigned char sweepId = 0;
|
|
|
|
|
+
|
|
|
|
|
+ for (int x = 0; x < w; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ const int idx = x + y*w;
|
|
|
|
|
+ if (layer.areas[idx] == DT_TILECACHE_NULL_AREA) continue;
|
|
|
|
|
+
|
|
|
|
|
+ unsigned char sid = 0xff;
|
|
|
|
|
+
|
|
|
|
|
+ // -x
|
|
|
|
|
+ const int xidx = (x-1)+y*w;
|
|
|
|
|
+ if (x > 0 && isConnected(layer, idx, xidx, walkableClimb))
|
|
|
|
|
+ {
|
|
|
|
|
+ if (layer.regs[xidx] != 0xff)
|
|
|
|
|
+ sid = layer.regs[xidx];
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (sid == 0xff)
|
|
|
|
|
+ {
|
|
|
|
|
+ sid = sweepId++;
|
|
|
|
|
+ sweeps[sid].nei = 0xff;
|
|
|
|
|
+ sweeps[sid].ns = 0;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // -y
|
|
|
|
|
+ const int yidx = x+(y-1)*w;
|
|
|
|
|
+ if (y > 0 && isConnected(layer, idx, yidx, walkableClimb))
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned char nr = layer.regs[yidx];
|
|
|
|
|
+ if (nr != 0xff)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Set neighbour when first valid neighbour is encoutered.
|
|
|
|
|
+ if (sweeps[sid].ns == 0)
|
|
|
|
|
+ sweeps[sid].nei = nr;
|
|
|
|
|
+
|
|
|
|
|
+ if (sweeps[sid].nei == nr)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Update existing neighbour
|
|
|
|
|
+ sweeps[sid].ns++;
|
|
|
|
|
+ prevCount[nr]++;
|
|
|
|
|
+ }
|
|
|
|
|
+ else
|
|
|
|
|
+ {
|
|
|
|
|
+ // This is hit if there is nore than one neighbour.
|
|
|
|
|
+ // Invalidate the neighbour.
|
|
|
|
|
+ sweeps[sid].nei = 0xff;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ layer.regs[idx] = sid;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Create unique ID.
|
|
|
|
|
+ for (int i = 0; i < sweepId; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ // If the neighbour is set and there is only one continuous connection to it,
|
|
|
|
|
+ // the sweep will be merged with the previous one, else new region is created.
|
|
|
|
|
+ if (sweeps[i].nei != 0xff && (unsigned short)prevCount[sweeps[i].nei] == sweeps[i].ns)
|
|
|
|
|
+ {
|
|
|
|
|
+ sweeps[i].id = sweeps[i].nei;
|
|
|
|
|
+ }
|
|
|
|
|
+ else
|
|
|
|
|
+ {
|
|
|
|
|
+ if (regId == 255)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Region ID's overflow.
|
|
|
|
|
+ return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
|
|
|
+ }
|
|
|
|
|
+ sweeps[i].id = regId++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Remap local sweep ids to region ids.
|
|
|
|
|
+ for (int x = 0; x < w; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ const int idx = x+y*w;
|
|
|
|
|
+ if (layer.regs[idx] != 0xff)
|
|
|
|
|
+ layer.regs[idx] = sweeps[layer.regs[idx]].id;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Allocate and init layer regions.
|
|
|
|
|
+ const int nregs = (int)regId;
|
|
|
|
|
+ dtFixedArray<dtLayerMonotoneRegion> regs(alloc, nregs);
|
|
|
|
|
+ if (!regs)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ memset(regs, 0, sizeof(dtLayerMonotoneRegion)*nregs);
|
|
|
|
|
+ for (int i = 0; i < nregs; ++i)
|
|
|
|
|
+ regs[i].regId = 0xff;
|
|
|
|
|
+
|
|
|
|
|
+ // Find region neighbours.
|
|
|
|
|
+ for (int y = 0; y < h; ++y)
|
|
|
|
|
+ {
|
|
|
|
|
+ for (int x = 0; x < w; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ const int idx = x+y*w;
|
|
|
|
|
+ const unsigned char ri = layer.regs[idx];
|
|
|
|
|
+ if (ri == 0xff)
|
|
|
|
|
+ continue;
|
|
|
|
|
+
|
|
|
|
|
+ // Update area.
|
|
|
|
|
+ regs[ri].area++;
|
|
|
|
|
+ regs[ri].areaId = layer.areas[idx];
|
|
|
|
|
+
|
|
|
|
|
+ // Update neighbours
|
|
|
|
|
+ const int ymi = x+(y-1)*w;
|
|
|
|
|
+ if (y > 0 && isConnected(layer, idx, ymi, walkableClimb))
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned char rai = layer.regs[ymi];
|
|
|
|
|
+ if (rai != 0xff && rai != ri)
|
|
|
|
|
+ {
|
|
|
|
|
+ addUniqueLast(regs[ri].neis, regs[ri].nneis, rai);
|
|
|
|
|
+ addUniqueLast(regs[rai].neis, regs[rai].nneis, ri);
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < nregs; ++i)
|
|
|
|
|
+ regs[i].regId = (unsigned char)i;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < nregs; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ dtLayerMonotoneRegion& reg = regs[i];
|
|
|
|
|
+
|
|
|
|
|
+ int merge = -1;
|
|
|
|
|
+ int mergea = 0;
|
|
|
|
|
+ for (int j = 0; j < (int)reg.nneis; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned char nei = reg.neis[j];
|
|
|
|
|
+ dtLayerMonotoneRegion& regn = regs[nei];
|
|
|
|
|
+ if (reg.regId == regn.regId)
|
|
|
|
|
+ continue;
|
|
|
|
|
+ if (reg.areaId != regn.areaId)
|
|
|
|
|
+ continue;
|
|
|
|
|
+ if (regn.area > mergea)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (canMerge(reg.regId, regn.regId, regs, nregs))
|
|
|
|
|
+ {
|
|
|
|
|
+ mergea = regn.area;
|
|
|
|
|
+ merge = (int)nei;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ if (merge != -1)
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned char oldId = reg.regId;
|
|
|
|
|
+ const unsigned char newId = regs[merge].regId;
|
|
|
|
|
+ for (int j = 0; j < nregs; ++j)
|
|
|
|
|
+ if (regs[j].regId == oldId)
|
|
|
|
|
+ regs[j].regId = newId;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Compact ids.
|
|
|
|
|
+ unsigned char remap[256];
|
|
|
|
|
+ memset(remap, 0, 256);
|
|
|
|
|
+ // Find number of unique regions.
|
|
|
|
|
+ regId = 0;
|
|
|
|
|
+ for (int i = 0; i < nregs; ++i)
|
|
|
|
|
+ remap[regs[i].regId] = 1;
|
|
|
|
|
+ for (int i = 0; i < 256; ++i)
|
|
|
|
|
+ if (remap[i])
|
|
|
|
|
+ remap[i] = regId++;
|
|
|
|
|
+ // Remap ids.
|
|
|
|
|
+ for (int i = 0; i < nregs; ++i)
|
|
|
|
|
+ regs[i].regId = remap[regs[i].regId];
|
|
|
|
|
+
|
|
|
|
|
+ layer.regCount = regId;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < w*h; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (layer.regs[i] != 0xff)
|
|
|
|
|
+ layer.regs[i] = regs[layer.regs[i]].regId;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return DT_SUCCESS;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+static bool appendVertex(dtTempContour& cont, const int x, const int y, const int z, const int r)
|
|
|
|
|
+{
|
|
|
|
|
+ // Try to merge with existing segments.
|
|
|
|
|
+ if (cont.nverts > 1)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned char* pa = &cont.verts[(cont.nverts-2)*4];
|
|
|
|
|
+ unsigned char* pb = &cont.verts[(cont.nverts-1)*4];
|
|
|
|
|
+ if ((int)pb[3] == r)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (pa[0] == pb[0] && (int)pb[0] == x)
|
|
|
|
|
+ {
|
|
|
|
|
+ // The verts are aligned aling x-axis, update z.
|
|
|
|
|
+ pb[1] = (unsigned char)y;
|
|
|
|
|
+ pb[2] = (unsigned char)z;
|
|
|
|
|
+ return true;
|
|
|
|
|
+ }
|
|
|
|
|
+ else if (pa[2] == pb[2] && (int)pb[2] == z)
|
|
|
|
|
+ {
|
|
|
|
|
+ // The verts are aligned aling z-axis, update x.
|
|
|
|
|
+ pb[0] = (unsigned char)x;
|
|
|
|
|
+ pb[1] = (unsigned char)y;
|
|
|
|
|
+ return true;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Add new point.
|
|
|
|
|
+ if (cont.nverts+1 > cont.cverts)
|
|
|
|
|
+ return false;
|
|
|
|
|
+
|
|
|
|
|
+ unsigned char* v = &cont.verts[cont.nverts*4];
|
|
|
|
|
+ v[0] = (unsigned char)x;
|
|
|
|
|
+ v[1] = (unsigned char)y;
|
|
|
|
|
+ v[2] = (unsigned char)z;
|
|
|
|
|
+ v[3] = (unsigned char)r;
|
|
|
|
|
+ cont.nverts++;
|
|
|
|
|
+
|
|
|
|
|
+ return true;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+static unsigned char getNeighbourReg(dtTileCacheLayer& layer,
|
|
|
|
|
+ const int ax, const int ay, const int dir)
|
|
|
|
|
+{
|
|
|
|
|
+ const int w = (int)layer.header->width;
|
|
|
|
|
+ const int ia = ax + ay*w;
|
|
|
|
|
+
|
|
|
|
|
+ const unsigned char con = layer.cons[ia] & 0xf;
|
|
|
|
|
+ const unsigned char portal = layer.cons[ia] >> 4;
|
|
|
|
|
+ const unsigned char mask = (unsigned char)(1<<dir);
|
|
|
|
|
+
|
|
|
|
|
+ if ((con & mask) == 0)
|
|
|
|
|
+ {
|
|
|
|
|
+ // No connection, return portal or hard edge.
|
|
|
|
|
+ if (portal & mask)
|
|
|
|
|
+ return 0xf8 + (unsigned char)dir;
|
|
|
|
|
+ return 0xff;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ const int bx = ax + getDirOffsetX(dir);
|
|
|
|
|
+ const int by = ay + getDirOffsetY(dir);
|
|
|
|
|
+ const int ib = bx + by*w;
|
|
|
|
|
+
|
|
|
|
|
+ return layer.regs[ib];
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static bool walkContour(dtTileCacheLayer& layer, int x, int y, dtTempContour& cont)
|
|
|
|
|
+{
|
|
|
|
|
+ const int w = (int)layer.header->width;
|
|
|
|
|
+ const int h = (int)layer.header->height;
|
|
|
|
|
+
|
|
|
|
|
+ cont.nverts = 0;
|
|
|
|
|
+
|
|
|
|
|
+ int startX = x;
|
|
|
|
|
+ int startY = y;
|
|
|
|
|
+ int startDir = -1;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < 4; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ const int dir = (i+3)&3;
|
|
|
|
|
+ unsigned char rn = getNeighbourReg(layer, x, y, dir);
|
|
|
|
|
+ if (rn != layer.regs[x+y*w])
|
|
|
|
|
+ {
|
|
|
|
|
+ startDir = dir;
|
|
|
|
|
+ break;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ if (startDir == -1)
|
|
|
|
|
+ return true;
|
|
|
|
|
+
|
|
|
|
|
+ int dir = startDir;
|
|
|
|
|
+ const int maxIter = w*h;
|
|
|
|
|
+
|
|
|
|
|
+ int iter = 0;
|
|
|
|
|
+ while (iter < maxIter)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned char rn = getNeighbourReg(layer, x, y, dir);
|
|
|
|
|
+
|
|
|
|
|
+ int nx = x;
|
|
|
|
|
+ int ny = y;
|
|
|
|
|
+ int ndir = dir;
|
|
|
|
|
+
|
|
|
|
|
+ if (rn != layer.regs[x+y*w])
|
|
|
|
|
+ {
|
|
|
|
|
+ // Solid edge.
|
|
|
|
|
+ int px = x;
|
|
|
|
|
+ int pz = y;
|
|
|
|
|
+ switch(dir)
|
|
|
|
|
+ {
|
|
|
|
|
+ case 0: pz++; break;
|
|
|
|
|
+ case 1: px++; pz++; break;
|
|
|
|
|
+ case 2: px++; break;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Try to merge with previous vertex.
|
|
|
|
|
+ if (!appendVertex(cont, px, (int)layer.heights[x+y*w], pz,rn))
|
|
|
|
|
+ return false;
|
|
|
|
|
+
|
|
|
|
|
+ ndir = (dir+1) & 0x3; // Rotate CW
|
|
|
|
|
+ }
|
|
|
|
|
+ else
|
|
|
|
|
+ {
|
|
|
|
|
+ // Move to next.
|
|
|
|
|
+ nx = x + getDirOffsetX(dir);
|
|
|
|
|
+ ny = y + getDirOffsetY(dir);
|
|
|
|
|
+ ndir = (dir+3) & 0x3; // Rotate CCW
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (iter > 0 && x == startX && y == startY && dir == startDir)
|
|
|
|
|
+ break;
|
|
|
|
|
+
|
|
|
|
|
+ x = nx;
|
|
|
|
|
+ y = ny;
|
|
|
|
|
+ dir = ndir;
|
|
|
|
|
+
|
|
|
|
|
+ iter++;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Remove last vertex if it is duplicate of the first one.
|
|
|
|
|
+ unsigned char* pa = &cont.verts[(cont.nverts-1)*4];
|
|
|
|
|
+ unsigned char* pb = &cont.verts[0];
|
|
|
|
|
+ if (pa[0] == pb[0] && pa[2] == pb[2])
|
|
|
|
|
+ cont.nverts--;
|
|
|
|
|
+
|
|
|
|
|
+ return true;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+static float distancePtSeg(const int x, const int z,
|
|
|
|
|
+ const int px, const int pz,
|
|
|
|
|
+ const int qx, const int qz)
|
|
|
|
|
+{
|
|
|
|
|
+ float pqx = (float)(qx - px);
|
|
|
|
|
+ float pqz = (float)(qz - pz);
|
|
|
|
|
+ float dx = (float)(x - px);
|
|
|
|
|
+ float dz = (float)(z - pz);
|
|
|
|
|
+ float d = pqx*pqx + pqz*pqz;
|
|
|
|
|
+ float t = pqx*dx + pqz*dz;
|
|
|
|
|
+ if (d > 0)
|
|
|
|
|
+ t /= d;
|
|
|
|
|
+ if (t < 0)
|
|
|
|
|
+ t = 0;
|
|
|
|
|
+ else if (t > 1)
|
|
|
|
|
+ t = 1;
|
|
|
|
|
+
|
|
|
|
|
+ dx = px + t*pqx - x;
|
|
|
|
|
+ dz = pz + t*pqz - z;
|
|
|
|
|
+
|
|
|
|
|
+ return dx*dx + dz*dz;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static void simplifyContour(dtTempContour& cont, const float maxError)
|
|
|
|
|
+{
|
|
|
|
|
+ cont.npoly = 0;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < cont.nverts; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ int j = (i+1) % cont.nverts;
|
|
|
|
|
+ // Check for start of a wall segment.
|
|
|
|
|
+ unsigned char ra = cont.verts[j*4+3];
|
|
|
|
|
+ unsigned char rb = cont.verts[i*4+3];
|
|
|
|
|
+ if (ra != rb)
|
|
|
|
|
+ cont.poly[cont.npoly++] = (unsigned short)i;
|
|
|
|
|
+ }
|
|
|
|
|
+ if (cont.npoly < 2)
|
|
|
|
|
+ {
|
|
|
|
|
+ // If there is no transitions at all,
|
|
|
|
|
+ // create some initial points for the simplification process.
|
|
|
|
|
+ // Find lower-left and upper-right vertices of the contour.
|
|
|
|
|
+ int llx = cont.verts[0];
|
|
|
|
|
+ int llz = cont.verts[2];
|
|
|
|
|
+ int lli = 0;
|
|
|
|
|
+ int urx = cont.verts[0];
|
|
|
|
|
+ int urz = cont.verts[2];
|
|
|
|
|
+ int uri = 0;
|
|
|
|
|
+ for (int i = 1; i < cont.nverts; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ int x = cont.verts[i*4+0];
|
|
|
|
|
+ int z = cont.verts[i*4+2];
|
|
|
|
|
+ if (x < llx || (x == llx && z < llz))
|
|
|
|
|
+ {
|
|
|
|
|
+ llx = x;
|
|
|
|
|
+ llz = z;
|
|
|
|
|
+ lli = i;
|
|
|
|
|
+ }
|
|
|
|
|
+ if (x > urx || (x == urx && z > urz))
|
|
|
|
|
+ {
|
|
|
|
|
+ urx = x;
|
|
|
|
|
+ urz = z;
|
|
|
|
|
+ uri = i;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ cont.npoly = 0;
|
|
|
|
|
+ cont.poly[cont.npoly++] = (unsigned short)lli;
|
|
|
|
|
+ cont.poly[cont.npoly++] = (unsigned short)uri;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Add points until all raw points are within
|
|
|
|
|
+ // error tolerance to the simplified shape.
|
|
|
|
|
+ for (int i = 0; i < cont.npoly; )
|
|
|
|
|
+ {
|
|
|
|
|
+ int ii = (i+1) % cont.npoly;
|
|
|
|
|
+
|
|
|
|
|
+ const int ai = (int)cont.poly[i];
|
|
|
|
|
+ const int ax = (int)cont.verts[ai*4+0];
|
|
|
|
|
+ const int az = (int)cont.verts[ai*4+2];
|
|
|
|
|
+
|
|
|
|
|
+ const int bi = (int)cont.poly[ii];
|
|
|
|
|
+ const int bx = (int)cont.verts[bi*4+0];
|
|
|
|
|
+ const int bz = (int)cont.verts[bi*4+2];
|
|
|
|
|
+
|
|
|
|
|
+ // Find maximum deviation from the segment.
|
|
|
|
|
+ float maxd = 0;
|
|
|
|
|
+ int maxi = -1;
|
|
|
|
|
+ int ci, cinc, endi;
|
|
|
|
|
+
|
|
|
|
|
+ // Traverse the segment in lexilogical order so that the
|
|
|
|
|
+ // max deviation is calculated similarly when traversing
|
|
|
|
|
+ // opposite segments.
|
|
|
|
|
+ if (bx > ax || (bx == ax && bz > az))
|
|
|
|
|
+ {
|
|
|
|
|
+ cinc = 1;
|
|
|
|
|
+ ci = (ai+cinc) % cont.nverts;
|
|
|
|
|
+ endi = bi;
|
|
|
|
|
+ }
|
|
|
|
|
+ else
|
|
|
|
|
+ {
|
|
|
|
|
+ cinc = cont.nverts-1;
|
|
|
|
|
+ ci = (bi+cinc) % cont.nverts;
|
|
|
|
|
+ endi = ai;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Tessellate only outer edges or edges between areas.
|
|
|
|
|
+ while (ci != endi)
|
|
|
|
|
+ {
|
|
|
|
|
+ float d = distancePtSeg(cont.verts[ci*4+0], cont.verts[ci*4+2], ax, az, bx, bz);
|
|
|
|
|
+ if (d > maxd)
|
|
|
|
|
+ {
|
|
|
|
|
+ maxd = d;
|
|
|
|
|
+ maxi = ci;
|
|
|
|
|
+ }
|
|
|
|
|
+ ci = (ci+cinc) % cont.nverts;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ // If the max deviation is larger than accepted error,
|
|
|
|
|
+ // add new point, else continue to next segment.
|
|
|
|
|
+ if (maxi != -1 && maxd > (maxError*maxError))
|
|
|
|
|
+ {
|
|
|
|
|
+ cont.npoly++;
|
|
|
|
|
+ for (int j = cont.npoly-1; j > i; --j)
|
|
|
|
|
+ cont.poly[j] = cont.poly[j-1];
|
|
|
|
|
+ cont.poly[i+1] = (unsigned short)maxi;
|
|
|
|
|
+ }
|
|
|
|
|
+ else
|
|
|
|
|
+ {
|
|
|
|
|
+ ++i;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Remap vertices
|
|
|
|
|
+ int start = 0;
|
|
|
|
|
+ for (int i = 1; i < cont.npoly; ++i)
|
|
|
|
|
+ if (cont.poly[i] < cont.poly[start])
|
|
|
|
|
+ start = i;
|
|
|
|
|
+
|
|
|
|
|
+ cont.nverts = 0;
|
|
|
|
|
+ for (int i = 0; i < cont.npoly; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ const int j = (start+i) % cont.npoly;
|
|
|
|
|
+ unsigned char* src = &cont.verts[cont.poly[j]*4];
|
|
|
|
|
+ unsigned char* dst = &cont.verts[cont.nverts*4];
|
|
|
|
|
+ dst[0] = src[0];
|
|
|
|
|
+ dst[1] = src[1];
|
|
|
|
|
+ dst[2] = src[2];
|
|
|
|
|
+ dst[3] = src[3];
|
|
|
|
|
+ cont.nverts++;
|
|
|
|
|
+ }
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static unsigned char getCornerHeight(dtTileCacheLayer& layer,
|
|
|
|
|
+ const int x, const int y, const int z,
|
|
|
|
|
+ const int walkableClimb,
|
|
|
|
|
+ bool& shouldRemove)
|
|
|
|
|
+{
|
|
|
|
|
+ const int w = (int)layer.header->width;
|
|
|
|
|
+ const int h = (int)layer.header->height;
|
|
|
|
|
+
|
|
|
|
|
+ int n = 0;
|
|
|
|
|
+
|
|
|
|
|
+ unsigned char portal = 0xf;
|
|
|
|
|
+ unsigned char height = 0;
|
|
|
|
|
+ unsigned char preg = 0xff;
|
|
|
|
|
+ bool allSameReg = true;
|
|
|
|
|
+
|
|
|
|
|
+ for (int dz = -1; dz <= 0; ++dz)
|
|
|
|
|
+ {
|
|
|
|
|
+ for (int dx = -1; dx <= 0; ++dx)
|
|
|
|
|
+ {
|
|
|
|
|
+ const int px = x+dx;
|
|
|
|
|
+ const int pz = z+dz;
|
|
|
|
|
+ if (px >= 0 && pz >= 0 && px < w && pz < h)
|
|
|
|
|
+ {
|
|
|
|
|
+ const int idx = px + pz*w;
|
|
|
|
|
+ const int lh = (int)layer.heights[idx];
|
|
|
|
|
+ if (dtAbs(lh-y) <= walkableClimb && layer.areas[idx] != DT_TILECACHE_NULL_AREA)
|
|
|
|
|
+ {
|
|
|
|
|
+ height = dtMax(height, (unsigned char)lh);
|
|
|
|
|
+ portal &= (layer.cons[idx] >> 4);
|
|
|
|
|
+ if (preg != 0xff && preg != layer.regs[idx])
|
|
|
|
|
+ allSameReg = false;
|
|
|
|
|
+ preg = layer.regs[idx];
|
|
|
|
|
+ n++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ int portalCount = 0;
|
|
|
|
|
+ for (int dir = 0; dir < 4; ++dir)
|
|
|
|
|
+ if (portal & (1<<dir))
|
|
|
|
|
+ portalCount++;
|
|
|
|
|
+
|
|
|
|
|
+ shouldRemove = false;
|
|
|
|
|
+ if (n > 1 && portalCount == 1 && allSameReg)
|
|
|
|
|
+ {
|
|
|
|
|
+ shouldRemove = true;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return height;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+// TODO: move this somewhere else, once the layer meshing is done.
|
|
|
|
|
+dtStatus dtBuildTileCacheContours(dtTileCacheAlloc* alloc,
|
|
|
|
|
+ dtTileCacheLayer& layer,
|
|
|
|
|
+ const int walkableClimb, const float maxError,
|
|
|
|
|
+ dtTileCacheContourSet& lcset)
|
|
|
|
|
+{
|
|
|
|
|
+ dtAssert(alloc);
|
|
|
|
|
+
|
|
|
|
|
+ const int w = (int)layer.header->width;
|
|
|
|
|
+ const int h = (int)layer.header->height;
|
|
|
|
|
+
|
|
|
|
|
+ lcset.nconts = layer.regCount;
|
|
|
|
|
+ lcset.conts = (dtTileCacheContour*)alloc->alloc(sizeof(dtTileCacheContour)*lcset.nconts);
|
|
|
|
|
+ if (!lcset.conts)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+ memset(lcset.conts, 0, sizeof(dtTileCacheContour)*lcset.nconts);
|
|
|
|
|
+
|
|
|
|
|
+ // Allocate temp buffer for contour tracing.
|
|
|
|
|
+ const int maxTempVerts = (w+h)*2 * 2; // Twice around the layer.
|
|
|
|
|
+
|
|
|
|
|
+ dtFixedArray<unsigned char> tempVerts(alloc, maxTempVerts*4);
|
|
|
|
|
+ if (!tempVerts)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ dtFixedArray<unsigned short> tempPoly(alloc, maxTempVerts);
|
|
|
|
|
+ if (!tempPoly)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ dtTempContour temp(tempVerts, maxTempVerts, tempPoly, maxTempVerts);
|
|
|
|
|
+
|
|
|
|
|
+ // Find contours.
|
|
|
|
|
+ for (int y = 0; y < h; ++y)
|
|
|
|
|
+ {
|
|
|
|
|
+ for (int x = 0; x < w; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ const int idx = x+y*w;
|
|
|
|
|
+ const unsigned char ri = layer.regs[idx];
|
|
|
|
|
+ if (ri == 0xff)
|
|
|
|
|
+ continue;
|
|
|
|
|
+
|
|
|
|
|
+ dtTileCacheContour& cont = lcset.conts[ri];
|
|
|
|
|
+
|
|
|
|
|
+ if (cont.nverts > 0)
|
|
|
|
|
+ continue;
|
|
|
|
|
+
|
|
|
|
|
+ cont.reg = ri;
|
|
|
|
|
+ cont.area = layer.areas[idx];
|
|
|
|
|
+
|
|
|
|
|
+ if (!walkContour(layer, x, y, temp))
|
|
|
|
|
+ {
|
|
|
|
|
+ // Too complex contour.
|
|
|
|
|
+ // Note: If you hit here ofte, try increasing 'maxTempVerts'.
|
|
|
|
|
+ return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ simplifyContour(temp, maxError);
|
|
|
|
|
+
|
|
|
|
|
+ // Store contour.
|
|
|
|
|
+ cont.nverts = temp.nverts;
|
|
|
|
|
+ if (cont.nverts > 0)
|
|
|
|
|
+ {
|
|
|
|
|
+ cont.verts = (unsigned char*)alloc->alloc(sizeof(unsigned char)*4*temp.nverts);
|
|
|
|
|
+ if (!cont.verts)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0, j = temp.nverts-1; i < temp.nverts; j=i++)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned char* dst = &cont.verts[j*4];
|
|
|
|
|
+ unsigned char* v = &temp.verts[j*4];
|
|
|
|
|
+ unsigned char* vn = &temp.verts[i*4];
|
|
|
|
|
+ unsigned char nei = vn[3]; // The neighbour reg is stored at segment vertex of a segment.
|
|
|
|
|
+ bool shouldRemove = false;
|
|
|
|
|
+ unsigned char lh = getCornerHeight(layer, (int)v[0], (int)v[1], (int)v[2],
|
|
|
|
|
+ walkableClimb, shouldRemove);
|
|
|
|
|
+
|
|
|
|
|
+ dst[0] = v[0];
|
|
|
|
|
+ dst[1] = lh;
|
|
|
|
|
+ dst[2] = v[2];
|
|
|
|
|
+
|
|
|
|
|
+ // Store portal direction and remove status to the fourth component.
|
|
|
|
|
+ dst[3] = 0x0f;
|
|
|
|
|
+ if (nei != 0xff && nei >= 0xf8)
|
|
|
|
|
+ dst[3] = nei - 0xf8;
|
|
|
|
|
+ if (shouldRemove)
|
|
|
|
|
+ dst[3] |= 0x80;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return DT_SUCCESS;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+static const int VERTEX_BUCKET_COUNT2 = (1<<8);
|
|
|
|
|
+
|
|
|
|
|
+inline int computeVertexHash2(int x, int y, int z)
|
|
|
|
|
+{
|
|
|
|
|
+ const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
|
|
|
|
|
+ const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
|
|
|
|
|
+ const unsigned int h3 = 0xcb1ab31f;
|
|
|
|
|
+ unsigned int n = h1 * x + h2 * y + h3 * z;
|
|
|
|
|
+ return (int)(n & (VERTEX_BUCKET_COUNT2-1));
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z,
|
|
|
|
|
+ unsigned short* verts, unsigned short* firstVert, unsigned short* nextVert, int& nv)
|
|
|
|
|
+{
|
|
|
|
|
+ int bucket = computeVertexHash2(x, 0, z);
|
|
|
|
|
+ unsigned short i = firstVert[bucket];
|
|
|
|
|
+
|
|
|
|
|
+ while (i != DT_TILECACHE_NULL_IDX)
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned short* v = &verts[i*3];
|
|
|
|
|
+ if (v[0] == x && v[2] == z && (dtAbs(v[1] - y) <= 2))
|
|
|
|
|
+ return i;
|
|
|
|
|
+ i = nextVert[i]; // next
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Could not find, create new.
|
|
|
|
|
+ i = (unsigned short)nv; nv++;
|
|
|
|
|
+ unsigned short* v = &verts[i*3];
|
|
|
|
|
+ v[0] = x;
|
|
|
|
|
+ v[1] = y;
|
|
|
|
|
+ v[2] = z;
|
|
|
|
|
+ nextVert[i] = firstVert[bucket];
|
|
|
|
|
+ firstVert[bucket] = i;
|
|
|
|
|
+
|
|
|
|
|
+ return (unsigned short)i;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+struct rcEdge
|
|
|
|
|
+{
|
|
|
|
|
+ unsigned short vert[2];
|
|
|
|
|
+ unsigned short polyEdge[2];
|
|
|
|
|
+ unsigned short poly[2];
|
|
|
|
|
+};
|
|
|
|
|
+
|
|
|
|
|
+static bool buildMeshAdjacency(dtTileCacheAlloc* alloc,
|
|
|
|
|
+ unsigned short* polys, const int npolys,
|
|
|
|
|
+ const unsigned short* verts, const int nverts,
|
|
|
|
|
+ const dtTileCacheContourSet& lcset)
|
|
|
|
|
+{
|
|
|
|
|
+ // Based on code by Eric Lengyel from:
|
|
|
|
|
+ // http://www.terathon.com/code/edges.php
|
|
|
|
|
+
|
|
|
|
|
+ const int maxEdgeCount = npolys*MAX_VERTS_PER_POLY;
|
|
|
|
|
+ dtFixedArray<unsigned short> firstEdge(alloc, nverts + maxEdgeCount);
|
|
|
|
|
+ if (!firstEdge)
|
|
|
|
|
+ return false;
|
|
|
|
|
+ unsigned short* nextEdge = firstEdge + nverts;
|
|
|
|
|
+ int edgeCount = 0;
|
|
|
|
|
+
|
|
|
|
|
+ dtFixedArray<rcEdge> edges(alloc, maxEdgeCount);
|
|
|
|
|
+ if (!edges)
|
|
|
|
|
+ return false;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < nverts; i++)
|
|
|
|
|
+ firstEdge[i] = DT_TILECACHE_NULL_IDX;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < npolys; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (t[j] == DT_TILECACHE_NULL_IDX) break;
|
|
|
|
|
+ unsigned short v0 = t[j];
|
|
|
|
|
+ unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1];
|
|
|
|
|
+ if (v0 < v1)
|
|
|
|
|
+ {
|
|
|
|
|
+ rcEdge& edge = edges[edgeCount];
|
|
|
|
|
+ edge.vert[0] = v0;
|
|
|
|
|
+ edge.vert[1] = v1;
|
|
|
|
|
+ edge.poly[0] = (unsigned short)i;
|
|
|
|
|
+ edge.polyEdge[0] = (unsigned short)j;
|
|
|
|
|
+ edge.poly[1] = (unsigned short)i;
|
|
|
|
|
+ edge.polyEdge[1] = 0xff;
|
|
|
|
|
+ // Insert edge
|
|
|
|
|
+ nextEdge[edgeCount] = firstEdge[v0];
|
|
|
|
|
+ firstEdge[v0] = (unsigned short)edgeCount;
|
|
|
|
|
+ edgeCount++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < npolys; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* t = &polys[i*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (t[j] == DT_TILECACHE_NULL_IDX) break;
|
|
|
|
|
+ unsigned short v0 = t[j];
|
|
|
|
|
+ unsigned short v1 = (j+1 >= MAX_VERTS_PER_POLY || t[j+1] == DT_TILECACHE_NULL_IDX) ? t[0] : t[j+1];
|
|
|
|
|
+ if (v0 > v1)
|
|
|
|
|
+ {
|
|
|
|
|
+ bool found = false;
|
|
|
|
|
+ for (unsigned short e = firstEdge[v1]; e != DT_TILECACHE_NULL_IDX; e = nextEdge[e])
|
|
|
|
|
+ {
|
|
|
|
|
+ rcEdge& edge = edges[e];
|
|
|
|
|
+ if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1])
|
|
|
|
|
+ {
|
|
|
|
|
+ edge.poly[1] = (unsigned short)i;
|
|
|
|
|
+ edge.polyEdge[1] = (unsigned short)j;
|
|
|
|
|
+ found = true;
|
|
|
|
|
+ break;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ if (!found)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Matching edge not found, it is an open edge, add it.
|
|
|
|
|
+ rcEdge& edge = edges[edgeCount];
|
|
|
|
|
+ edge.vert[0] = v1;
|
|
|
|
|
+ edge.vert[1] = v0;
|
|
|
|
|
+ edge.poly[0] = (unsigned short)i;
|
|
|
|
|
+ edge.polyEdge[0] = (unsigned short)j;
|
|
|
|
|
+ edge.poly[1] = (unsigned short)i;
|
|
|
|
|
+ edge.polyEdge[1] = 0xff;
|
|
|
|
|
+ // Insert edge
|
|
|
|
|
+ nextEdge[edgeCount] = firstEdge[v1];
|
|
|
|
|
+ firstEdge[v1] = (unsigned short)edgeCount;
|
|
|
|
|
+ edgeCount++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Mark portal edges.
|
|
|
|
|
+ for (int i = 0; i < lcset.nconts; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ dtTileCacheContour& cont = lcset.conts[i];
|
|
|
|
|
+ if (cont.nverts < 3)
|
|
|
|
|
+ continue;
|
|
|
|
|
+
|
|
|
|
|
+ for (int j = 0, k = cont.nverts-1; j < cont.nverts; k=j++)
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned char* va = &cont.verts[k*4];
|
|
|
|
|
+ const unsigned char* vb = &cont.verts[j*4];
|
|
|
|
|
+ const unsigned char dir = va[3] & 0xf;
|
|
|
|
|
+ if (dir == 0xf)
|
|
|
|
|
+ continue;
|
|
|
|
|
+
|
|
|
|
|
+ if (dir == 0 || dir == 2)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Find matching vertical edge
|
|
|
|
|
+ const unsigned short x = (unsigned short)va[0];
|
|
|
|
|
+ unsigned short zmin = (unsigned short)va[2];
|
|
|
|
|
+ unsigned short zmax = (unsigned short)vb[2];
|
|
|
|
|
+ if (zmin > zmax)
|
|
|
|
|
+ dtSwap(zmin, zmax);
|
|
|
|
|
+
|
|
|
|
|
+ for (int m = 0; m < edgeCount; ++m)
|
|
|
|
|
+ {
|
|
|
|
|
+ rcEdge& e = edges[m];
|
|
|
|
|
+ // Skip connected edges.
|
|
|
|
|
+ if (e.poly[0] != e.poly[1])
|
|
|
|
|
+ continue;
|
|
|
|
|
+ const unsigned short* eva = &verts[e.vert[0]*3];
|
|
|
|
|
+ const unsigned short* evb = &verts[e.vert[1]*3];
|
|
|
|
|
+ if (eva[0] == x && evb[0] == x)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short ezmin = eva[2];
|
|
|
|
|
+ unsigned short ezmax = evb[2];
|
|
|
|
|
+ if (ezmin > ezmax)
|
|
|
|
|
+ dtSwap(ezmin, ezmax);
|
|
|
|
|
+ if (overlapRangeExl(zmin,zmax, ezmin, ezmax))
|
|
|
|
|
+ {
|
|
|
|
|
+ // Reuse the other polyedge to store dir.
|
|
|
|
|
+ e.polyEdge[1] = dir;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ else
|
|
|
|
|
+ {
|
|
|
|
|
+ // Find matching vertical edge
|
|
|
|
|
+ const unsigned short z = (unsigned short)va[2];
|
|
|
|
|
+ unsigned short xmin = (unsigned short)va[0];
|
|
|
|
|
+ unsigned short xmax = (unsigned short)vb[0];
|
|
|
|
|
+ if (xmin > xmax)
|
|
|
|
|
+ dtSwap(xmin, xmax);
|
|
|
|
|
+ for (int m = 0; m < edgeCount; ++m)
|
|
|
|
|
+ {
|
|
|
|
|
+ rcEdge& e = edges[m];
|
|
|
|
|
+ // Skip connected edges.
|
|
|
|
|
+ if (e.poly[0] != e.poly[1])
|
|
|
|
|
+ continue;
|
|
|
|
|
+ const unsigned short* eva = &verts[e.vert[0]*3];
|
|
|
|
|
+ const unsigned short* evb = &verts[e.vert[1]*3];
|
|
|
|
|
+ if (eva[2] == z && evb[2] == z)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short exmin = eva[0];
|
|
|
|
|
+ unsigned short exmax = evb[0];
|
|
|
|
|
+ if (exmin > exmax)
|
|
|
|
|
+ dtSwap(exmin, exmax);
|
|
|
|
|
+ if (overlapRangeExl(xmin,xmax, exmin, exmax))
|
|
|
|
|
+ {
|
|
|
|
|
+ // Reuse the other polyedge to store dir.
|
|
|
|
|
+ e.polyEdge[1] = dir;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ // Store adjacency
|
|
|
|
|
+ for (int i = 0; i < edgeCount; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ const rcEdge& e = edges[i];
|
|
|
|
|
+ if (e.poly[0] != e.poly[1])
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ unsigned short* p1 = &polys[e.poly[1]*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = e.poly[1];
|
|
|
|
|
+ p1[MAX_VERTS_PER_POLY + e.polyEdge[1]] = e.poly[0];
|
|
|
|
|
+ }
|
|
|
|
|
+ else if (e.polyEdge[1] != 0xff)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* p0 = &polys[e.poly[0]*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ p0[MAX_VERTS_PER_POLY + e.polyEdge[0]] = 0x8000 | (unsigned short)e.polyEdge[1];
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return true;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
|
|
|
|
|
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
|
|
|
|
|
+
|
|
|
|
|
+inline int area2(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
|
|
|
+{
|
|
|
|
|
+ return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) - ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// Exclusive or: true iff exactly one argument is true.
|
|
|
|
|
+// The arguments are negated to ensure that they are 0/1
|
|
|
|
|
+// values. Then the bitwise Xor operator may apply.
|
|
|
|
|
+// (This idea is due to Michael Baldwin.)
|
|
|
|
|
+inline bool xorb(bool x, bool y)
|
|
|
|
|
+{
|
|
|
|
|
+ return !x ^ !y;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// Returns true iff c is strictly to the left of the directed
|
|
|
|
|
+// line through a to b.
|
|
|
|
|
+inline bool left(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
|
|
|
+{
|
|
|
|
|
+ return area2(a, b, c) < 0;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+inline bool leftOn(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
|
|
|
+{
|
|
|
|
|
+ return area2(a, b, c) <= 0;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+inline bool collinear(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
|
|
|
+{
|
|
|
|
|
+ return area2(a, b, c) == 0;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// Returns true iff ab properly intersects cd: they share
|
|
|
|
|
+// a point interior to both segments. The properness of the
|
|
|
|
|
+// intersection is ensured by using strict leftness.
|
|
|
|
|
+static bool intersectProp(const unsigned char* a, const unsigned char* b,
|
|
|
|
|
+ const unsigned char* c, const unsigned char* d)
|
|
|
|
|
+{
|
|
|
|
|
+ // Eliminate improper cases.
|
|
|
|
|
+ if (collinear(a,b,c) || collinear(a,b,d) ||
|
|
|
|
|
+ collinear(c,d,a) || collinear(c,d,b))
|
|
|
|
|
+ return false;
|
|
|
|
|
+
|
|
|
|
|
+ return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// Returns T iff (a,b,c) are collinear and point c lies
|
|
|
|
|
+// on the closed segement ab.
|
|
|
|
|
+static bool between(const unsigned char* a, const unsigned char* b, const unsigned char* c)
|
|
|
|
|
+{
|
|
|
|
|
+ if (!collinear(a, b, c))
|
|
|
|
|
+ return false;
|
|
|
|
|
+ // If ab not vertical, check betweenness on x; else on y.
|
|
|
|
|
+ if (a[0] != b[0])
|
|
|
|
|
+ return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
|
|
|
|
|
+ else
|
|
|
|
|
+ return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// Returns true iff segments ab and cd intersect, properly or improperly.
|
|
|
|
|
+static bool intersect(const unsigned char* a, const unsigned char* b,
|
|
|
|
|
+ const unsigned char* c, const unsigned char* d)
|
|
|
|
|
+{
|
|
|
|
|
+ if (intersectProp(a, b, c, d))
|
|
|
|
|
+ return true;
|
|
|
|
|
+ else if (between(a, b, c) || between(a, b, d) ||
|
|
|
|
|
+ between(c, d, a) || between(c, d, b))
|
|
|
|
|
+ return true;
|
|
|
|
|
+ else
|
|
|
|
|
+ return false;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static bool vequal(const unsigned char* a, const unsigned char* b)
|
|
|
|
|
+{
|
|
|
|
|
+ return a[0] == b[0] && a[2] == b[2];
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// Returns T iff (v_i, v_j) is a proper internal *or* external
|
|
|
|
|
+// diagonal of P, *ignoring edges incident to v_i and v_j*.
|
|
|
|
|
+static bool diagonalie(int i, int j, int n, const unsigned char* verts, const unsigned short* indices)
|
|
|
|
|
+{
|
|
|
|
|
+ const unsigned char* d0 = &verts[(indices[i] & 0x7fff) * 4];
|
|
|
|
|
+ const unsigned char* d1 = &verts[(indices[j] & 0x7fff) * 4];
|
|
|
|
|
+
|
|
|
|
|
+ // For each edge (k,k+1) of P
|
|
|
|
|
+ for (int k = 0; k < n; k++)
|
|
|
|
|
+ {
|
|
|
|
|
+ int k1 = next(k, n);
|
|
|
|
|
+ // Skip edges incident to i or j
|
|
|
|
|
+ if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned char* p0 = &verts[(indices[k] & 0x7fff) * 4];
|
|
|
|
|
+ const unsigned char* p1 = &verts[(indices[k1] & 0x7fff) * 4];
|
|
|
|
|
+
|
|
|
|
|
+ if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
|
|
|
|
|
+ continue;
|
|
|
|
|
+
|
|
|
|
|
+ if (intersect(d0, d1, p0, p1))
|
|
|
|
|
+ return false;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ return true;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// Returns true iff the diagonal (i,j) is strictly internal to the
|
|
|
|
|
+// polygon P in the neighborhood of the i endpoint.
|
|
|
|
|
+static bool inCone(int i, int j, int n, const unsigned char* verts, const unsigned short* indices)
|
|
|
|
|
+{
|
|
|
|
|
+ const unsigned char* pi = &verts[(indices[i] & 0x7fff) * 4];
|
|
|
|
|
+ const unsigned char* pj = &verts[(indices[j] & 0x7fff) * 4];
|
|
|
|
|
+ const unsigned char* pi1 = &verts[(indices[next(i, n)] & 0x7fff) * 4];
|
|
|
|
|
+ const unsigned char* pin1 = &verts[(indices[prev(i, n)] & 0x7fff) * 4];
|
|
|
|
|
+
|
|
|
|
|
+ // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
|
|
|
|
|
+ if (leftOn(pin1, pi, pi1))
|
|
|
|
|
+ return left(pi, pj, pin1) && left(pj, pi, pi1);
|
|
|
|
|
+ // Assume (i-1,i,i+1) not collinear.
|
|
|
|
|
+ // else P[i] is reflex.
|
|
|
|
|
+ return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// Returns T iff (v_i, v_j) is a proper internal
|
|
|
|
|
+// diagonal of P.
|
|
|
|
|
+static bool diagonal(int i, int j, int n, const unsigned char* verts, const unsigned short* indices)
|
|
|
|
|
+{
|
|
|
|
|
+ return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static int triangulate(int n, const unsigned char* verts, unsigned short* indices, unsigned short* tris)
|
|
|
|
|
+{
|
|
|
|
|
+ int ntris = 0;
|
|
|
|
|
+ unsigned short* dst = tris;
|
|
|
|
|
+
|
|
|
|
|
+ // The last bit of the index is used to indicate if the vertex can be removed.
|
|
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
|
|
+ {
|
|
|
|
|
+ int i1 = next(i, n);
|
|
|
|
|
+ int i2 = next(i1, n);
|
|
|
|
|
+ if (diagonal(i, i2, n, verts, indices))
|
|
|
|
|
+ indices[i1] |= 0x8000;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ while (n > 3)
|
|
|
|
|
+ {
|
|
|
|
|
+ int minLen = -1;
|
|
|
|
|
+ int mini = -1;
|
|
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
|
|
+ {
|
|
|
|
|
+ int i1 = next(i, n);
|
|
|
|
|
+ if (indices[i1] & 0x8000)
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned char* p0 = &verts[(indices[i] & 0x7fff) * 4];
|
|
|
|
|
+ const unsigned char* p2 = &verts[(indices[next(i1, n)] & 0x7fff) * 4];
|
|
|
|
|
+
|
|
|
|
|
+ const int dx = (int)p2[0] - (int)p0[0];
|
|
|
|
|
+ const int dz = (int)p2[2] - (int)p0[2];
|
|
|
|
|
+ const int len = dx*dx + dz*dz;
|
|
|
|
|
+ if (minLen < 0 || len < minLen)
|
|
|
|
|
+ {
|
|
|
|
|
+ minLen = len;
|
|
|
|
|
+ mini = i;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (mini == -1)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Should not happen.
|
|
|
|
|
+ /* printf("mini == -1 ntris=%d n=%d\n", ntris, n);
|
|
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
|
|
+ {
|
|
|
|
|
+ printf("%d ", indices[i] & 0x0fffffff);
|
|
|
|
|
+ }
|
|
|
|
|
+ printf("\n");*/
|
|
|
|
|
+ return -ntris;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ int i = mini;
|
|
|
|
|
+ int i1 = next(i, n);
|
|
|
|
|
+ int i2 = next(i1, n);
|
|
|
|
|
+
|
|
|
|
|
+ *dst++ = indices[i] & 0x7fff;
|
|
|
|
|
+ *dst++ = indices[i1] & 0x7fff;
|
|
|
|
|
+ *dst++ = indices[i2] & 0x7fff;
|
|
|
|
|
+ ntris++;
|
|
|
|
|
+
|
|
|
|
|
+ // Removes P[i1] by copying P[i+1]...P[n-1] left one index.
|
|
|
|
|
+ n--;
|
|
|
|
|
+ for (int k = i1; k < n; k++)
|
|
|
|
|
+ indices[k] = indices[k+1];
|
|
|
|
|
+
|
|
|
|
|
+ if (i1 >= n) i1 = 0;
|
|
|
|
|
+ i = prev(i1,n);
|
|
|
|
|
+ // Update diagonal flags.
|
|
|
|
|
+ if (diagonal(prev(i, n), i1, n, verts, indices))
|
|
|
|
|
+ indices[i] |= 0x8000;
|
|
|
|
|
+ else
|
|
|
|
|
+ indices[i] &= 0x7fff;
|
|
|
|
|
+
|
|
|
|
|
+ if (diagonal(i, next(i1, n), n, verts, indices))
|
|
|
|
|
+ indices[i1] |= 0x8000;
|
|
|
|
|
+ else
|
|
|
|
|
+ indices[i1] &= 0x7fff;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Append the remaining triangle.
|
|
|
|
|
+ *dst++ = indices[0] & 0x7fff;
|
|
|
|
|
+ *dst++ = indices[1] & 0x7fff;
|
|
|
|
|
+ *dst++ = indices[2] & 0x7fff;
|
|
|
|
|
+ ntris++;
|
|
|
|
|
+
|
|
|
|
|
+ return ntris;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+static int countPolyVerts(const unsigned short* p)
|
|
|
|
|
+{
|
|
|
|
|
+ for (int i = 0; i < MAX_VERTS_PER_POLY; ++i)
|
|
|
|
|
+ if (p[i] == DT_TILECACHE_NULL_IDX)
|
|
|
|
|
+ return i;
|
|
|
|
|
+ return MAX_VERTS_PER_POLY;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
|
|
|
|
|
+{
|
|
|
|
|
+ return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) -
|
|
|
|
|
+ ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static int getPolyMergeValue(unsigned short* pa, unsigned short* pb,
|
|
|
|
|
+ const unsigned short* verts, int& ea, int& eb)
|
|
|
|
|
+{
|
|
|
|
|
+ const int na = countPolyVerts(pa);
|
|
|
|
|
+ const int nb = countPolyVerts(pb);
|
|
|
|
|
+
|
|
|
|
|
+ // If the merged polygon would be too big, do not merge.
|
|
|
|
|
+ if (na+nb-2 > MAX_VERTS_PER_POLY)
|
|
|
|
|
+ return -1;
|
|
|
|
|
+
|
|
|
|
|
+ // Check if the polygons share an edge.
|
|
|
|
|
+ ea = -1;
|
|
|
|
|
+ eb = -1;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < na; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short va0 = pa[i];
|
|
|
|
|
+ unsigned short va1 = pa[(i+1) % na];
|
|
|
|
|
+ if (va0 > va1)
|
|
|
|
|
+ dtSwap(va0, va1);
|
|
|
|
|
+ for (int j = 0; j < nb; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short vb0 = pb[j];
|
|
|
|
|
+ unsigned short vb1 = pb[(j+1) % nb];
|
|
|
|
|
+ if (vb0 > vb1)
|
|
|
|
|
+ dtSwap(vb0, vb1);
|
|
|
|
|
+ if (va0 == vb0 && va1 == vb1)
|
|
|
|
|
+ {
|
|
|
|
|
+ ea = i;
|
|
|
|
|
+ eb = j;
|
|
|
|
|
+ break;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // No common edge, cannot merge.
|
|
|
|
|
+ if (ea == -1 || eb == -1)
|
|
|
|
|
+ return -1;
|
|
|
|
|
+
|
|
|
|
|
+ // Check to see if the merged polygon would be convex.
|
|
|
|
|
+ unsigned short va, vb, vc;
|
|
|
|
|
+
|
|
|
|
|
+ va = pa[(ea+na-1) % na];
|
|
|
|
|
+ vb = pa[ea];
|
|
|
|
|
+ vc = pb[(eb+2) % nb];
|
|
|
|
|
+ if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
|
|
|
|
|
+ return -1;
|
|
|
|
|
+
|
|
|
|
|
+ va = pb[(eb+nb-1) % nb];
|
|
|
|
|
+ vb = pb[eb];
|
|
|
|
|
+ vc = pa[(ea+2) % na];
|
|
|
|
|
+ if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
|
|
|
|
|
+ return -1;
|
|
|
|
|
+
|
|
|
|
|
+ va = pa[ea];
|
|
|
|
|
+ vb = pa[(ea+1)%na];
|
|
|
|
|
+
|
|
|
|
|
+ int dx = (int)verts[va*3+0] - (int)verts[vb*3+0];
|
|
|
|
|
+ int dy = (int)verts[va*3+2] - (int)verts[vb*3+2];
|
|
|
|
|
+
|
|
|
|
|
+ return dx*dx + dy*dy;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static void mergePolys(unsigned short* pa, unsigned short* pb, int ea, int eb)
|
|
|
|
|
+{
|
|
|
|
|
+ unsigned short tmp[MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+
|
|
|
|
|
+ const int na = countPolyVerts(pa);
|
|
|
|
|
+ const int nb = countPolyVerts(pb);
|
|
|
|
|
+
|
|
|
|
|
+ // Merge polygons.
|
|
|
|
|
+ memset(tmp, 0xff, sizeof(unsigned short)*MAX_VERTS_PER_POLY*2);
|
|
|
|
|
+ int n = 0;
|
|
|
|
|
+ // Add pa
|
|
|
|
|
+ for (int i = 0; i < na-1; ++i)
|
|
|
|
|
+ tmp[n++] = pa[(ea+1+i) % na];
|
|
|
|
|
+ // Add pb
|
|
|
|
|
+ for (int i = 0; i < nb-1; ++i)
|
|
|
|
|
+ tmp[n++] = pb[(eb+1+i) % nb];
|
|
|
|
|
+
|
|
|
|
|
+ memcpy(pa, tmp, sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+static void pushFront(unsigned short v, unsigned short* arr, int& an)
|
|
|
|
|
+{
|
|
|
|
|
+ an++;
|
|
|
|
|
+ for (int i = an-1; i > 0; --i)
|
|
|
|
|
+ arr[i] = arr[i-1];
|
|
|
|
|
+ arr[0] = v;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static void pushBack(unsigned short v, unsigned short* arr, int& an)
|
|
|
|
|
+{
|
|
|
|
|
+ arr[an] = v;
|
|
|
|
|
+ an++;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static bool canRemoveVertex(dtTileCachePolyMesh& mesh, const unsigned short rem)
|
|
|
|
|
+{
|
|
|
|
|
+ // Count number of polygons to remove.
|
|
|
|
|
+ int numRemovedVerts = 0;
|
|
|
|
|
+ int numTouchedVerts = 0;
|
|
|
|
|
+ int numRemainingEdges = 0;
|
|
|
|
|
+ for (int i = 0; i < mesh.npolys; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ const int nv = countPolyVerts(p);
|
|
|
|
|
+ int numRemoved = 0;
|
|
|
|
|
+ int numVerts = 0;
|
|
|
|
|
+ for (int j = 0; j < nv; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (p[j] == rem)
|
|
|
|
|
+ {
|
|
|
|
|
+ numTouchedVerts++;
|
|
|
|
|
+ numRemoved++;
|
|
|
|
|
+ }
|
|
|
|
|
+ numVerts++;
|
|
|
|
|
+ }
|
|
|
|
|
+ if (numRemoved)
|
|
|
|
|
+ {
|
|
|
|
|
+ numRemovedVerts += numRemoved;
|
|
|
|
|
+ numRemainingEdges += numVerts-(numRemoved+1);
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // There would be too few edges remaining to create a polygon.
|
|
|
|
|
+ // This can happen for example when a tip of a triangle is marked
|
|
|
|
|
+ // as deletion, but there are no other polys that share the vertex.
|
|
|
|
|
+ // In this case, the vertex should not be removed.
|
|
|
|
|
+ if (numRemainingEdges <= 2)
|
|
|
|
|
+ return false;
|
|
|
|
|
+
|
|
|
|
|
+ // Check that there is enough memory for the test.
|
|
|
|
|
+ const int maxEdges = numTouchedVerts*2;
|
|
|
|
|
+ if (maxEdges > MAX_REM_EDGES)
|
|
|
|
|
+ return false;
|
|
|
|
|
+
|
|
|
|
|
+ // Find edges which share the removed vertex.
|
|
|
|
|
+ unsigned short edges[MAX_REM_EDGES];
|
|
|
|
|
+ int nedges = 0;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < mesh.npolys; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ const int nv = countPolyVerts(p);
|
|
|
|
|
+
|
|
|
|
|
+ // Collect edges which touches the removed vertex.
|
|
|
|
|
+ for (int j = 0, k = nv-1; j < nv; k = j++)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (p[j] == rem || p[k] == rem)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Arrange edge so that a=rem.
|
|
|
|
|
+ int a = p[j], b = p[k];
|
|
|
|
|
+ if (b == rem)
|
|
|
|
|
+ dtSwap(a,b);
|
|
|
|
|
+
|
|
|
|
|
+ // Check if the edge exists
|
|
|
|
|
+ bool exists = false;
|
|
|
|
|
+ for (int m = 0; m < nedges; ++m)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* e = &edges[m*3];
|
|
|
|
|
+ if (e[1] == b)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Exists, increment vertex share count.
|
|
|
|
|
+ e[2]++;
|
|
|
|
|
+ exists = true;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ // Add new edge.
|
|
|
|
|
+ if (!exists)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* e = &edges[nedges*3];
|
|
|
|
|
+ e[0] = (unsigned short)a;
|
|
|
|
|
+ e[1] = (unsigned short)b;
|
|
|
|
|
+ e[2] = 1;
|
|
|
|
|
+ nedges++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // There should be no more than 2 open edges.
|
|
|
|
|
+ // This catches the case that two non-adjacent polygons
|
|
|
|
|
+ // share the removed vertex. In that case, do not remove the vertex.
|
|
|
|
|
+ int numOpenEdges = 0;
|
|
|
|
|
+ for (int i = 0; i < nedges; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (edges[i*3+2] < 2)
|
|
|
|
|
+ numOpenEdges++;
|
|
|
|
|
+ }
|
|
|
|
|
+ if (numOpenEdges > 2)
|
|
|
|
|
+ return false;
|
|
|
|
|
+
|
|
|
|
|
+ return true;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+static dtStatus removeVertex(dtTileCachePolyMesh& mesh, const unsigned short rem, const int maxTris)
|
|
|
|
|
+{
|
|
|
|
|
+ // Count number of polygons to remove.
|
|
|
|
|
+ int numRemovedVerts = 0;
|
|
|
|
|
+ for (int i = 0; i < mesh.npolys; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ const int nv = countPolyVerts(p);
|
|
|
|
|
+ for (int j = 0; j < nv; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (p[j] == rem)
|
|
|
|
|
+ numRemovedVerts++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ int nedges = 0;
|
|
|
|
|
+ unsigned short edges[MAX_REM_EDGES*3];
|
|
|
|
|
+ int nhole = 0;
|
|
|
|
|
+ unsigned short hole[MAX_REM_EDGES];
|
|
|
|
|
+ int nharea = 0;
|
|
|
|
|
+ unsigned short harea[MAX_REM_EDGES];
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < mesh.npolys; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ const int nv = countPolyVerts(p);
|
|
|
|
|
+ bool hasRem = false;
|
|
|
|
|
+ for (int j = 0; j < nv; ++j)
|
|
|
|
|
+ if (p[j] == rem) hasRem = true;
|
|
|
|
|
+ if (hasRem)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Collect edges which does not touch the removed vertex.
|
|
|
|
|
+ for (int j = 0, k = nv-1; j < nv; k = j++)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (p[j] != rem && p[k] != rem)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (nedges >= MAX_REM_EDGES)
|
|
|
|
|
+ return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
|
|
|
+ unsigned short* e = &edges[nedges*3];
|
|
|
|
|
+ e[0] = p[k];
|
|
|
|
|
+ e[1] = p[j];
|
|
|
|
|
+ e[2] = mesh.areas[i];
|
|
|
|
|
+ nedges++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ // Remove the polygon.
|
|
|
|
|
+ unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ memcpy(p,p2,sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
|
|
|
+ memset(p+MAX_VERTS_PER_POLY,0xff,sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
|
|
|
+ mesh.areas[i] = mesh.areas[mesh.npolys-1];
|
|
|
|
|
+ mesh.npolys--;
|
|
|
|
|
+ --i;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Remove vertex.
|
|
|
|
|
+ for (int i = (int)rem; i < mesh.nverts; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
|
|
|
|
|
+ mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
|
|
|
|
|
+ mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2];
|
|
|
|
|
+ }
|
|
|
|
|
+ mesh.nverts--;
|
|
|
|
|
+
|
|
|
|
|
+ // Adjust indices to match the removed vertex layout.
|
|
|
|
|
+ for (int i = 0; i < mesh.npolys; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* p = &mesh.polys[i*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ const int nv = countPolyVerts(p);
|
|
|
|
|
+ for (int j = 0; j < nv; ++j)
|
|
|
|
|
+ if (p[j] > rem) p[j]--;
|
|
|
|
|
+ }
|
|
|
|
|
+ for (int i = 0; i < nedges; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (edges[i*3+0] > rem) edges[i*3+0]--;
|
|
|
|
|
+ if (edges[i*3+1] > rem) edges[i*3+1]--;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (nedges == 0)
|
|
|
|
|
+ return DT_SUCCESS;
|
|
|
|
|
+
|
|
|
|
|
+ // Start with one vertex, keep appending connected
|
|
|
|
|
+ // segments to the start and end of the hole.
|
|
|
|
|
+ pushBack(edges[0], hole, nhole);
|
|
|
|
|
+ pushBack(edges[2], harea, nharea);
|
|
|
|
|
+
|
|
|
|
|
+ while (nedges)
|
|
|
|
|
+ {
|
|
|
|
|
+ bool match = false;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < nedges; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned short ea = edges[i*3+0];
|
|
|
|
|
+ const unsigned short eb = edges[i*3+1];
|
|
|
|
|
+ const unsigned short a = edges[i*3+2];
|
|
|
|
|
+ bool add = false;
|
|
|
|
|
+ if (hole[0] == eb)
|
|
|
|
|
+ {
|
|
|
|
|
+ // The segment matches the beginning of the hole boundary.
|
|
|
|
|
+ if (nhole >= MAX_REM_EDGES)
|
|
|
|
|
+ return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
|
|
|
+ pushFront(ea, hole, nhole);
|
|
|
|
|
+ pushFront(a, harea, nharea);
|
|
|
|
|
+ add = true;
|
|
|
|
|
+ }
|
|
|
|
|
+ else if (hole[nhole-1] == ea)
|
|
|
|
|
+ {
|
|
|
|
|
+ // The segment matches the end of the hole boundary.
|
|
|
|
|
+ if (nhole >= MAX_REM_EDGES)
|
|
|
|
|
+ return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
|
|
|
+ pushBack(eb, hole, nhole);
|
|
|
|
|
+ pushBack(a, harea, nharea);
|
|
|
|
|
+ add = true;
|
|
|
|
|
+ }
|
|
|
|
|
+ if (add)
|
|
|
|
|
+ {
|
|
|
|
|
+ // The edge segment was added, remove it.
|
|
|
|
|
+ edges[i*3+0] = edges[(nedges-1)*3+0];
|
|
|
|
|
+ edges[i*3+1] = edges[(nedges-1)*3+1];
|
|
|
|
|
+ edges[i*3+2] = edges[(nedges-1)*3+2];
|
|
|
|
|
+ --nedges;
|
|
|
|
|
+ match = true;
|
|
|
|
|
+ --i;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (!match)
|
|
|
|
|
+ break;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ unsigned short tris[MAX_REM_EDGES*3];
|
|
|
|
|
+ unsigned char tverts[MAX_REM_EDGES*3];
|
|
|
|
|
+ unsigned short tpoly[MAX_REM_EDGES*3];
|
|
|
|
|
+
|
|
|
|
|
+ // Generate temp vertex array for triangulation.
|
|
|
|
|
+ for (int i = 0; i < nhole; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned short pi = hole[i];
|
|
|
|
|
+ tverts[i*4+0] = (unsigned char)mesh.verts[pi*3+0];
|
|
|
|
|
+ tverts[i*4+1] = (unsigned char)mesh.verts[pi*3+1];
|
|
|
|
|
+ tverts[i*4+2] = (unsigned char)mesh.verts[pi*3+2];
|
|
|
|
|
+ tverts[i*4+3] = 0;
|
|
|
|
|
+ tpoly[i] = (unsigned short)i;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Triangulate the hole.
|
|
|
|
|
+ int ntris = triangulate(nhole, tverts, tpoly, tris);
|
|
|
|
|
+ if (ntris < 0)
|
|
|
|
|
+ {
|
|
|
|
|
+ // TODO: issue warning!
|
|
|
|
|
+ ntris = -ntris;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (ntris > MAX_REM_EDGES)
|
|
|
|
|
+ return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
|
|
|
+
|
|
|
|
|
+ unsigned short polys[MAX_REM_EDGES*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ unsigned char pareas[MAX_REM_EDGES];
|
|
|
|
|
+
|
|
|
|
|
+ // Build initial polygons.
|
|
|
|
|
+ int npolys = 0;
|
|
|
|
|
+ memset(polys, 0xff, ntris*MAX_VERTS_PER_POLY*sizeof(unsigned short));
|
|
|
|
|
+ for (int j = 0; j < ntris; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* t = &tris[j*3];
|
|
|
|
|
+ if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
|
|
|
|
|
+ {
|
|
|
|
|
+ polys[npolys*MAX_VERTS_PER_POLY+0] = hole[t[0]];
|
|
|
|
|
+ polys[npolys*MAX_VERTS_PER_POLY+1] = hole[t[1]];
|
|
|
|
|
+ polys[npolys*MAX_VERTS_PER_POLY+2] = hole[t[2]];
|
|
|
|
|
+ pareas[npolys] = (unsigned char)harea[t[0]];
|
|
|
|
|
+ npolys++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ if (!npolys)
|
|
|
|
|
+ return DT_SUCCESS;
|
|
|
|
|
+
|
|
|
|
|
+ // Merge polygons.
|
|
|
|
|
+ int maxVertsPerPoly = MAX_VERTS_PER_POLY;
|
|
|
|
|
+ if (maxVertsPerPoly > 3)
|
|
|
|
|
+ {
|
|
|
|
|
+ for (;;)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Find best polygons to merge.
|
|
|
|
|
+ int bestMergeVal = 0;
|
|
|
|
|
+ int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
|
|
|
|
|
+
|
|
|
|
|
+ for (int j = 0; j < npolys-1; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ for (int k = j+1; k < npolys; ++k)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ int ea, eb;
|
|
|
|
|
+ int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb);
|
|
|
|
|
+ if (v > bestMergeVal)
|
|
|
|
|
+ {
|
|
|
|
|
+ bestMergeVal = v;
|
|
|
|
|
+ bestPa = j;
|
|
|
|
|
+ bestPb = k;
|
|
|
|
|
+ bestEa = ea;
|
|
|
|
|
+ bestEb = eb;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (bestMergeVal > 0)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Found best, merge.
|
|
|
|
|
+ unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ mergePolys(pa, pb, bestEa, bestEb);
|
|
|
|
|
+ memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
|
|
|
+ pareas[bestPb] = pareas[npolys-1];
|
|
|
|
|
+ npolys--;
|
|
|
|
|
+ }
|
|
|
|
|
+ else
|
|
|
|
|
+ {
|
|
|
|
|
+ // Could not merge any polygons, stop.
|
|
|
|
|
+ break;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Store polygons.
|
|
|
|
|
+ for (int i = 0; i < npolys; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (mesh.npolys >= maxTris) break;
|
|
|
|
|
+ unsigned short* p = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ memset(p,0xff,sizeof(unsigned short)*MAX_VERTS_PER_POLY*2);
|
|
|
|
|
+ for (int j = 0; j < MAX_VERTS_PER_POLY; ++j)
|
|
|
|
|
+ p[j] = polys[i*MAX_VERTS_PER_POLY+j];
|
|
|
|
|
+ mesh.areas[mesh.npolys] = pareas[i];
|
|
|
|
|
+ mesh.npolys++;
|
|
|
|
|
+ if (mesh.npolys > maxTris)
|
|
|
|
|
+ return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return DT_SUCCESS;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+dtStatus dtBuildTileCachePolyMesh(dtTileCacheAlloc* alloc,
|
|
|
|
|
+ dtTileCacheContourSet& lcset,
|
|
|
|
|
+ dtTileCachePolyMesh& mesh)
|
|
|
|
|
+{
|
|
|
|
|
+ dtAssert(alloc);
|
|
|
|
|
+
|
|
|
|
|
+ int maxVertices = 0;
|
|
|
|
|
+ int maxTris = 0;
|
|
|
|
|
+ int maxVertsPerCont = 0;
|
|
|
|
|
+ for (int i = 0; i < lcset.nconts; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Skip null contours.
|
|
|
|
|
+ if (lcset.conts[i].nverts < 3) continue;
|
|
|
|
|
+ maxVertices += lcset.conts[i].nverts;
|
|
|
|
|
+ maxTris += lcset.conts[i].nverts - 2;
|
|
|
|
|
+ maxVertsPerCont = dtMax(maxVertsPerCont, lcset.conts[i].nverts);
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // TODO: warn about too many vertices?
|
|
|
|
|
+
|
|
|
|
|
+ mesh.nvp = MAX_VERTS_PER_POLY;
|
|
|
|
|
+
|
|
|
|
|
+ dtFixedArray<unsigned char> vflags(alloc, maxVertices);
|
|
|
|
|
+ if (!vflags)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+ memset(vflags, 0, maxVertices);
|
|
|
|
|
+
|
|
|
|
|
+ mesh.verts = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxVertices*3);
|
|
|
|
|
+ if (!mesh.verts)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ mesh.polys = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2);
|
|
|
|
|
+ if (!mesh.polys)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ mesh.areas = (unsigned char*)alloc->alloc(sizeof(unsigned char)*maxTris);
|
|
|
|
|
+ if (!mesh.areas)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ mesh.flags = (unsigned short*)alloc->alloc(sizeof(unsigned short)*maxTris);
|
|
|
|
|
+ if (!mesh.flags)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ // Just allocate and clean the mesh flags array. The user is resposible for filling it.
|
|
|
|
|
+ memset(mesh.flags, 0, sizeof(unsigned short) * maxTris);
|
|
|
|
|
+
|
|
|
|
|
+ mesh.nverts = 0;
|
|
|
|
|
+ mesh.npolys = 0;
|
|
|
|
|
+
|
|
|
|
|
+ memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
|
|
|
|
|
+ memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*MAX_VERTS_PER_POLY*2);
|
|
|
|
|
+ memset(mesh.areas, 0, sizeof(unsigned char)*maxTris);
|
|
|
|
|
+
|
|
|
|
|
+ unsigned short firstVert[VERTEX_BUCKET_COUNT2];
|
|
|
|
|
+ for (int i = 0; i < VERTEX_BUCKET_COUNT2; ++i)
|
|
|
|
|
+ firstVert[i] = DT_TILECACHE_NULL_IDX;
|
|
|
|
|
+
|
|
|
|
|
+ dtFixedArray<unsigned short> nextVert(alloc, maxVertices);
|
|
|
|
|
+ if (!nextVert)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+ memset(nextVert, 0, sizeof(unsigned short)*maxVertices);
|
|
|
|
|
+
|
|
|
|
|
+ dtFixedArray<unsigned short> indices(alloc, maxVertsPerCont);
|
|
|
|
|
+ if (!indices)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ dtFixedArray<unsigned short> tris(alloc, maxVertsPerCont*3);
|
|
|
|
|
+ if (!tris)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ dtFixedArray<unsigned short> polys(alloc, maxVertsPerCont*MAX_VERTS_PER_POLY);
|
|
|
|
|
+ if (!polys)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ for (int i = 0; i < lcset.nconts; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ dtTileCacheContour& cont = lcset.conts[i];
|
|
|
|
|
+
|
|
|
|
|
+ // Skip null contours.
|
|
|
|
|
+ if (cont.nverts < 3)
|
|
|
|
|
+ continue;
|
|
|
|
|
+
|
|
|
|
|
+ // Triangulate contour
|
|
|
|
|
+ for (int j = 0; j < cont.nverts; ++j)
|
|
|
|
|
+ indices[j] = (unsigned short)j;
|
|
|
|
|
+
|
|
|
|
|
+ int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
|
|
|
|
|
+ if (ntris <= 0)
|
|
|
|
|
+ {
|
|
|
|
|
+ // TODO: issue warning!
|
|
|
|
|
+ ntris = -ntris;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Add and merge vertices.
|
|
|
|
|
+ for (int j = 0; j < cont.nverts; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned char* v = &cont.verts[j*4];
|
|
|
|
|
+ indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
|
|
|
|
|
+ mesh.verts, firstVert, nextVert, mesh.nverts);
|
|
|
|
|
+ if (v[3] & 0x80)
|
|
|
|
|
+ {
|
|
|
|
|
+ // This vertex should be removed.
|
|
|
|
|
+ vflags[indices[j]] = 1;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Build initial polygons.
|
|
|
|
|
+ int npolys = 0;
|
|
|
|
|
+ memset(polys, 0xff, sizeof(unsigned short) * maxVertsPerCont * MAX_VERTS_PER_POLY);
|
|
|
|
|
+ for (int j = 0; j < ntris; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ const unsigned short* t = &tris[j*3];
|
|
|
|
|
+ if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
|
|
|
|
|
+ {
|
|
|
|
|
+ polys[npolys*MAX_VERTS_PER_POLY+0] = indices[t[0]];
|
|
|
|
|
+ polys[npolys*MAX_VERTS_PER_POLY+1] = indices[t[1]];
|
|
|
|
|
+ polys[npolys*MAX_VERTS_PER_POLY+2] = indices[t[2]];
|
|
|
|
|
+ npolys++;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ if (!npolys)
|
|
|
|
|
+ continue;
|
|
|
|
|
+
|
|
|
|
|
+ // Merge polygons.
|
|
|
|
|
+ int maxVertsPerPoly =MAX_VERTS_PER_POLY ;
|
|
|
|
|
+ if (maxVertsPerPoly > 3)
|
|
|
|
|
+ {
|
|
|
|
|
+ for(;;)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Find best polygons to merge.
|
|
|
|
|
+ int bestMergeVal = 0;
|
|
|
|
|
+ int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
|
|
|
|
|
+
|
|
|
|
|
+ for (int j = 0; j < npolys-1; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* pj = &polys[j*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ for (int k = j+1; k < npolys; ++k)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* pk = &polys[k*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ int ea, eb;
|
|
|
|
|
+ int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb);
|
|
|
|
|
+ if (v > bestMergeVal)
|
|
|
|
|
+ {
|
|
|
|
|
+ bestMergeVal = v;
|
|
|
|
|
+ bestPa = j;
|
|
|
|
|
+ bestPb = k;
|
|
|
|
|
+ bestEa = ea;
|
|
|
|
|
+ bestEb = eb;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ if (bestMergeVal > 0)
|
|
|
|
|
+ {
|
|
|
|
|
+ // Found best, merge.
|
|
|
|
|
+ unsigned short* pa = &polys[bestPa*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ unsigned short* pb = &polys[bestPb*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ mergePolys(pa, pb, bestEa, bestEb);
|
|
|
|
|
+ memcpy(pb, &polys[(npolys-1)*MAX_VERTS_PER_POLY], sizeof(unsigned short)*MAX_VERTS_PER_POLY);
|
|
|
|
|
+ npolys--;
|
|
|
|
|
+ }
|
|
|
|
|
+ else
|
|
|
|
|
+ {
|
|
|
|
|
+ // Could not merge any polygons, stop.
|
|
|
|
|
+ break;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Store polygons.
|
|
|
|
|
+ for (int j = 0; j < npolys; ++j)
|
|
|
|
|
+ {
|
|
|
|
|
+ unsigned short* p = &mesh.polys[mesh.npolys*MAX_VERTS_PER_POLY*2];
|
|
|
|
|
+ unsigned short* q = &polys[j*MAX_VERTS_PER_POLY];
|
|
|
|
|
+ for (int k = 0; k < MAX_VERTS_PER_POLY; ++k)
|
|
|
|
|
+ p[k] = q[k];
|
|
|
|
|
+ mesh.areas[mesh.npolys] = cont.area;
|
|
|
|
|
+ mesh.npolys++;
|
|
|
|
|
+ if (mesh.npolys > maxTris)
|
|
|
|
|
+ return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ // Remove edge vertices.
|
|
|
|
|
+ for (int i = 0; i < mesh.nverts; ++i)
|
|
|
|
|
+ {
|
|
|
|
|
+ if (vflags[i])
|
|
|
|
|
+ {
|
|
|
|
|
+ if (!canRemoveVertex(mesh, (unsigned short)i))
|
|
|
|
|
+ continue;
|
|
|
|
|
+ dtStatus status = removeVertex(mesh, (unsigned short)i, maxTris);
|
|
|
|
|
+ if (dtStatusFailed(status))
|
|
|
|
|
+ return status;
|
|
|
|
|
+ // Remove vertex
|
|
|
|
|
+ // Note: mesh.nverts is already decremented inside removeVertex()!
|
|
|
|
|
+ for (int j = i; j < mesh.nverts; ++j)
|
|
|
|
|
+ vflags[j] = vflags[j+1];
|
|
|
|
|
+ --i;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // Calculate adjacency.
|
|
|
|
|
+ if (!buildMeshAdjacency(alloc, mesh.polys, mesh.npolys, mesh.verts, mesh.nverts, lcset))
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+
|
|
|
|
|
+ return DT_SUCCESS;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+dtStatus dtMarkCylinderArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch,
|
|
|
|
|
+ const float* pos, const float radius, const float height, const unsigned char areaId)
|
|
|
|
|
+{
|
|
|
|
|
+ float bmin[3], bmax[3];
|
|
|
|
|
+ bmin[0] = pos[0] - radius;
|
|
|
|
|
+ bmin[1] = pos[1];
|
|
|
|
|
+ bmin[2] = pos[2] - radius;
|
|
|
|
|
+ bmax[0] = pos[0] + radius;
|
|
|
|
|
+ bmax[1] = pos[1] + height;
|
|
|
|
|
+ bmax[2] = pos[2] + radius;
|
|
|
|
|
+ const float r2 = dtSqr(radius/cs + 0.5f);
|
|
|
|
|
+
|
|
|
|
|
+ const int w = (int)layer.header->width;
|
|
|
|
|
+ const int h = (int)layer.header->height;
|
|
|
|
|
+ const float ics = 1.0f/cs;
|
|
|
|
|
+ const float ich = 1.0f/ch;
|
|
|
|
|
+
|
|
|
|
|
+ const float px = (pos[0]-orig[0])*ics;
|
|
|
|
|
+ const float pz = (pos[2]-orig[2])*ics;
|
|
|
|
|
+
|
|
|
|
|
+ int minx = (int)dtMathFloorf((bmin[0]-orig[0])*ics);
|
|
|
|
|
+ int miny = (int)dtMathFloorf((bmin[1]-orig[1])*ich);
|
|
|
|
|
+ int minz = (int)dtMathFloorf((bmin[2]-orig[2])*ics);
|
|
|
|
|
+ int maxx = (int)dtMathFloorf((bmax[0]-orig[0])*ics);
|
|
|
|
|
+ int maxy = (int)dtMathFloorf((bmax[1]-orig[1])*ich);
|
|
|
|
|
+ int maxz = (int)dtMathFloorf((bmax[2]-orig[2])*ics);
|
|
|
|
|
+
|
|
|
|
|
+ if (maxx < 0) return DT_SUCCESS;
|
|
|
|
|
+ if (minx >= w) return DT_SUCCESS;
|
|
|
|
|
+ if (maxz < 0) return DT_SUCCESS;
|
|
|
|
|
+ if (minz >= h) return DT_SUCCESS;
|
|
|
|
|
+
|
|
|
|
|
+ if (minx < 0) minx = 0;
|
|
|
|
|
+ if (maxx >= w) maxx = w-1;
|
|
|
|
|
+ if (minz < 0) minz = 0;
|
|
|
|
|
+ if (maxz >= h) maxz = h-1;
|
|
|
|
|
+
|
|
|
|
|
+ for (int z = minz; z <= maxz; ++z)
|
|
|
|
|
+ {
|
|
|
|
|
+ for (int x = minx; x <= maxx; ++x)
|
|
|
|
|
+ {
|
|
|
|
|
+ const float dx = (float)(x+0.5f) - px;
|
|
|
|
|
+ const float dz = (float)(z+0.5f) - pz;
|
|
|
|
|
+ if (dx*dx + dz*dz > r2)
|
|
|
|
|
+ continue;
|
|
|
|
|
+ const int y = layer.heights[x+z*w];
|
|
|
|
|
+ if (y < miny || y > maxy)
|
|
|
|
|
+ continue;
|
|
|
|
|
+ layer.areas[x+z*w] = areaId;
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ return DT_SUCCESS;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+dtStatus dtBuildTileCacheLayer(dtTileCacheCompressor* comp,
|
|
|
|
|
+ dtTileCacheLayerHeader* header,
|
|
|
|
|
+ const unsigned char* heights,
|
|
|
|
|
+ const unsigned char* areas,
|
|
|
|
|
+ const unsigned char* cons,
|
|
|
|
|
+ unsigned char** outData, int* outDataSize)
|
|
|
|
|
+{
|
|
|
|
|
+ const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader));
|
|
|
|
|
+ const int gridSize = (int)header->width * (int)header->height;
|
|
|
|
|
+ const int maxDataSize = headerSize + comp->maxCompressedSize(gridSize*3);
|
|
|
|
|
+ unsigned char* data = (unsigned char*)dtAlloc(maxDataSize, DT_ALLOC_PERM);
|
|
|
|
|
+ if (!data)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+ memset(data, 0, maxDataSize);
|
|
|
|
|
+
|
|
|
|
|
+ // Store header
|
|
|
|
|
+ memcpy(data, header, sizeof(dtTileCacheLayerHeader));
|
|
|
|
|
+
|
|
|
|
|
+ // Concatenate grid data for compression.
|
|
|
|
|
+ const int bufferSize = gridSize*3;
|
|
|
|
|
+ unsigned char* buffer = (unsigned char*)dtAlloc(bufferSize, DT_ALLOC_TEMP);
|
|
|
|
|
+ if (!buffer)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+ memcpy(buffer, heights, gridSize);
|
|
|
|
|
+ memcpy(buffer+gridSize, areas, gridSize);
|
|
|
|
|
+ memcpy(buffer+gridSize*2, cons, gridSize);
|
|
|
|
|
+
|
|
|
|
|
+ // Compress
|
|
|
|
|
+ unsigned char* compressed = data + headerSize;
|
|
|
|
|
+ const int maxCompressedSize = maxDataSize - headerSize;
|
|
|
|
|
+ int compressedSize = 0;
|
|
|
|
|
+ dtStatus status = comp->compress(buffer, bufferSize, compressed, maxCompressedSize, &compressedSize);
|
|
|
|
|
+ if (dtStatusFailed(status))
|
|
|
|
|
+ return status;
|
|
|
|
|
+
|
|
|
|
|
+ *outData = data;
|
|
|
|
|
+ *outDataSize = headerSize + compressedSize;
|
|
|
|
|
+
|
|
|
|
|
+ dtFree(buffer);
|
|
|
|
|
+
|
|
|
|
|
+ return DT_SUCCESS;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+void dtFreeTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheLayer* layer)
|
|
|
|
|
+{
|
|
|
|
|
+ dtAssert(alloc);
|
|
|
|
|
+ // The layer is allocated as one conitguous blob of data.
|
|
|
|
|
+ alloc->free(layer);
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+dtStatus dtDecompressTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheCompressor* comp,
|
|
|
|
|
+ unsigned char* compressed, const int compressedSize,
|
|
|
|
|
+ dtTileCacheLayer** layerOut)
|
|
|
|
|
+{
|
|
|
|
|
+ dtAssert(alloc);
|
|
|
|
|
+ dtAssert(comp);
|
|
|
|
|
+
|
|
|
|
|
+ if (!layerOut)
|
|
|
|
|
+ return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
|
+ if (!compressed)
|
|
|
|
|
+ return DT_FAILURE | DT_INVALID_PARAM;
|
|
|
|
|
+
|
|
|
|
|
+ *layerOut = 0;
|
|
|
|
|
+
|
|
|
|
|
+ dtTileCacheLayerHeader* compressedHeader = (dtTileCacheLayerHeader*)compressed;
|
|
|
|
|
+ if (compressedHeader->magic != DT_TILECACHE_MAGIC)
|
|
|
|
|
+ return DT_FAILURE | DT_WRONG_MAGIC;
|
|
|
|
|
+ if (compressedHeader->version != DT_TILECACHE_VERSION)
|
|
|
|
|
+ return DT_FAILURE | DT_WRONG_VERSION;
|
|
|
|
|
+
|
|
|
|
|
+ const int layerSize = dtAlign4(sizeof(dtTileCacheLayer));
|
|
|
|
|
+ const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader));
|
|
|
|
|
+ const int gridSize = (int)compressedHeader->width * (int)compressedHeader->height;
|
|
|
|
|
+ const int bufferSize = layerSize + headerSize + gridSize*4;
|
|
|
|
|
+
|
|
|
|
|
+ unsigned char* buffer = (unsigned char*)alloc->alloc(bufferSize);
|
|
|
|
|
+ if (!buffer)
|
|
|
|
|
+ return DT_FAILURE | DT_OUT_OF_MEMORY;
|
|
|
|
|
+ memset(buffer, 0, bufferSize);
|
|
|
|
|
+
|
|
|
|
|
+ dtTileCacheLayer* layer = (dtTileCacheLayer*)buffer;
|
|
|
|
|
+ dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)(buffer + layerSize);
|
|
|
|
|
+ unsigned char* grids = buffer + layerSize + headerSize;
|
|
|
|
|
+ const int gridsSize = bufferSize - (layerSize + headerSize);
|
|
|
|
|
+
|
|
|
|
|
+ // Copy header
|
|
|
|
|
+ memcpy(header, compressedHeader, headerSize);
|
|
|
|
|
+ // Decompress grid.
|
|
|
|
|
+ int size = 0;
|
|
|
|
|
+ dtStatus status = comp->decompress(compressed+headerSize, compressedSize-headerSize,
|
|
|
|
|
+ grids, gridsSize, &size);
|
|
|
|
|
+ if (dtStatusFailed(status))
|
|
|
|
|
+ {
|
|
|
|
|
+ dtFree(buffer);
|
|
|
|
|
+ return status;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ layer->header = header;
|
|
|
|
|
+ layer->heights = grids;
|
|
|
|
|
+ layer->areas = grids + gridSize;
|
|
|
|
|
+ layer->cons = grids + gridSize*2;
|
|
|
|
|
+ layer->regs = grids + gridSize*3;
|
|
|
|
|
+
|
|
|
|
|
+ *layerOut = layer;
|
|
|
|
|
+
|
|
|
|
|
+ return DT_SUCCESS;
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+bool dtTileCacheHeaderSwapEndian(unsigned char* data, const int dataSize)
|
|
|
|
|
+{
|
|
|
|
|
+ dtIgnoreUnused(dataSize);
|
|
|
|
|
+ dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)data;
|
|
|
|
|
+
|
|
|
|
|
+ int swappedMagic = DT_TILECACHE_MAGIC;
|
|
|
|
|
+ int swappedVersion = DT_TILECACHE_VERSION;
|
|
|
|
|
+ dtSwapEndian(&swappedMagic);
|
|
|
|
|
+ dtSwapEndian(&swappedVersion);
|
|
|
|
|
+
|
|
|
|
|
+ if ((header->magic != DT_TILECACHE_MAGIC || header->version != DT_TILECACHE_VERSION) &&
|
|
|
|
|
+ (header->magic != swappedMagic || header->version != swappedVersion))
|
|
|
|
|
+ {
|
|
|
|
|
+ return false;
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ dtSwapEndian(&header->magic);
|
|
|
|
|
+ dtSwapEndian(&header->version);
|
|
|
|
|
+ dtSwapEndian(&header->tx);
|
|
|
|
|
+ dtSwapEndian(&header->ty);
|
|
|
|
|
+ dtSwapEndian(&header->tlayer);
|
|
|
|
|
+ dtSwapEndian(&header->bmin[0]);
|
|
|
|
|
+ dtSwapEndian(&header->bmin[1]);
|
|
|
|
|
+ dtSwapEndian(&header->bmin[2]);
|
|
|
|
|
+ dtSwapEndian(&header->bmax[0]);
|
|
|
|
|
+ dtSwapEndian(&header->bmax[1]);
|
|
|
|
|
+ dtSwapEndian(&header->bmax[2]);
|
|
|
|
|
+ dtSwapEndian(&header->hmin);
|
|
|
|
|
+ dtSwapEndian(&header->hmax);
|
|
|
|
|
+
|
|
|
|
|
+ // width, height, minx, maxx, miny, maxy are unsigned char, no need to swap.
|
|
|
|
|
+
|
|
|
|
|
+ return true;
|
|
|
|
|
+}
|
|
|
|
|
+
|