|
|
@@ -1,2212 +1,2211 @@
|
|
|
-//
|
|
|
-// Urho3D Engine
|
|
|
-// Copyright (c) 2008-2011 Lasse Öörni
|
|
|
-//
|
|
|
-// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
-// of this software and associated documentation files (the "Software"), to deal
|
|
|
-// in the Software without restriction, including without limitation the rights
|
|
|
-// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
-// copies of the Software, and to permit persons to whom the Software is
|
|
|
-// furnished to do so, subject to the following conditions:
|
|
|
-//
|
|
|
-// The above copyright notice and this permission notice shall be included in
|
|
|
-// all copies or substantial portions of the Software.
|
|
|
-//
|
|
|
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
-// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
-// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
-// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
-// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
-// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
-// THE SOFTWARE.
|
|
|
-//
|
|
|
-
|
|
|
-#include "Precompiled.h"
|
|
|
-#include "Camera.h"
|
|
|
-#include "DebugRenderer.h"
|
|
|
-#include "Geometry.h"
|
|
|
-#include "Graphics.h"
|
|
|
-#include "Light.h"
|
|
|
-#include "Log.h"
|
|
|
-#include "Material.h"
|
|
|
-#include "OcclusionBuffer.h"
|
|
|
-#include "Octree.h"
|
|
|
-#include "Renderer.h"
|
|
|
-#include "Profiler.h"
|
|
|
-#include "Scene.h"
|
|
|
-#include "ShaderVariation.h"
|
|
|
-#include "Sort.h"
|
|
|
-#include "Technique.h"
|
|
|
-#include "Texture2D.h"
|
|
|
-#include "TextureCube.h"
|
|
|
-#include "VertexBuffer.h"
|
|
|
-#include "View.h"
|
|
|
-#include "WorkQueue.h"
|
|
|
-#include "Zone.h"
|
|
|
-
|
|
|
-#include "DebugNew.h"
|
|
|
-
|
|
|
-static const Vector3 directions[] =
|
|
|
-{
|
|
|
- Vector3(1.0f, 0.0f, 0.0f),
|
|
|
- Vector3(-1.0f, 0.0f, 0.0f),
|
|
|
- Vector3(0.0f, 1.0f, 0.0f),
|
|
|
- Vector3(0.0f, -1.0f, 0.0f),
|
|
|
- Vector3(0.0f, 0.0f, 1.0f),
|
|
|
- Vector3(0.0f, 0.0f, -1.0f)
|
|
|
-};
|
|
|
-
|
|
|
-static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
|
|
|
-
|
|
|
-void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
|
|
|
-{
|
|
|
- View* view = reinterpret_cast<View*>(item->aux_);
|
|
|
- Drawable** start = reinterpret_cast<Drawable**>(item->start_);
|
|
|
- Drawable** end = reinterpret_cast<Drawable**>(item->end_);
|
|
|
- Drawable** unculledStart = &view->tempDrawables_[0][0] + view->unculledDrawableStart_;
|
|
|
- OcclusionBuffer* buffer = view->occlusionBuffer_;
|
|
|
-
|
|
|
- while (start != end)
|
|
|
- {
|
|
|
- Drawable* drawable = *start;
|
|
|
- bool useOcclusion = start < unculledStart;
|
|
|
- unsigned char flags = drawable->GetDrawableFlags();
|
|
|
- ++start;
|
|
|
-
|
|
|
- if (flags & DRAWABLE_ZONE)
|
|
|
- continue;
|
|
|
-
|
|
|
- drawable->UpdateDistance(view->frame_);
|
|
|
-
|
|
|
- // If draw distance non-zero, check it
|
|
|
- float maxDistance = drawable->GetDrawDistance();
|
|
|
- if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
|
|
|
- continue;
|
|
|
-
|
|
|
- if (buffer && useOcclusion && !buffer->IsVisible(drawable->GetWorldBoundingBox()))
|
|
|
- continue;
|
|
|
-
|
|
|
- drawable->MarkInView(view->frame_);
|
|
|
-
|
|
|
- // For geometries, clear lights and find new zone if necessary
|
|
|
- if (flags & DRAWABLE_GEOMETRY)
|
|
|
- {
|
|
|
- drawable->ClearLights();
|
|
|
- if (!drawable->GetZone() && !view->cameraZoneOverride_)
|
|
|
- view->FindZone(drawable, threadIndex);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
|
|
|
-{
|
|
|
- View* view = reinterpret_cast<View*>(item->aux_);
|
|
|
- LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
|
|
|
-
|
|
|
- view->ProcessLight(*query, threadIndex);
|
|
|
-}
|
|
|
-
|
|
|
-void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
|
|
|
-{
|
|
|
- const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
|
|
|
- Drawable** start = reinterpret_cast<Drawable**>(item->start_);
|
|
|
- Drawable** end = reinterpret_cast<Drawable**>(item->end_);
|
|
|
-
|
|
|
- while (start != end)
|
|
|
- {
|
|
|
- Drawable* drawable = *start;
|
|
|
- drawable->UpdateGeometry(frame);
|
|
|
- ++start;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
|
|
|
-{
|
|
|
- BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
|
|
|
-
|
|
|
- queue->SortFrontToBack();
|
|
|
-}
|
|
|
-
|
|
|
-void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
|
|
|
-{
|
|
|
- BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
|
|
|
-
|
|
|
- queue->SortBackToFront();
|
|
|
-}
|
|
|
-
|
|
|
-void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
|
|
|
-{
|
|
|
- LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
|
|
|
- for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
|
|
|
- start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
|
|
|
- start->litBatches_.SortFrontToBack();
|
|
|
-}
|
|
|
-
|
|
|
-OBJECTTYPESTATIC(View);
|
|
|
-
|
|
|
-View::View(Context* context) :
|
|
|
- Object(context),
|
|
|
- graphics_(GetSubsystem<Graphics>()),
|
|
|
- renderer_(GetSubsystem<Renderer>()),
|
|
|
- octree_(0),
|
|
|
- camera_(0),
|
|
|
- cameraZone_(0),
|
|
|
- farClipZone_(0),
|
|
|
- renderTarget_(0),
|
|
|
- depthStencil_(0)
|
|
|
-{
|
|
|
- frame_.camera_ = 0;
|
|
|
-
|
|
|
- // Create octree query vectors for each thread
|
|
|
- tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
|
|
|
- tempZones_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
|
|
|
-}
|
|
|
-
|
|
|
-View::~View()
|
|
|
-{
|
|
|
-}
|
|
|
-
|
|
|
-bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
|
|
|
-{
|
|
|
- if (!viewport.scene_ || !viewport.camera_)
|
|
|
- return false;
|
|
|
-
|
|
|
- // If scene is loading asynchronously, it is incomplete and should not be rendered
|
|
|
- if (viewport.scene_->IsAsyncLoading())
|
|
|
- return false;
|
|
|
-
|
|
|
- Octree* octree = viewport.scene_->GetComponent<Octree>();
|
|
|
- if (!octree)
|
|
|
- return false;
|
|
|
-
|
|
|
- // Check for the render texture being too large
|
|
|
- if (renderer_->GetLightPrepass() && renderTarget)
|
|
|
- {
|
|
|
- if (renderTarget->GetWidth() > graphics_->GetWidth() || renderTarget->GetHeight() > graphics_->GetHeight())
|
|
|
- {
|
|
|
- // Display message only once per render target, do not spam each frame
|
|
|
- if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
|
|
|
- {
|
|
|
- gBufferErrorDisplayed_.Insert(renderTarget);
|
|
|
- LOGERROR("Render texture is larger than the G-buffer, can not render");
|
|
|
- }
|
|
|
- return false;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- octree_ = octree;
|
|
|
- camera_ = viewport.camera_;
|
|
|
- renderTarget_ = renderTarget;
|
|
|
-
|
|
|
- if (!renderTarget)
|
|
|
- depthStencil_ = 0;
|
|
|
- else
|
|
|
- depthStencil_ = renderTarget->GetLinkedDepthBuffer();
|
|
|
-
|
|
|
- // Validate the rect and calculate size. If zero rect, use whole render target size
|
|
|
- int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
|
|
|
- int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
|
|
|
- if (viewport.rect_ != IntRect::ZERO)
|
|
|
- {
|
|
|
- screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
|
|
|
- screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
|
|
|
- screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
|
|
|
- screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
|
|
|
- }
|
|
|
- else
|
|
|
- screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
|
|
|
- width_ = screenRect_.right_ - screenRect_.left_;
|
|
|
- height_ = screenRect_.bottom_ - screenRect_.top_;
|
|
|
-
|
|
|
- // Set possible quality overrides from the camera
|
|
|
- drawShadows_ = renderer_->GetDrawShadows();
|
|
|
- materialQuality_ = renderer_->GetMaterialQuality();
|
|
|
- maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
|
|
|
-
|
|
|
- unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
|
|
|
- if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
|
|
|
- materialQuality_ = QUALITY_LOW;
|
|
|
- if (viewOverrideFlags & VO_DISABLE_SHADOWS)
|
|
|
- drawShadows_ = false;
|
|
|
- if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
|
|
|
- maxOccluderTriangles_ = 0;
|
|
|
-
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
-void View::Update(const FrameInfo& frame)
|
|
|
-{
|
|
|
- if (!camera_ || !octree_)
|
|
|
- return;
|
|
|
-
|
|
|
- frame_.camera_ = camera_;
|
|
|
- frame_.timeStep_ = frame.timeStep_;
|
|
|
- frame_.frameNumber_ = frame.frameNumber_;
|
|
|
- frame_.viewSize_ = IntVector2(width_, height_);
|
|
|
-
|
|
|
- // Clear old light scissor cache, geometry, light, occluder & batch lists
|
|
|
- lightScissorCache_.Clear();
|
|
|
- geometries_.Clear();
|
|
|
- allGeometries_.Clear();
|
|
|
- geometryDepthBounds_.Clear();
|
|
|
- lights_.Clear();
|
|
|
- zones_.Clear();
|
|
|
- occluders_.Clear();
|
|
|
- baseQueue_.Clear();
|
|
|
- preAlphaQueue_.Clear();
|
|
|
- gbufferQueue_.Clear();
|
|
|
- alphaQueue_.Clear();
|
|
|
- postAlphaQueue_.Clear();
|
|
|
- lightQueues_.Clear();
|
|
|
- vertexLightQueues_.Clear();
|
|
|
-
|
|
|
- // Do not update if camera projection is illegal
|
|
|
- // (there is a possibility of crash if occlusion is used and it can not clip properly)
|
|
|
- if (!camera_->IsProjectionValid())
|
|
|
- return;
|
|
|
-
|
|
|
- // Set automatic aspect ratio if required
|
|
|
- if (camera_->GetAutoAspectRatio())
|
|
|
- camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
|
|
|
-
|
|
|
- // Cache the camera frustum to avoid recalculating it constantly
|
|
|
- frustum_ = camera_->GetFrustum();
|
|
|
-
|
|
|
- // Reset shadow map allocations; they can be reused between views as each is rendered completely at a time
|
|
|
- renderer_->ResetShadowMapAllocations();
|
|
|
-
|
|
|
- GetDrawables();
|
|
|
- GetBatches();
|
|
|
- UpdateGeometries();
|
|
|
-}
|
|
|
-
|
|
|
-void View::Render()
|
|
|
-{
|
|
|
- if (!octree_ || !camera_)
|
|
|
- return;
|
|
|
-
|
|
|
- // Forget parameter sources from the previous view
|
|
|
- graphics_->ClearParameterSources();
|
|
|
-
|
|
|
- // If stream offset is supported, write all instance transforms to a single large buffer
|
|
|
- // Else we must lock the instance buffer for each batch group
|
|
|
- if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
|
|
|
- PrepareInstancingBuffer();
|
|
|
-
|
|
|
- // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
|
|
|
- // again to ensure correct projection will be used
|
|
|
- if (camera_->GetAutoAspectRatio())
|
|
|
- camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_));
|
|
|
-
|
|
|
- graphics_->SetColorWrite(true);
|
|
|
- graphics_->SetFillMode(FILL_SOLID);
|
|
|
-
|
|
|
- // Bind the face selection and indirection cube maps for point light shadows
|
|
|
- graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
|
|
|
- graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
|
|
|
-
|
|
|
- // Render
|
|
|
- if (renderer_->GetLightPrepass())
|
|
|
- RenderBatchesLightPrepass();
|
|
|
- else
|
|
|
- RenderBatchesForward();
|
|
|
-
|
|
|
- graphics_->SetScissorTest(false);
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
- graphics_->ResetStreamFrequencies();
|
|
|
-
|
|
|
- // If this is a main view, draw the associated debug geometry now
|
|
|
- if (!renderTarget_)
|
|
|
- {
|
|
|
- Scene* scene = static_cast<Scene*>(octree_->GetNode());
|
|
|
- if (scene)
|
|
|
- {
|
|
|
- DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
|
|
|
- if (debug)
|
|
|
- {
|
|
|
- debug->SetView(camera_);
|
|
|
- debug->Render();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // "Forget" the camera, octree and zone after rendering
|
|
|
- camera_ = 0;
|
|
|
- octree_ = 0;
|
|
|
- cameraZone_ = 0;
|
|
|
- farClipZone_ = 0;
|
|
|
- occlusionBuffer_ = 0;
|
|
|
- frame_.camera_ = 0;
|
|
|
-}
|
|
|
-
|
|
|
-void View::GetDrawables()
|
|
|
-{
|
|
|
- PROFILE(GetDrawables);
|
|
|
-
|
|
|
- WorkQueue* queue = GetSubsystem<WorkQueue>();
|
|
|
- PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
|
|
|
-
|
|
|
- // Perform one octree query to get everything, then examine the results
|
|
|
- FrustumOctreeQuery query(tempDrawables, frustum_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT | DRAWABLE_ZONE);
|
|
|
- octree_->GetDrawables(query);
|
|
|
-
|
|
|
- // Add unculled geometries & lights
|
|
|
- unculledDrawableStart_ = tempDrawables.Size();
|
|
|
- octree_->GetUnculledDrawables(tempDrawables, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
|
|
|
-
|
|
|
- // Get zones and occluders first
|
|
|
- highestZonePriority_ = M_MIN_INT;
|
|
|
- int bestPriority = M_MIN_INT;
|
|
|
- Vector3 cameraPos = camera_->GetWorldPosition();
|
|
|
-
|
|
|
- // Get default zone first in case we do not have zones defined
|
|
|
- Zone* defaultZone = renderer_->GetDefaultZone();
|
|
|
- cameraZone_ = farClipZone_ = defaultZone;
|
|
|
-
|
|
|
- for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
|
|
|
- {
|
|
|
- Drawable* drawable = *i;
|
|
|
- unsigned char flags = drawable->GetDrawableFlags();
|
|
|
-
|
|
|
- if (flags & DRAWABLE_ZONE)
|
|
|
- {
|
|
|
- Zone* zone = static_cast<Zone*>(drawable);
|
|
|
- zones_.Push(zone);
|
|
|
- int priority = zone->GetPriority();
|
|
|
- if (priority > highestZonePriority_)
|
|
|
- highestZonePriority_ = priority;
|
|
|
- if (zone->IsInside(cameraPos) && priority > bestPriority)
|
|
|
- {
|
|
|
- cameraZone_ = zone;
|
|
|
- bestPriority = priority;
|
|
|
- }
|
|
|
- }
|
|
|
- else if (flags & DRAWABLE_GEOMETRY && drawable->IsOccluder())
|
|
|
- occluders_.Push(drawable);
|
|
|
- }
|
|
|
-
|
|
|
- // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
|
|
|
- cameraZoneOverride_ = cameraZone_->GetOverride();
|
|
|
- if (!cameraZoneOverride_)
|
|
|
- {
|
|
|
- Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0, 0, camera_->GetFarClip());
|
|
|
- bestPriority = M_MIN_INT;
|
|
|
-
|
|
|
- for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
|
|
|
- {
|
|
|
- int priority = (*i)->GetPriority();
|
|
|
- if ((*i)->IsInside(farClipPos) && priority > bestPriority)
|
|
|
- {
|
|
|
- farClipZone_ = *i;
|
|
|
- bestPriority = priority;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if (farClipZone_ == defaultZone)
|
|
|
- farClipZone_ = cameraZone_;
|
|
|
-
|
|
|
- // If occlusion in use, get & render the occluders
|
|
|
- occlusionBuffer_ = 0;
|
|
|
- if (maxOccluderTriangles_ > 0)
|
|
|
- {
|
|
|
- UpdateOccluders(occluders_, camera_);
|
|
|
- if (occluders_.Size())
|
|
|
- {
|
|
|
- PROFILE(DrawOcclusion);
|
|
|
-
|
|
|
- occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
|
|
|
- DrawOccluders(occlusionBuffer_, occluders_);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Check visibility and find zones for moved drawables in worker threads
|
|
|
- {
|
|
|
- WorkItem item;
|
|
|
- item.workFunction_ = CheckVisibilityWork;
|
|
|
- item.aux_ = this;
|
|
|
-
|
|
|
- PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
|
|
|
- while (start != tempDrawables.End())
|
|
|
- {
|
|
|
- PODVector<Drawable*>::Iterator end = tempDrawables.End();
|
|
|
- if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
|
|
|
- end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
|
|
|
-
|
|
|
- item.start_ = &(*start);
|
|
|
- item.end_ = &(*end);
|
|
|
- queue->AddWorkItem(item);
|
|
|
-
|
|
|
- start = end;
|
|
|
- }
|
|
|
-
|
|
|
- queue->Complete();
|
|
|
- }
|
|
|
-
|
|
|
- // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
|
|
|
- sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
|
|
|
- sceneBox_.defined_ = false;
|
|
|
- sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
|
|
|
- sceneViewBox_.defined_ = false;
|
|
|
- Matrix3x4 view(camera_->GetInverseWorldTransform());
|
|
|
-
|
|
|
- for (unsigned i = 0; i < tempDrawables.Size(); ++i)
|
|
|
- {
|
|
|
- Drawable* drawable = tempDrawables[i];
|
|
|
- unsigned char flags = drawable->GetDrawableFlags();
|
|
|
- if (flags & DRAWABLE_ZONE || !drawable->IsInView(frame_))
|
|
|
- continue;
|
|
|
-
|
|
|
- if (flags & DRAWABLE_GEOMETRY)
|
|
|
- {
|
|
|
- // Expand the scene bounding boxes. However, do not take "infinite" objects such as the skybox into account,
|
|
|
- // as the bounding boxes are also used for shadow focusing
|
|
|
- const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
|
|
|
- BoundingBox geomViewBox = geomBox.Transformed(view);
|
|
|
- if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
|
|
|
- {
|
|
|
- sceneBox_.Merge(geomBox);
|
|
|
- sceneViewBox_.Merge(geomViewBox);
|
|
|
- }
|
|
|
-
|
|
|
- // Store depth info for split directional light queries
|
|
|
- GeometryDepthBounds bounds;
|
|
|
- bounds.min_ = geomViewBox.min_.z_;
|
|
|
- bounds.max_ = geomViewBox.max_.z_;
|
|
|
-
|
|
|
- geometryDepthBounds_.Push(bounds);
|
|
|
- geometries_.Push(drawable);
|
|
|
- allGeometries_.Push(drawable);
|
|
|
- }
|
|
|
- else if (flags & DRAWABLE_LIGHT)
|
|
|
- {
|
|
|
- Light* light = static_cast<Light*>(drawable);
|
|
|
- lights_.Push(light);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Sort the lights to brightest/closest first
|
|
|
- for (unsigned i = 0; i < lights_.Size(); ++i)
|
|
|
- {
|
|
|
- Light* light = lights_[i];
|
|
|
- light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
|
|
|
- }
|
|
|
-
|
|
|
- Sort(lights_.Begin(), lights_.End(), CompareDrawables);
|
|
|
-}
|
|
|
-
|
|
|
-void View::GetBatches()
|
|
|
-{
|
|
|
- WorkQueue* queue = GetSubsystem<WorkQueue>();
|
|
|
- bool prepass = renderer_->GetLightPrepass();
|
|
|
-
|
|
|
- // Process lit geometries and shadow casters for each light
|
|
|
- {
|
|
|
- PROFILE_MULTIPLE(ProcessLights, lights_.Size());
|
|
|
-
|
|
|
- lightQueryResults_.Resize(lights_.Size());
|
|
|
-
|
|
|
- WorkItem item;
|
|
|
- item.workFunction_ = ProcessLightWork;
|
|
|
- item.aux_ = this;
|
|
|
-
|
|
|
- for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
|
|
|
- {
|
|
|
- LightQueryResult& query = lightQueryResults_[i];
|
|
|
- query.light_ = lights_[i];
|
|
|
-
|
|
|
- item.start_ = &query;
|
|
|
- queue->AddWorkItem(item);
|
|
|
- }
|
|
|
-
|
|
|
- // Ensure all lights have been processed before proceeding
|
|
|
- queue->Complete();
|
|
|
- }
|
|
|
-
|
|
|
- // Build light queues and lit batches
|
|
|
- {
|
|
|
- bool fallback = graphics_->GetFallback();
|
|
|
-
|
|
|
- maxLightsDrawables_.Clear();
|
|
|
- lightQueueMapping_.Clear();
|
|
|
-
|
|
|
- for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
|
|
|
- {
|
|
|
- const LightQueryResult& query = *i;
|
|
|
- if (query.litGeometries_.Empty())
|
|
|
- continue;
|
|
|
-
|
|
|
- PROFILE(GetLightBatches);
|
|
|
-
|
|
|
- Light* light = query.light_;
|
|
|
-
|
|
|
- // Per-pixel light
|
|
|
- if (!light->GetPerVertex())
|
|
|
- {
|
|
|
- unsigned shadowSplits = query.numSplits_;
|
|
|
-
|
|
|
- // Initialize light queue. Store light-to-queue mapping so that the queue can be found later
|
|
|
- lightQueues_.Resize(lightQueues_.Size() + 1);
|
|
|
- LightBatchQueue& lightQueue = lightQueues_.Back();
|
|
|
- lightQueueMapping_[light] = &lightQueue;
|
|
|
- lightQueue.light_ = light;
|
|
|
- lightQueue.litBatches_.Clear();
|
|
|
- lightQueue.volumeBatches_.Clear();
|
|
|
-
|
|
|
- // Allocate shadow map now
|
|
|
- lightQueue.shadowMap_ = 0;
|
|
|
- if (shadowSplits > 0)
|
|
|
- {
|
|
|
- lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, width_, height_);
|
|
|
- // If did not manage to get a shadow map, convert the light to unshadowed
|
|
|
- if (!lightQueue.shadowMap_)
|
|
|
- shadowSplits = 0;
|
|
|
- }
|
|
|
-
|
|
|
- // Setup shadow batch queues
|
|
|
- lightQueue.shadowSplits_.Resize(shadowSplits);
|
|
|
- for (unsigned j = 0; j < shadowSplits; ++j)
|
|
|
- {
|
|
|
- ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
|
|
|
- Camera* shadowCamera = query.shadowCameras_[j];
|
|
|
- shadowQueue.shadowCamera_ = shadowCamera;
|
|
|
- shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
|
|
|
- shadowQueue.farSplit_ = query.shadowFarSplits_[j];
|
|
|
-
|
|
|
- // Setup the shadow split viewport and finalize shadow camera parameters
|
|
|
- shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
|
|
|
- FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
|
|
|
-
|
|
|
- // Loop through shadow casters
|
|
|
- for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
|
|
|
- k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
|
|
|
- {
|
|
|
- Drawable* drawable = *k;
|
|
|
- if (!drawable->IsInView(frame_, false))
|
|
|
- {
|
|
|
- drawable->MarkInView(frame_, false);
|
|
|
- allGeometries_.Push(drawable);
|
|
|
- }
|
|
|
-
|
|
|
- unsigned numBatches = drawable->GetNumBatches();
|
|
|
-
|
|
|
- for (unsigned l = 0; l < numBatches; ++l)
|
|
|
- {
|
|
|
- Batch shadowBatch;
|
|
|
- drawable->GetBatch(shadowBatch, frame_, l);
|
|
|
-
|
|
|
- Technique* tech = GetTechnique(drawable, shadowBatch.material_);
|
|
|
- if (!shadowBatch.geometry_ || !tech)
|
|
|
- continue;
|
|
|
-
|
|
|
- Pass* pass = tech->GetPass(PASS_SHADOW);
|
|
|
- // Skip if material has no shadow pass
|
|
|
- if (!pass)
|
|
|
- continue;
|
|
|
-
|
|
|
- // Fill the rest of the batch
|
|
|
- shadowBatch.camera_ = shadowCamera;
|
|
|
- shadowBatch.zone_ = GetZone(drawable);
|
|
|
- shadowBatch.lightQueue_ = &lightQueue;
|
|
|
-
|
|
|
- FinalizeBatch(shadowBatch, tech, pass);
|
|
|
- shadowQueue.shadowBatches_.AddBatch(shadowBatch);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Loop through lit geometries
|
|
|
- for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
|
|
|
- {
|
|
|
- Drawable* drawable = *j;
|
|
|
- drawable->AddLight(light);
|
|
|
-
|
|
|
- // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
|
|
|
- if (!drawable->GetMaxLights())
|
|
|
- GetLitBatches(drawable, lightQueue);
|
|
|
- else
|
|
|
- maxLightsDrawables_.Insert(drawable);
|
|
|
- }
|
|
|
-
|
|
|
- // In light pre-pass mode, store the light volume batch now
|
|
|
- if (prepass)
|
|
|
- {
|
|
|
- /// \todo Handle SM2 multiple batches for shadowed directional lights
|
|
|
- Batch volumeBatch;
|
|
|
- volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
|
|
|
- volumeBatch.worldTransform_ = &light->GetVolumeTransform(*camera_);
|
|
|
- volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
|
|
|
- volumeBatch.camera_ = camera_;
|
|
|
- volumeBatch.lightQueue_ = &lightQueue;
|
|
|
- volumeBatch.distance_ = light->GetDistance();
|
|
|
- volumeBatch.material_ = 0;
|
|
|
- volumeBatch.pass_ = 0;
|
|
|
- volumeBatch.zone_ = 0;
|
|
|
- renderer_->SetLightVolumeShaders(volumeBatch);
|
|
|
- lightQueue.volumeBatches_.Push(volumeBatch);
|
|
|
- }
|
|
|
- }
|
|
|
- // Per-vertex light
|
|
|
- else
|
|
|
- {
|
|
|
- // Loop through lit geometries
|
|
|
- for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
|
|
|
- {
|
|
|
- Drawable* drawable = *j;
|
|
|
- drawable->AddVertexLight(light);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Process drawables with limited per-pixel light count
|
|
|
- if (maxLightsDrawables_.Size())
|
|
|
- {
|
|
|
- PROFILE(GetMaxLightsBatches);
|
|
|
-
|
|
|
- for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
|
|
|
- {
|
|
|
- Drawable* drawable = *i;
|
|
|
- drawable->LimitLights();
|
|
|
- const PODVector<Light*>& lights = drawable->GetLights();
|
|
|
-
|
|
|
- for (unsigned i = 0; i < lights.Size(); ++i)
|
|
|
- {
|
|
|
- Light* light = lights[i];
|
|
|
- // Find the correct light queue again
|
|
|
- Map<Light*, LightBatchQueue*>::Iterator j = lightQueueMapping_.Find(light);
|
|
|
- if (j != lightQueueMapping_.End())
|
|
|
- GetLitBatches(drawable, *(j->second_));
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Build base pass batches
|
|
|
- {
|
|
|
- PROFILE(GetBaseBatches);
|
|
|
- for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
|
|
|
- {
|
|
|
- Drawable* drawable = *i;
|
|
|
- unsigned numBatches = drawable->GetNumBatches();
|
|
|
-
|
|
|
- for (unsigned j = 0; j < numBatches; ++j)
|
|
|
- {
|
|
|
- Batch baseBatch;
|
|
|
- drawable->GetBatch(baseBatch, frame_, j);
|
|
|
-
|
|
|
- Technique* tech = GetTechnique(drawable, baseBatch.material_);
|
|
|
- if (!baseBatch.geometry_ || !tech)
|
|
|
- continue;
|
|
|
-
|
|
|
- // Check here if the material technique refers to a render target texture with camera(s) attached
|
|
|
- // Only check this for the main view (null render target)
|
|
|
- if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
|
|
|
- CheckMaterialForAuxView(baseBatch.material_);
|
|
|
-
|
|
|
- // Fill the rest of the batch
|
|
|
- baseBatch.camera_ = camera_;
|
|
|
- baseBatch.zone_ = GetZone(drawable);
|
|
|
- baseBatch.isBase_ = true;
|
|
|
-
|
|
|
- Pass* pass = 0;
|
|
|
-
|
|
|
- // In light prepass mode check for G-buffer and material passes first
|
|
|
- if (prepass)
|
|
|
- {
|
|
|
- Pass* pass = tech->GetPass(PASS_GBUFFER);
|
|
|
- if (pass)
|
|
|
- {
|
|
|
- FinalizeBatch(baseBatch, tech, pass);
|
|
|
- gbufferQueue_.AddBatch(baseBatch);
|
|
|
-
|
|
|
- pass = tech->GetPass(PASS_MATERIAL);
|
|
|
- if (pass)
|
|
|
- {
|
|
|
- FinalizeBatch(baseBatch, tech, pass);
|
|
|
- baseQueue_.AddBatch(baseBatch);
|
|
|
- }
|
|
|
- continue;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // If object already has a pixel lit base pass, can skip the unlit base pass
|
|
|
- if (drawable->HasBasePass(j))
|
|
|
- continue;
|
|
|
-
|
|
|
- // Check for unlit or vertex lit base pass
|
|
|
- pass = tech->GetPass(PASS_BASE);
|
|
|
- if (pass)
|
|
|
- {
|
|
|
- // Check for vertex lights now
|
|
|
- const PODVector<Light*>& vertexLights = drawable->GetVertexLights();
|
|
|
- if (!vertexLights.Empty())
|
|
|
- {
|
|
|
- drawable->LimitVertexLights();
|
|
|
-
|
|
|
- // Find a vertex light queue. If not found, create new
|
|
|
- unsigned long long hash = GetVertexLightQueueHash(vertexLights);
|
|
|
- HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
|
|
|
- if (i == vertexLightQueues_.End())
|
|
|
- {
|
|
|
- vertexLightQueues_[hash].vertexLights_ = vertexLights;
|
|
|
- i = vertexLightQueues_.Find(hash);
|
|
|
- }
|
|
|
-
|
|
|
- baseBatch.lightQueue_ = &(i->second_);
|
|
|
- }
|
|
|
-
|
|
|
- if (pass->GetBlendMode() == BLEND_REPLACE)
|
|
|
- {
|
|
|
- FinalizeBatch(baseBatch, tech, pass);
|
|
|
- baseQueue_.AddBatch(baseBatch);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // Transparent batches can not be instanced
|
|
|
- FinalizeBatch(baseBatch, tech, pass, false);
|
|
|
- alphaQueue_.AddBatch(baseBatch);
|
|
|
- }
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- // If no base pass, finally check for pre-alpha / post-alpha custom passes
|
|
|
- pass = tech->GetPass(PASS_PREALPHA);
|
|
|
- if (pass)
|
|
|
- {
|
|
|
- FinalizeBatch(baseBatch, tech, pass);
|
|
|
- preAlphaQueue_.AddBatch(baseBatch);
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- pass = tech->GetPass(PASS_POSTALPHA);
|
|
|
- if (pass)
|
|
|
- {
|
|
|
- // Post-alpha pass is treated similarly as alpha, and is not instanced
|
|
|
- FinalizeBatch(baseBatch, tech, pass, false);
|
|
|
- postAlphaQueue_.AddBatch(baseBatch);
|
|
|
- continue;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::UpdateGeometries()
|
|
|
-{
|
|
|
- PROFILE(UpdateGeometries);
|
|
|
-
|
|
|
- WorkQueue* queue = GetSubsystem<WorkQueue>();
|
|
|
-
|
|
|
- // Sort batches
|
|
|
- {
|
|
|
- WorkItem item;
|
|
|
-
|
|
|
- item.workFunction_ = SortBatchQueueFrontToBackWork;
|
|
|
- item.start_ = &baseQueue_;
|
|
|
- queue->AddWorkItem(item);
|
|
|
- item.start_ = &preAlphaQueue_;
|
|
|
- queue->AddWorkItem(item);
|
|
|
- if (renderer_->GetLightPrepass())
|
|
|
- {
|
|
|
- item.start_ = &gbufferQueue_;
|
|
|
- queue->AddWorkItem(item);
|
|
|
- }
|
|
|
-
|
|
|
- item.workFunction_ = SortBatchQueueBackToFrontWork;
|
|
|
- item.start_ = &alphaQueue_;
|
|
|
- queue->AddWorkItem(item);
|
|
|
- item.start_ = &postAlphaQueue_;
|
|
|
- queue->AddWorkItem(item);
|
|
|
-
|
|
|
- for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
- {
|
|
|
- item.workFunction_ = SortLightQueueWork;
|
|
|
- item.start_ = &(*i);
|
|
|
- queue->AddWorkItem(item);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Update geometries. Split into threaded and non-threaded updates.
|
|
|
- {
|
|
|
- nonThreadedGeometries_.Clear();
|
|
|
- threadedGeometries_.Clear();
|
|
|
- for (PODVector<Drawable*>::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i)
|
|
|
- {
|
|
|
- UpdateGeometryType type = (*i)->GetUpdateGeometryType();
|
|
|
- if (type == UPDATE_MAIN_THREAD)
|
|
|
- nonThreadedGeometries_.Push(*i);
|
|
|
- else if (type == UPDATE_WORKER_THREAD)
|
|
|
- threadedGeometries_.Push(*i);
|
|
|
- }
|
|
|
-
|
|
|
- if (threadedGeometries_.Size())
|
|
|
- {
|
|
|
- WorkItem item;
|
|
|
- item.workFunction_ = UpdateDrawableGeometriesWork;
|
|
|
- item.aux_ = const_cast<FrameInfo*>(&frame_);
|
|
|
-
|
|
|
- PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
|
|
|
- while (start != threadedGeometries_.End())
|
|
|
- {
|
|
|
- PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
|
|
|
- if (end - start > DRAWABLES_PER_WORK_ITEM)
|
|
|
- end = start + DRAWABLES_PER_WORK_ITEM;
|
|
|
-
|
|
|
- item.start_ = &(*start);
|
|
|
- item.end_ = &(*end);
|
|
|
- queue->AddWorkItem(item);
|
|
|
-
|
|
|
- start = end;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // While the work queue is processed, update non-threaded geometries
|
|
|
- for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
|
|
|
- (*i)->UpdateGeometry(frame_);
|
|
|
- }
|
|
|
-
|
|
|
- // Finally ensure all threaded work has completed
|
|
|
- queue->Complete();
|
|
|
-}
|
|
|
-
|
|
|
-void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
|
|
|
-{
|
|
|
- Light* light = lightQueue.light_;
|
|
|
- Light* firstLight = drawable->GetFirstLight();
|
|
|
- bool prepass = renderer_->GetLightPrepass();
|
|
|
- // Shadows on transparencies can only be rendered if shadow maps are not reused
|
|
|
- bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
|
|
|
- bool hasVertexLights = drawable->GetVertexLights().Size() > 0;
|
|
|
- unsigned numBatches = drawable->GetNumBatches();
|
|
|
-
|
|
|
- for (unsigned i = 0; i < numBatches; ++i)
|
|
|
- {
|
|
|
- Batch litBatch;
|
|
|
- drawable->GetBatch(litBatch, frame_, i);
|
|
|
-
|
|
|
- Technique* tech = GetTechnique(drawable, litBatch.material_);
|
|
|
- if (!litBatch.geometry_ || !tech)
|
|
|
- continue;
|
|
|
-
|
|
|
- Pass* pass = 0;
|
|
|
-
|
|
|
- // Do not create pixel lit passes for materials that render into the G-buffer
|
|
|
- if (prepass && tech->HasPass(PASS_GBUFFER))
|
|
|
- continue;
|
|
|
-
|
|
|
- // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
|
|
|
- // Also vertex lighting requires the non-lit base pass, so skip if any vertex lights
|
|
|
- if (light == firstLight && !hasVertexLights && !drawable->HasBasePass(i))
|
|
|
- {
|
|
|
- pass = tech->GetPass(PASS_LITBASE);
|
|
|
- if (pass)
|
|
|
- {
|
|
|
- litBatch.isBase_ = true;
|
|
|
- drawable->SetBasePass(i);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // If no lit base pass, get ordinary light pass
|
|
|
- if (!pass)
|
|
|
- pass = tech->GetPass(PASS_LIGHT);
|
|
|
- // Skip if material does not receive light at all
|
|
|
- if (!pass)
|
|
|
- continue;
|
|
|
-
|
|
|
- // Fill the rest of the batch
|
|
|
- litBatch.camera_ = camera_;
|
|
|
- litBatch.lightQueue_ = &lightQueue;
|
|
|
- litBatch.zone_ = GetZone(drawable);
|
|
|
-
|
|
|
- // Check from the ambient pass whether the object is opaque or transparent
|
|
|
- Pass* ambientPass = tech->GetPass(PASS_BASE);
|
|
|
- if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
|
|
|
- {
|
|
|
- FinalizeBatch(litBatch, tech, pass);
|
|
|
- lightQueue.litBatches_.AddBatch(litBatch);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // Transparent batches can not be instanced
|
|
|
- FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows);
|
|
|
- alphaQueue_.AddBatch(litBatch);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::RenderBatchesForward()
|
|
|
-{
|
|
|
- // Reset the light optimization stencil reference value
|
|
|
- lightStencilValue_ = 1;
|
|
|
-
|
|
|
- // If not reusing shadowmaps, render all of them first
|
|
|
- if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
|
|
|
- {
|
|
|
- PROFILE(RenderShadowMaps);
|
|
|
-
|
|
|
- for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
- {
|
|
|
- if (i->shadowMap_)
|
|
|
- RenderShadowMap(*i);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- graphics_->SetRenderTarget(0, renderTarget_);
|
|
|
- graphics_->SetDepthStencil(depthStencil_);
|
|
|
- graphics_->SetViewport(screenRect_);
|
|
|
- graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, farClipZone_->GetFogColor());
|
|
|
-
|
|
|
- if (!baseQueue_.IsEmpty())
|
|
|
- {
|
|
|
- // Render opaque object unlit base pass
|
|
|
- PROFILE(RenderBase);
|
|
|
-
|
|
|
- RenderBatchQueue(baseQueue_);
|
|
|
- }
|
|
|
-
|
|
|
- if (!lightQueues_.Empty())
|
|
|
- {
|
|
|
- // Render shadow maps + opaque objects' shadowed additive lighting
|
|
|
- PROFILE(RenderLights);
|
|
|
-
|
|
|
- for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
- {
|
|
|
- // If reusing shadowmaps, render each of them before the lit batches
|
|
|
- if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
|
|
|
- {
|
|
|
- RenderShadowMap(*i);
|
|
|
- graphics_->SetRenderTarget(0, renderTarget_);
|
|
|
- graphics_->SetDepthStencil(depthStencil_);
|
|
|
- graphics_->SetViewport(screenRect_);
|
|
|
- }
|
|
|
-
|
|
|
- RenderLightBatchQueue(i->litBatches_, i->light_);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- graphics_->SetScissorTest(false);
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
- graphics_->SetRenderTarget(0, renderTarget_);
|
|
|
- graphics_->SetDepthStencil(depthStencil_);
|
|
|
- graphics_->SetViewport(screenRect_);
|
|
|
-
|
|
|
- if (!preAlphaQueue_.IsEmpty())
|
|
|
- {
|
|
|
- // Render pre-alpha custom pass
|
|
|
- PROFILE(RenderPreAlpha);
|
|
|
-
|
|
|
- RenderBatchQueue(preAlphaQueue_);
|
|
|
- }
|
|
|
-
|
|
|
- if (!alphaQueue_.IsEmpty())
|
|
|
- {
|
|
|
- // Render transparent objects (both base passes & additive lighting)
|
|
|
- PROFILE(RenderAlpha);
|
|
|
-
|
|
|
- RenderBatchQueue(alphaQueue_, true);
|
|
|
- }
|
|
|
-
|
|
|
- if (!postAlphaQueue_.IsEmpty())
|
|
|
- {
|
|
|
- // Render pre-alpha custom pass
|
|
|
- PROFILE(RenderPostAlpha);
|
|
|
-
|
|
|
- RenderBatchQueue(postAlphaQueue_);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::RenderBatchesLightPrepass()
|
|
|
-{
|
|
|
- // If not reusing shadowmaps, render all of them first
|
|
|
- if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
|
|
|
- {
|
|
|
- PROFILE(RenderShadowMaps);
|
|
|
-
|
|
|
- for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
- {
|
|
|
- if (i->shadowMap_)
|
|
|
- RenderShadowMap(*i);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Render the G-buffer
|
|
|
- Texture2D* normalBuffer = renderer_->GetNormalBuffer();
|
|
|
- Texture2D* depthBuffer = renderer_->GetDepthBuffer();
|
|
|
- RenderSurface* depthStencil = 0;
|
|
|
-
|
|
|
- if (graphics_->GetFallback())
|
|
|
- {
|
|
|
- graphics_->SetRenderTarget(0, normalBuffer);
|
|
|
- graphics_->SetDepthStencil(depthStencil);
|
|
|
- graphics_->SetViewport(screenRect_);
|
|
|
- graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, Color(0.5f, 0.5f, 1.0f, 1.0f));
|
|
|
- }
|
|
|
- if (graphics_->GetHardwareDepthSupport())
|
|
|
- {
|
|
|
- depthStencil = depthBuffer->GetRenderSurface();
|
|
|
-
|
|
|
- graphics_->SetRenderTarget(0, normalBuffer);
|
|
|
- graphics_->SetDepthStencil(depthStencil);
|
|
|
- graphics_->SetViewport(screenRect_);
|
|
|
- // Clear depth and stencil only
|
|
|
- graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- graphics_->SetRenderTarget(0, depthBuffer);
|
|
|
- graphics_->SetDepthStencil(depthStencil);
|
|
|
- graphics_->SetViewport(screenRect_);
|
|
|
- // Clear the depth render target to far depth
|
|
|
- graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, Color::WHITE);
|
|
|
- graphics_->SetRenderTarget(1, normalBuffer);
|
|
|
- }
|
|
|
-
|
|
|
- if (!gbufferQueue_.IsEmpty())
|
|
|
- {
|
|
|
- // Render G-buffer batches
|
|
|
- PROFILE(RenderGBuffer);
|
|
|
-
|
|
|
- RenderBatchQueue(gbufferQueue_);
|
|
|
- }
|
|
|
-
|
|
|
- // Clear the light accumulation buffer
|
|
|
- Texture2D* lightBuffer = renderer_->GetLightBuffer();
|
|
|
- graphics_->ResetRenderTarget(1);
|
|
|
- graphics_->SetRenderTarget(0, lightBuffer);
|
|
|
- graphics_->SetDepthStencil(depthStencil);
|
|
|
- graphics_->SetViewport(screenRect_);
|
|
|
- graphics_->Clear(CLEAR_COLOR);
|
|
|
-
|
|
|
- if (!lightQueues_.Empty())
|
|
|
- {
|
|
|
- // Render shadow maps + light volumes
|
|
|
- PROFILE(RenderLights);
|
|
|
-
|
|
|
- for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
- {
|
|
|
- // If reusing shadowmaps, render each of them before the lit batches
|
|
|
- if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
|
|
|
- {
|
|
|
- RenderShadowMap(*i);
|
|
|
- graphics_->SetRenderTarget(0, lightBuffer);
|
|
|
- graphics_->SetDepthStencil(depthStencil);
|
|
|
- graphics_->SetViewport(screenRect_);
|
|
|
- }
|
|
|
-
|
|
|
- graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
|
|
|
- graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
|
|
|
-
|
|
|
- for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
|
|
|
- {
|
|
|
- SetupLightBatch(i->volumeBatches_[j]);
|
|
|
- i->volumeBatches_[j].Draw(graphics_, renderer_);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- graphics_->SetScissorTest(false);
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
- graphics_->SetRenderTarget(0, renderTarget_);
|
|
|
- graphics_->SetDepthStencil(depthStencil);
|
|
|
- graphics_->SetViewport(screenRect_);
|
|
|
- graphics_->Clear(CLEAR_COLOR, farClipZone_->GetFogColor());
|
|
|
-
|
|
|
- if (!baseQueue_.IsEmpty())
|
|
|
- {
|
|
|
- // Render opaque objects with deferred lighting result
|
|
|
- PROFILE(RenderBase);
|
|
|
-
|
|
|
- graphics_->SetTexture(TU_LIGHTBUFFER, lightBuffer);
|
|
|
-
|
|
|
- RenderBatchQueue(baseQueue_);
|
|
|
- }
|
|
|
-
|
|
|
- if (!preAlphaQueue_.IsEmpty())
|
|
|
- {
|
|
|
- // Render pre-alpha custom pass
|
|
|
- PROFILE(RenderPreAlpha);
|
|
|
-
|
|
|
- RenderBatchQueue(preAlphaQueue_);
|
|
|
- }
|
|
|
-
|
|
|
- if (!alphaQueue_.IsEmpty())
|
|
|
- {
|
|
|
- // Render transparent objects (both base passes & additive lighting)
|
|
|
- PROFILE(RenderAlpha);
|
|
|
-
|
|
|
- RenderBatchQueue(alphaQueue_, true);
|
|
|
- }
|
|
|
-
|
|
|
- if (!postAlphaQueue_.IsEmpty())
|
|
|
- {
|
|
|
- // Render pre-alpha custom pass
|
|
|
- PROFILE(RenderPostAlpha);
|
|
|
-
|
|
|
- RenderBatchQueue(postAlphaQueue_);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
|
|
|
-{
|
|
|
- float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
|
|
|
- float halfViewSize = camera->GetHalfViewSize();
|
|
|
- float invOrthoSize = 1.0f / camera->GetOrthoSize();
|
|
|
- Vector3 cameraPos = camera->GetWorldPosition();
|
|
|
-
|
|
|
- for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
|
|
|
- {
|
|
|
- Drawable* occluder = *i;
|
|
|
- bool erase = false;
|
|
|
-
|
|
|
- if (!occluder->IsInView(frame_, false))
|
|
|
- occluder->UpdateDistance(frame_);
|
|
|
-
|
|
|
- // Check occluder's draw distance (in main camera view)
|
|
|
- float maxDistance = occluder->GetDrawDistance();
|
|
|
- if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
|
|
|
- erase = true;
|
|
|
- else
|
|
|
- {
|
|
|
- // Check that occluder is big enough on the screen
|
|
|
- const BoundingBox& box = occluder->GetWorldBoundingBox();
|
|
|
- float diagonal = (box.max_ - box.min_).LengthFast();
|
|
|
- float compare;
|
|
|
- if (!camera->IsOrthographic())
|
|
|
- compare = diagonal * halfViewSize / occluder->GetDistance();
|
|
|
- else
|
|
|
- compare = diagonal * invOrthoSize;
|
|
|
-
|
|
|
- if (compare < occluderSizeThreshold_)
|
|
|
- erase = true;
|
|
|
- else
|
|
|
- {
|
|
|
- // Store amount of triangles divided by screen size as a sorting key
|
|
|
- // (best occluders are big and have few triangles)
|
|
|
- occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (erase)
|
|
|
- i = occluders.Erase(i);
|
|
|
- else
|
|
|
- ++i;
|
|
|
- }
|
|
|
-
|
|
|
- // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
|
|
|
- if (occluders.Size())
|
|
|
- Sort(occluders.Begin(), occluders.End(), CompareDrawables);
|
|
|
-}
|
|
|
-
|
|
|
-void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
|
|
|
-{
|
|
|
- buffer->SetMaxTriangles(maxOccluderTriangles_);
|
|
|
- buffer->Clear();
|
|
|
-
|
|
|
- for (unsigned i = 0; i < occluders.Size(); ++i)
|
|
|
- {
|
|
|
- Drawable* occluder = occluders[i];
|
|
|
- if (i > 0)
|
|
|
- {
|
|
|
- // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
|
|
|
- if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- // Check for running out of triangles
|
|
|
- if (!occluder->DrawOcclusion(buffer))
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- buffer->BuildDepthHierarchy();
|
|
|
-}
|
|
|
-
|
|
|
-void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
|
|
|
-{
|
|
|
- Light* light = query.light_;
|
|
|
- LightType type = light->GetLightType();
|
|
|
-
|
|
|
- // Check if light should be shadowed
|
|
|
- bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
|
|
|
- // If shadow distance non-zero, check it
|
|
|
- if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
|
|
|
- isShadowed = false;
|
|
|
-
|
|
|
- // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
|
|
|
- PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
|
|
|
- query.litGeometries_.Clear();
|
|
|
-
|
|
|
- switch (type)
|
|
|
- {
|
|
|
- case LIGHT_DIRECTIONAL:
|
|
|
- for (unsigned i = 0; i < geometries_.Size(); ++i)
|
|
|
- {
|
|
|
- if (GetLightMask(geometries_[i]) & light->GetLightMask())
|
|
|
- query.litGeometries_.Push(geometries_[i]);
|
|
|
- }
|
|
|
- break;
|
|
|
-
|
|
|
- case LIGHT_SPOT:
|
|
|
- {
|
|
|
- FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
|
|
|
- octree_->GetDrawables(octreeQuery);
|
|
|
- for (unsigned i = 0; i < tempDrawables.Size(); ++i)
|
|
|
- {
|
|
|
- if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
|
|
|
- query.litGeometries_.Push(tempDrawables[i]);
|
|
|
- }
|
|
|
- }
|
|
|
- break;
|
|
|
-
|
|
|
- case LIGHT_POINT:
|
|
|
- {
|
|
|
- SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()),
|
|
|
- DRAWABLE_GEOMETRY, camera_->GetViewMask());
|
|
|
- octree_->GetDrawables(octreeQuery);
|
|
|
- for (unsigned i = 0; i < tempDrawables.Size(); ++i)
|
|
|
- {
|
|
|
- if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
|
|
|
- query.litGeometries_.Push(tempDrawables[i]);
|
|
|
- }
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- // If no lit geometries or not shadowed, no need to process shadow cameras
|
|
|
- if (query.litGeometries_.Empty() || !isShadowed)
|
|
|
- {
|
|
|
- query.numSplits_ = 0;
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // Determine number of shadow cameras and setup their initial positions
|
|
|
- SetupShadowCameras(query);
|
|
|
-
|
|
|
- // Process each split for shadow casters
|
|
|
- query.shadowCasters_.Clear();
|
|
|
- for (unsigned i = 0; i < query.numSplits_; ++i)
|
|
|
- {
|
|
|
- Camera* shadowCamera = query.shadowCameras_[i];
|
|
|
- Frustum shadowCameraFrustum = shadowCamera->GetFrustum();
|
|
|
- query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
|
|
|
-
|
|
|
- // For point light check that the face is visible: if not, can skip the split
|
|
|
- if (type == LIGHT_POINT)
|
|
|
- {
|
|
|
- BoundingBox shadowCameraBox(shadowCameraFrustum);
|
|
|
- if (frustum_.IsInsideFast(shadowCameraBox) == OUTSIDE)
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- // For directional light check that the split is inside the visible scene: if not, can skip the split
|
|
|
- if (type == LIGHT_DIRECTIONAL)
|
|
|
- {
|
|
|
- if (sceneViewBox_.min_.z_ > query.shadowFarSplits_[i])
|
|
|
- continue;
|
|
|
- if (sceneViewBox_.max_.z_ < query.shadowNearSplits_[i])
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- // For spot light (which has only one shadow split) we can optimize by reusing the query for
|
|
|
- // lit geometries, whose result still exists in tempDrawables
|
|
|
- if (type != LIGHT_SPOT)
|
|
|
- {
|
|
|
- FrustumOctreeQuery octreeQuery(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
|
|
|
- camera_->GetViewMask(), true);
|
|
|
- octree_->GetDrawables(octreeQuery);
|
|
|
- }
|
|
|
-
|
|
|
- // Check which shadow casters actually contribute to the shadowing
|
|
|
- ProcessShadowCasters(query, tempDrawables, i);
|
|
|
- }
|
|
|
-
|
|
|
- // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
|
|
|
- // only cost has been the shadow camera setup & queries
|
|
|
- if (query.shadowCasters_.Empty())
|
|
|
- query.numSplits_ = 0;
|
|
|
-}
|
|
|
-
|
|
|
-void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
|
|
|
-{
|
|
|
- Light* light = query.light_;
|
|
|
- Matrix3x4 lightView;
|
|
|
- Matrix4 lightProj;
|
|
|
-
|
|
|
- Camera* shadowCamera = query.shadowCameras_[splitIndex];
|
|
|
- lightView = shadowCamera->GetInverseWorldTransform();
|
|
|
- lightProj = shadowCamera->GetProjection();
|
|
|
- bool dirLight = shadowCamera->IsOrthographic();
|
|
|
-
|
|
|
- query.shadowCasterBox_[splitIndex].defined_ = false;
|
|
|
-
|
|
|
- // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
|
|
|
- // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
|
|
|
- // frustum, so that shadow casters do not get rendered into unnecessary splits
|
|
|
- Frustum lightViewFrustum;
|
|
|
- if (!dirLight)
|
|
|
- lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
|
|
|
- else
|
|
|
- lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, query.shadowNearSplits_[splitIndex]),
|
|
|
- Min(sceneViewBox_.max_.z_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
|
|
|
-
|
|
|
- BoundingBox lightViewFrustumBox(lightViewFrustum);
|
|
|
-
|
|
|
- // Check for degenerate split frustum: in that case there is no need to get shadow casters
|
|
|
- if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
|
|
|
- return;
|
|
|
-
|
|
|
- BoundingBox lightViewBox;
|
|
|
- BoundingBox lightProjBox;
|
|
|
-
|
|
|
- for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
|
|
|
- {
|
|
|
- Drawable* drawable = *i;
|
|
|
- // In case this is a spot light query result reused for optimization, we may have non-shadowcasters included.
|
|
|
- // Check for that first
|
|
|
- if (!drawable->GetCastShadows())
|
|
|
- continue;
|
|
|
-
|
|
|
- // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
|
|
|
- // times. However, this should not cause problems as no scene modification happens at this point.
|
|
|
- if (!drawable->IsInView(frame_, false))
|
|
|
- drawable->UpdateDistance(frame_);
|
|
|
-
|
|
|
- // Check shadow distance
|
|
|
- float maxShadowDistance = drawable->GetShadowDistance();
|
|
|
- if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
|
|
|
- continue;
|
|
|
-
|
|
|
- // Check shadow mask
|
|
|
- if (!(GetShadowMask(drawable) & light->GetLightMask()))
|
|
|
- continue;
|
|
|
-
|
|
|
- // Project shadow caster bounding box to light view space for visibility check
|
|
|
- lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
|
|
|
-
|
|
|
- if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
|
|
|
- {
|
|
|
- // Merge to shadow caster bounding box and add to the list
|
|
|
- if (dirLight)
|
|
|
- query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
|
|
|
- else
|
|
|
- {
|
|
|
- lightProjBox = lightViewBox.Projected(lightProj);
|
|
|
- query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
|
|
|
- }
|
|
|
- query.shadowCasters_.Push(drawable);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
|
|
|
-}
|
|
|
-
|
|
|
-bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
|
|
|
- const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
|
|
|
-{
|
|
|
- if (shadowCamera->IsOrthographic())
|
|
|
- {
|
|
|
- // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
|
|
|
- lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
|
|
|
- return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- // If light is not directional, can do a simple check: if object is visible, its shadow is too
|
|
|
- if (drawable->IsInView(frame_))
|
|
|
- return true;
|
|
|
-
|
|
|
- // For perspective lights, extrusion direction depends on the position of the shadow caster
|
|
|
- Vector3 center = lightViewBox.Center();
|
|
|
- Ray extrusionRay(center, center.Normalized());
|
|
|
-
|
|
|
- float extrusionDistance = shadowCamera->GetFarClip();
|
|
|
- float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
|
|
|
-
|
|
|
- // Because of the perspective, the bounding box must also grow when it is extruded to the distance
|
|
|
- float sizeFactor = extrusionDistance / originalDistance;
|
|
|
-
|
|
|
- // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
|
|
|
- // than necessary, so the test will be conservative
|
|
|
- Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
|
|
|
- Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
|
|
|
- BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
|
|
|
- lightViewBox.Merge(extrudedBox);
|
|
|
-
|
|
|
- return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
|
|
|
-{
|
|
|
- unsigned width = shadowMap->GetWidth();
|
|
|
- unsigned height = shadowMap->GetHeight();
|
|
|
- int maxCascades = renderer_->GetMaxShadowCascades();
|
|
|
-
|
|
|
- switch (light->GetLightType())
|
|
|
- {
|
|
|
- case LIGHT_DIRECTIONAL:
|
|
|
- if (maxCascades == 1)
|
|
|
- return IntRect(0, 0, width, height);
|
|
|
- else if (maxCascades == 2)
|
|
|
- return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
|
|
|
- else
|
|
|
- return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
|
|
|
- (splitIndex / 2 + 1) * height / 2);
|
|
|
-
|
|
|
- case LIGHT_SPOT:
|
|
|
- return IntRect(0, 0, width, height);
|
|
|
-
|
|
|
- case LIGHT_POINT:
|
|
|
- return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
|
|
|
- (splitIndex / 2 + 1) * height / 3);
|
|
|
- }
|
|
|
-
|
|
|
- return IntRect();
|
|
|
-}
|
|
|
-
|
|
|
-void View::OptimizeLightByScissor(Light* light)
|
|
|
-{
|
|
|
- if (light)
|
|
|
- graphics_->SetScissorTest(true, GetLightScissor(light));
|
|
|
- else
|
|
|
- graphics_->SetScissorTest(false);
|
|
|
-}
|
|
|
-
|
|
|
-void View::OptimizeLightByStencil(Light* light)
|
|
|
-{
|
|
|
- if (light && renderer_->GetLightStencilMasking())
|
|
|
- {
|
|
|
- Geometry* geometry = renderer_->GetLightGeometry(light);
|
|
|
- if (!geometry)
|
|
|
- {
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- LightType type = light->GetLightType();
|
|
|
- Matrix3x4 view(camera_->GetInverseWorldTransform());
|
|
|
- Matrix4 projection(camera_->GetProjection());
|
|
|
- float lightDist;
|
|
|
-
|
|
|
- if (type == LIGHT_POINT)
|
|
|
- lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
|
|
|
- else
|
|
|
- lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
|
|
|
-
|
|
|
- // If the camera is actually inside the light volume, do not draw to stencil as it would waste fillrate
|
|
|
- if (lightDist < M_EPSILON)
|
|
|
- {
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // If the stencil value has wrapped, clear the whole stencil first
|
|
|
- if (!lightStencilValue_)
|
|
|
- {
|
|
|
- graphics_->Clear(CLEAR_STENCIL);
|
|
|
- lightStencilValue_ = 1;
|
|
|
- }
|
|
|
-
|
|
|
- // If possible, render the stencil volume front faces. However, close to the near clip plane render back faces instead
|
|
|
- // to avoid clipping the front faces.
|
|
|
- if (lightDist < camera_->GetNearClip() * 2.0f)
|
|
|
- {
|
|
|
- graphics_->SetCullMode(CULL_CW);
|
|
|
- graphics_->SetDepthTest(CMP_GREATER);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- graphics_->SetCullMode(CULL_CCW);
|
|
|
- graphics_->SetDepthTest(CMP_LESSEQUAL);
|
|
|
- }
|
|
|
-
|
|
|
- graphics_->SetColorWrite(false);
|
|
|
- graphics_->SetDepthWrite(false);
|
|
|
- graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, lightStencilValue_);
|
|
|
- graphics_->SetShaders(renderer_->GetStencilVS(), renderer_->GetStencilPS());
|
|
|
- graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
|
|
|
- graphics_->SetShaderParameter(VSP_MODEL, light->GetVolumeTransform(*camera_));
|
|
|
-
|
|
|
- geometry->Draw(graphics_);
|
|
|
-
|
|
|
- graphics_->ClearTransformSources();
|
|
|
- graphics_->SetColorWrite(true);
|
|
|
- graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, lightStencilValue_);
|
|
|
-
|
|
|
- // Increase stencil value for next light
|
|
|
- ++lightStencilValue_;
|
|
|
- }
|
|
|
- else
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
-}
|
|
|
-
|
|
|
-const Rect& View::GetLightScissor(Light* light)
|
|
|
-{
|
|
|
- HashMap<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
|
|
|
- if (i != lightScissorCache_.End())
|
|
|
- return i->second_;
|
|
|
-
|
|
|
- Matrix3x4 view(camera_->GetInverseWorldTransform());
|
|
|
- Matrix4 projection(camera_->GetProjection());
|
|
|
-
|
|
|
- switch (light->GetLightType())
|
|
|
- {
|
|
|
- case LIGHT_POINT:
|
|
|
- {
|
|
|
- BoundingBox viewBox(light->GetWorldBoundingBox().Transformed(view));
|
|
|
- return lightScissorCache_[light] = viewBox.Projected(projection);
|
|
|
- }
|
|
|
-
|
|
|
- case LIGHT_SPOT:
|
|
|
- {
|
|
|
- Frustum viewFrustum(light->GetFrustum().Transformed(view));
|
|
|
- return lightScissorCache_[light] = viewFrustum.Projected(projection);
|
|
|
- }
|
|
|
-
|
|
|
- default:
|
|
|
- return lightScissorCache_[light] = Rect::FULL;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::SetupShadowCameras(LightQueryResult& query)
|
|
|
-{
|
|
|
- Light* light = query.light_;
|
|
|
-
|
|
|
- LightType type = light->GetLightType();
|
|
|
- int splits = 0;
|
|
|
-
|
|
|
- if (type == LIGHT_DIRECTIONAL)
|
|
|
- {
|
|
|
- const CascadeParameters& cascade = light->GetShadowCascade();
|
|
|
-
|
|
|
- float nearSplit = camera_->GetNearClip();
|
|
|
- float farSplit;
|
|
|
-
|
|
|
- while (splits < renderer_->GetMaxShadowCascades())
|
|
|
- {
|
|
|
- // If split is completely beyond camera far clip, we are done
|
|
|
- if (nearSplit > camera_->GetFarClip())
|
|
|
- break;
|
|
|
-
|
|
|
- farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
|
|
|
- if (farSplit <= nearSplit)
|
|
|
- break;
|
|
|
-
|
|
|
- // Setup the shadow camera for the split
|
|
|
- Camera* shadowCamera = renderer_->GetShadowCamera();
|
|
|
- query.shadowCameras_[splits] = shadowCamera;
|
|
|
- query.shadowNearSplits_[splits] = nearSplit;
|
|
|
- query.shadowFarSplits_[splits] = farSplit;
|
|
|
- SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
|
|
|
-
|
|
|
- nearSplit = farSplit;
|
|
|
- ++splits;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (type == LIGHT_SPOT)
|
|
|
- {
|
|
|
- Camera* shadowCamera = renderer_->GetShadowCamera();
|
|
|
- query.shadowCameras_[0] = shadowCamera;
|
|
|
- Node* cameraNode = shadowCamera->GetNode();
|
|
|
-
|
|
|
- cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
|
|
|
- shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
|
|
|
- shadowCamera->SetFarClip(light->GetRange());
|
|
|
- shadowCamera->SetFov(light->GetFov());
|
|
|
- shadowCamera->SetAspectRatio(light->GetAspectRatio());
|
|
|
-
|
|
|
- splits = 1;
|
|
|
- }
|
|
|
-
|
|
|
- if (type == LIGHT_POINT)
|
|
|
- {
|
|
|
- for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
|
|
|
- {
|
|
|
- Camera* shadowCamera = renderer_->GetShadowCamera();
|
|
|
- query.shadowCameras_[i] = shadowCamera;
|
|
|
- Node* cameraNode = shadowCamera->GetNode();
|
|
|
-
|
|
|
- // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
|
|
|
- cameraNode->SetPosition(light->GetWorldPosition());
|
|
|
- cameraNode->SetDirection(directions[i]);
|
|
|
- shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
|
|
|
- shadowCamera->SetFarClip(light->GetRange());
|
|
|
- shadowCamera->SetFov(90.0f);
|
|
|
- shadowCamera->SetAspectRatio(1.0f);
|
|
|
- }
|
|
|
-
|
|
|
- splits = MAX_CUBEMAP_FACES;
|
|
|
- }
|
|
|
-
|
|
|
- query.numSplits_ = splits;
|
|
|
-}
|
|
|
-
|
|
|
-void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
|
|
|
-{
|
|
|
- Node* cameraNode = shadowCamera->GetNode();
|
|
|
- float extrusionDistance = camera_->GetFarClip();
|
|
|
- const FocusParameters& parameters = light->GetShadowFocus();
|
|
|
-
|
|
|
- // Calculate initial position & rotation
|
|
|
- Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
|
|
|
- Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
|
|
|
- cameraNode->SetTransform(pos, light->GetWorldRotation());
|
|
|
-
|
|
|
- // Calculate main camera shadowed frustum in light's view space
|
|
|
- farSplit = Min(farSplit, camera_->GetFarClip());
|
|
|
- // Use the scene Z bounds to limit frustum size if applicable
|
|
|
- if (parameters.focus_)
|
|
|
- {
|
|
|
- nearSplit = Max(sceneViewBox_.min_.z_, nearSplit);
|
|
|
- farSplit = Min(sceneViewBox_.max_.z_, farSplit);
|
|
|
- }
|
|
|
-
|
|
|
- Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
|
|
|
- frustumVolume_.Define(splitFrustum);
|
|
|
- // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
|
|
|
- if (parameters.focus_)
|
|
|
- {
|
|
|
- BoundingBox litGeometriesBox;
|
|
|
- for (unsigned i = 0; i < geometries_.Size(); ++i)
|
|
|
- {
|
|
|
- // Skip "infinite" objects like the skybox
|
|
|
- const BoundingBox& geomBox = geometries_[i]->GetWorldBoundingBox();
|
|
|
- if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
|
|
|
- {
|
|
|
- if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit &&
|
|
|
- (GetLightMask(geometries_[i]) & light->GetLightMask()))
|
|
|
- litGeometriesBox.Merge(geomBox);
|
|
|
- }
|
|
|
- }
|
|
|
- if (litGeometriesBox.defined_)
|
|
|
- {
|
|
|
- frustumVolume_.Clip(litGeometriesBox);
|
|
|
- // If volume became empty, restore it to avoid zero size
|
|
|
- if (frustumVolume_.Empty())
|
|
|
- frustumVolume_.Define(splitFrustum);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Transform frustum volume to light space
|
|
|
- Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
|
|
|
- frustumVolume_.Transform(lightView);
|
|
|
-
|
|
|
- // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
|
|
|
- BoundingBox shadowBox;
|
|
|
- if (!parameters.nonUniform_)
|
|
|
- shadowBox.Define(Sphere(frustumVolume_));
|
|
|
- else
|
|
|
- shadowBox.Define(frustumVolume_);
|
|
|
-
|
|
|
- shadowCamera->SetOrthographic(true);
|
|
|
- shadowCamera->SetAspectRatio(1.0f);
|
|
|
- shadowCamera->SetNearClip(0.0f);
|
|
|
- shadowCamera->SetFarClip(shadowBox.max_.z_);
|
|
|
-
|
|
|
- // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
|
|
|
- QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
|
|
|
-}
|
|
|
-
|
|
|
-void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
|
|
|
- const BoundingBox& shadowCasterBox)
|
|
|
-{
|
|
|
- const FocusParameters& parameters = light->GetShadowFocus();
|
|
|
- float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
|
|
|
- LightType type = light->GetLightType();
|
|
|
-
|
|
|
- if (type == LIGHT_DIRECTIONAL)
|
|
|
- {
|
|
|
- BoundingBox shadowBox;
|
|
|
- shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
|
|
|
- shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
|
|
|
- shadowBox.min_.y_ = -shadowBox.max_.y_;
|
|
|
- shadowBox.min_.x_ = -shadowBox.max_.x_;
|
|
|
-
|
|
|
- // Requantize and snap to shadow map texels
|
|
|
- QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
|
|
|
- }
|
|
|
-
|
|
|
- if (type == LIGHT_SPOT)
|
|
|
- {
|
|
|
- if (parameters.focus_)
|
|
|
- {
|
|
|
- float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
|
|
|
- float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
|
|
|
- float viewSize = Max(viewSizeX, viewSizeY);
|
|
|
- // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
|
|
|
- float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
|
|
|
- float quantize = parameters.quantize_ * invOrthoSize;
|
|
|
- float minView = parameters.minView_ * invOrthoSize;
|
|
|
-
|
|
|
- viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
|
|
|
- if (viewSize < 1.0f)
|
|
|
- shadowCamera->SetZoom(1.0f / viewSize);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
|
|
|
- // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
|
|
|
- if (shadowCamera->GetZoom() >= 1.0f)
|
|
|
- {
|
|
|
- if (light->GetLightType() != LIGHT_POINT)
|
|
|
- shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
|
|
|
- else
|
|
|
- {
|
|
|
- #ifdef USE_OPENGL
|
|
|
- shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
|
|
|
- #else
|
|
|
- shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
|
|
|
- #endif
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
|
|
|
- const BoundingBox& viewBox)
|
|
|
-{
|
|
|
- Node* cameraNode = shadowCamera->GetNode();
|
|
|
- const FocusParameters& parameters = light->GetShadowFocus();
|
|
|
- float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
|
|
|
-
|
|
|
- float minX = viewBox.min_.x_;
|
|
|
- float minY = viewBox.min_.y_;
|
|
|
- float maxX = viewBox.max_.x_;
|
|
|
- float maxY = viewBox.max_.y_;
|
|
|
-
|
|
|
- Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
|
|
|
- Vector2 viewSize(maxX - minX, maxY - minY);
|
|
|
-
|
|
|
- // Quantize size to reduce swimming
|
|
|
- // Note: if size is uniform and there is no focusing, quantization is unnecessary
|
|
|
- if (parameters.nonUniform_)
|
|
|
- {
|
|
|
- viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
|
|
|
- viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
|
|
|
- viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
|
|
|
- viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
|
|
|
- }
|
|
|
- else if (parameters.focus_)
|
|
|
- {
|
|
|
- viewSize.x_ = Max(viewSize.x_, viewSize.y_);
|
|
|
- viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
|
|
|
- viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
|
|
|
- viewSize.y_ = viewSize.x_;
|
|
|
- }
|
|
|
-
|
|
|
- shadowCamera->SetOrthoSize(viewSize);
|
|
|
-
|
|
|
- // Center shadow camera to the view space bounding box
|
|
|
- Vector3 pos(shadowCamera->GetWorldPosition());
|
|
|
- Quaternion rot(shadowCamera->GetWorldRotation());
|
|
|
- Vector3 adjust(center.x_, center.y_, 0.0f);
|
|
|
- cameraNode->Translate(rot * adjust);
|
|
|
-
|
|
|
- // If the shadow map viewport is known, snap to whole texels
|
|
|
- if (shadowMapWidth > 0.0f)
|
|
|
- {
|
|
|
- Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
|
|
|
- // Take into account that shadow map border will not be used
|
|
|
- float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
|
|
|
- Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
|
|
|
- Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
|
|
|
- cameraNode->Translate(rot * snap);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::FindZone(Drawable* drawable, unsigned threadIndex)
|
|
|
-{
|
|
|
- Vector3 center = drawable->GetWorldBoundingBox().Center();
|
|
|
- int bestPriority = M_MIN_INT;
|
|
|
- Zone* newZone = 0;
|
|
|
-
|
|
|
- // If bounding box center is in view, can use the visible zones. Else must query via the octree
|
|
|
- if (frustum_.IsInside(center))
|
|
|
- {
|
|
|
- // First check if the last zone remains a conclusive result
|
|
|
- Zone* lastZone = drawable->GetLastZone();
|
|
|
- if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
|
|
|
- lastZone->GetPriority() >= highestZonePriority_)
|
|
|
- newZone = lastZone;
|
|
|
- else
|
|
|
- {
|
|
|
- for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
|
|
|
- {
|
|
|
- int priority = (*i)->GetPriority();
|
|
|
- if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
|
|
|
- {
|
|
|
- newZone = *i;
|
|
|
- bestPriority = priority;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- PODVector<Zone*>& tempZones = tempZones_[threadIndex];
|
|
|
- PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>&>(tempZones), center, DRAWABLE_ZONE);
|
|
|
- octree_->GetDrawables(query);
|
|
|
-
|
|
|
- bestPriority = M_MIN_INT;
|
|
|
- for (PODVector<Zone*>::Iterator i = tempZones.Begin(); i != tempZones.End(); ++i)
|
|
|
- {
|
|
|
- int priority = (*i)->GetPriority();
|
|
|
- if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
|
|
|
- {
|
|
|
- newZone = *i;
|
|
|
- bestPriority = priority;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- drawable->SetZone(newZone);
|
|
|
-}
|
|
|
-
|
|
|
-Zone* View::GetZone(Drawable* drawable)
|
|
|
-{
|
|
|
- if (cameraZoneOverride_)
|
|
|
- return cameraZone_;
|
|
|
- Zone* drawableZone = drawable->GetZone();
|
|
|
- return drawableZone ? drawableZone : cameraZone_;
|
|
|
-}
|
|
|
-
|
|
|
-unsigned View::GetLightMask(Drawable* drawable)
|
|
|
-{
|
|
|
- return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
|
|
|
-}
|
|
|
-
|
|
|
-unsigned View::GetShadowMask(Drawable* drawable)
|
|
|
-{
|
|
|
- return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
|
|
|
-}
|
|
|
-
|
|
|
-unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
|
|
|
-{
|
|
|
- unsigned long long hash = 0;
|
|
|
- for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
|
|
|
- hash += (unsigned long long)(*i);
|
|
|
- return hash;
|
|
|
-}
|
|
|
-
|
|
|
-Technique* View::GetTechnique(Drawable* drawable, Material*& material)
|
|
|
-{
|
|
|
- if (!material)
|
|
|
- material = renderer_->GetDefaultMaterial();
|
|
|
- if (!material)
|
|
|
- return 0;
|
|
|
-
|
|
|
- float lodDistance = drawable->GetLodDistance();
|
|
|
- const Vector<TechniqueEntry>& techniques = material->GetTechniques();
|
|
|
- if (techniques.Empty())
|
|
|
- return 0;
|
|
|
-
|
|
|
- // Check for suitable technique. Techniques should be ordered like this:
|
|
|
- // Most distant & highest quality
|
|
|
- // Most distant & lowest quality
|
|
|
- // Second most distant & highest quality
|
|
|
- // ...
|
|
|
- for (unsigned i = 0; i < techniques.Size(); ++i)
|
|
|
- {
|
|
|
- const TechniqueEntry& entry = techniques[i];
|
|
|
- Technique* technique = entry.technique_;
|
|
|
- if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
|
|
|
- continue;
|
|
|
- if (lodDistance >= entry.lodDistance_)
|
|
|
- return technique;
|
|
|
- }
|
|
|
-
|
|
|
- // If no suitable technique found, fallback to the last
|
|
|
- return techniques.Back().technique_;
|
|
|
-}
|
|
|
-
|
|
|
-void View::CheckMaterialForAuxView(Material* material)
|
|
|
-{
|
|
|
- const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
|
|
|
-
|
|
|
- for (unsigned i = 0; i < textures.Size(); ++i)
|
|
|
- {
|
|
|
- // Have to check cube & 2D textures separately
|
|
|
- Texture* texture = textures[i];
|
|
|
- if (texture)
|
|
|
- {
|
|
|
- if (texture->GetType() == Texture2D::GetTypeStatic())
|
|
|
- {
|
|
|
- Texture2D* tex2D = static_cast<Texture2D*>(texture);
|
|
|
- RenderSurface* target = tex2D->GetRenderSurface();
|
|
|
- if (target)
|
|
|
- {
|
|
|
- const Viewport& viewport = target->GetViewport();
|
|
|
- if (viewport.scene_ && viewport.camera_)
|
|
|
- renderer_->AddView(target, viewport);
|
|
|
- }
|
|
|
- }
|
|
|
- else if (texture->GetType() == TextureCube::GetTypeStatic())
|
|
|
- {
|
|
|
- TextureCube* texCube = static_cast<TextureCube*>(texture);
|
|
|
- for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
|
|
|
- {
|
|
|
- RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
|
|
|
- if (target)
|
|
|
- {
|
|
|
- const Viewport& viewport = target->GetViewport();
|
|
|
- if (viewport.scene_ && viewport.camera_)
|
|
|
- renderer_->AddView(target, viewport);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Set frame number so that we can early-out next time we come across this material on the same frame
|
|
|
- material->MarkForAuxView(frame_.frameNumber_);
|
|
|
-}
|
|
|
-
|
|
|
-void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows)
|
|
|
-{
|
|
|
- // Convert to instanced if possible
|
|
|
- if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
|
|
|
- batch.geometryType_ = GEOM_INSTANCED;
|
|
|
-
|
|
|
- batch.pass_ = pass;
|
|
|
- renderer_->SetBatchShaders(batch, tech, pass, allowShadows);
|
|
|
- batch.CalculateSortKey();
|
|
|
-}
|
|
|
-
|
|
|
-void View::PrepareInstancingBuffer()
|
|
|
-{
|
|
|
- PROFILE(PrepareInstancingBuffer);
|
|
|
-
|
|
|
- unsigned totalInstances = 0;
|
|
|
- bool prepass = renderer_->GetLightPrepass();
|
|
|
-
|
|
|
- totalInstances += baseQueue_.GetNumInstances(renderer_);
|
|
|
- totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
|
|
|
- if (prepass)
|
|
|
- totalInstances += gbufferQueue_.GetNumInstances(renderer_);
|
|
|
-
|
|
|
- for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
- {
|
|
|
- for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
|
|
|
- totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
|
|
|
- totalInstances += i->litBatches_.GetNumInstances(renderer_);
|
|
|
- }
|
|
|
-
|
|
|
- // If fail to set buffer size, fall back to per-group locking
|
|
|
- if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
|
|
|
- {
|
|
|
- VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
|
|
|
- unsigned freeIndex = 0;
|
|
|
- void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
|
|
|
- if (lockedData)
|
|
|
- {
|
|
|
- baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
- preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
- if (prepass)
|
|
|
- gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
-
|
|
|
- for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
- {
|
|
|
- for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
|
|
|
- i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
- i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
- }
|
|
|
-
|
|
|
- instancingBuffer->Unlock();
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::SetupLightBatch(Batch& batch)
|
|
|
-{
|
|
|
- Light* light = batch.lightQueue_->light_;
|
|
|
- LightType type = light->GetLightType();
|
|
|
- float lightDist;
|
|
|
-
|
|
|
- graphics_->SetAlphaTest(false);
|
|
|
- graphics_->SetBlendMode(BLEND_ADD);
|
|
|
- graphics_->SetDepthWrite(false);
|
|
|
-
|
|
|
- if (type != LIGHT_DIRECTIONAL)
|
|
|
- {
|
|
|
- if (type == LIGHT_POINT)
|
|
|
- lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
|
|
|
- else
|
|
|
- lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
|
|
|
-
|
|
|
- // Draw front faces if not inside light volume
|
|
|
- if (lightDist < camera_->GetNearClip() * 2.0f)
|
|
|
- {
|
|
|
- graphics_->SetCullMode(CULL_CW);
|
|
|
- graphics_->SetDepthTest(CMP_GREATER);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- graphics_->SetCullMode(CULL_CCW);
|
|
|
- graphics_->SetDepthTest(CMP_LESSEQUAL);
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- graphics_->SetCullMode(CULL_NONE);
|
|
|
- graphics_->SetDepthTest(CMP_LESSEQUAL);
|
|
|
- }
|
|
|
-
|
|
|
- /// \todo Set stencil test to check for light masks
|
|
|
- graphics_->SetScissorTest(false);
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
-}
|
|
|
-
|
|
|
-void View::DrawFullscreenQuad(Camera& camera, bool nearQuad)
|
|
|
-{
|
|
|
- Light quadDirLight(context_);
|
|
|
- Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
|
|
|
-
|
|
|
- graphics_->SetCullMode(CULL_NONE);
|
|
|
- graphics_->SetShaderParameter(VSP_MODEL, model);
|
|
|
- graphics_->SetShaderParameter(VSP_VIEWPROJ, camera.GetProjection());
|
|
|
- graphics_->ClearTransformSources();
|
|
|
-
|
|
|
- renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
|
|
|
-}
|
|
|
-
|
|
|
-void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor)
|
|
|
-{
|
|
|
- graphics_->SetScissorTest(false);
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
-
|
|
|
- // Base instanced
|
|
|
- for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
|
|
|
- queue.sortedBaseBatchGroups_.End(); ++i)
|
|
|
- {
|
|
|
- BatchGroup* group = *i;
|
|
|
- group->Draw(graphics_, renderer_);
|
|
|
- }
|
|
|
- // Base non-instanced
|
|
|
- for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
|
|
|
- {
|
|
|
- Batch* batch = *i;
|
|
|
- batch->Draw(graphics_, renderer_);
|
|
|
- }
|
|
|
-
|
|
|
- // Non-base instanced
|
|
|
- for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
|
|
|
- {
|
|
|
- BatchGroup* group = *i;
|
|
|
- if (useScissor && group->lightQueue_)
|
|
|
- OptimizeLightByScissor(group->lightQueue_->light_);
|
|
|
- group->Draw(graphics_, renderer_);
|
|
|
- }
|
|
|
- // Non-base non-instanced
|
|
|
- for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
|
|
|
- {
|
|
|
- Batch* batch = *i;
|
|
|
- if (useScissor)
|
|
|
- {
|
|
|
- if (!batch->isBase_ && batch->lightQueue_)
|
|
|
- OptimizeLightByScissor(batch->lightQueue_->light_);
|
|
|
- else
|
|
|
- graphics_->SetScissorTest(false);
|
|
|
- }
|
|
|
- batch->Draw(graphics_, renderer_);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::RenderLightBatchQueue(const BatchQueue& queue, Light* light)
|
|
|
-{
|
|
|
- graphics_->SetScissorTest(false);
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
-
|
|
|
- // Base instanced
|
|
|
- for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
|
|
|
- queue.sortedBaseBatchGroups_.End(); ++i)
|
|
|
- {
|
|
|
- BatchGroup* group = *i;
|
|
|
- group->Draw(graphics_, renderer_);
|
|
|
- }
|
|
|
- // Base non-instanced
|
|
|
- for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
|
|
|
- {
|
|
|
- Batch* batch = *i;
|
|
|
- batch->Draw(graphics_, renderer_);
|
|
|
- }
|
|
|
-
|
|
|
- // All base passes have been drawn. Optimize at this point by both stencil volume and scissor
|
|
|
- OptimizeLightByStencil(light);
|
|
|
- OptimizeLightByScissor(light);
|
|
|
-
|
|
|
- // Non-base instanced
|
|
|
- for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
|
|
|
- {
|
|
|
- BatchGroup* group = *i;
|
|
|
- group->Draw(graphics_, renderer_);
|
|
|
- }
|
|
|
- // Non-base non-instanced
|
|
|
- for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
|
|
|
- {
|
|
|
- Batch* batch = *i;
|
|
|
- batch->Draw(graphics_, renderer_);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void View::RenderShadowMap(const LightBatchQueue& queue)
|
|
|
-{
|
|
|
- PROFILE(RenderShadowMap);
|
|
|
-
|
|
|
- Texture2D* shadowMap = queue.shadowMap_;
|
|
|
-
|
|
|
- graphics_->SetStencilTest(false);
|
|
|
- graphics_->SetTexture(TU_SHADOWMAP, 0);
|
|
|
-
|
|
|
- if (!graphics_->GetFallback())
|
|
|
- {
|
|
|
- graphics_->SetColorWrite(false);
|
|
|
- graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
|
|
|
- graphics_->SetDepthStencil(shadowMap);
|
|
|
- graphics_->Clear(CLEAR_DEPTH);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- graphics_->SetColorWrite(true);
|
|
|
- graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface());
|
|
|
- graphics_->SetDepthStencil(shadowMap->GetRenderSurface()->GetLinkedDepthBuffer());
|
|
|
- graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH, Color::WHITE);
|
|
|
- }
|
|
|
-
|
|
|
- // Set shadow depth bias
|
|
|
- BiasParameters parameters = queue.light_->GetShadowBias();
|
|
|
- // Adjust the light's constant depth bias according to global shadow map resolution
|
|
|
- /// \todo Should remove this adjustment and find a more flexible solution
|
|
|
- unsigned shadowMapSize = renderer_->GetShadowMapSize();
|
|
|
- if (shadowMapSize <= 512)
|
|
|
- parameters.constantBias_ *= 2.0f;
|
|
|
- else if (shadowMapSize >= 2048)
|
|
|
- parameters.constantBias_ *= 0.5f;
|
|
|
-
|
|
|
- graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
|
|
|
-
|
|
|
- // Render each of the splits
|
|
|
- for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
|
|
|
- {
|
|
|
- const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
|
|
|
- if (!shadowQueue.shadowBatches_.IsEmpty())
|
|
|
- {
|
|
|
- graphics_->SetViewport(shadowQueue.shadowViewport_);
|
|
|
-
|
|
|
- // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
|
|
|
- // However, do not do this for point lights, which need to render continuously across cube faces
|
|
|
- float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
|
|
|
- if (queue.light_->GetLightType() != LIGHT_POINT)
|
|
|
- {
|
|
|
- float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
|
|
|
- Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
|
|
|
- graphics_->SetScissorTest(true, zoomRect, false);
|
|
|
- }
|
|
|
- else
|
|
|
- graphics_->SetScissorTest(false);
|
|
|
-
|
|
|
- // Draw instanced and non-instanced shadow casters
|
|
|
- RenderBatchQueue(shadowQueue.shadowBatches_);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- graphics_->SetColorWrite(true);
|
|
|
- graphics_->SetDepthBias(0.0f, 0.0f);
|
|
|
-}
|
|
|
+//
|
|
|
+// Urho3D Engine
|
|
|
+// Copyright (c) 2008-2011 Lasse Öörni
|
|
|
+//
|
|
|
+// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
+// of this software and associated documentation files (the "Software"), to deal
|
|
|
+// in the Software without restriction, including without limitation the rights
|
|
|
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
+// copies of the Software, and to permit persons to whom the Software is
|
|
|
+// furnished to do so, subject to the following conditions:
|
|
|
+//
|
|
|
+// The above copyright notice and this permission notice shall be included in
|
|
|
+// all copies or substantial portions of the Software.
|
|
|
+//
|
|
|
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
+// THE SOFTWARE.
|
|
|
+//
|
|
|
+
|
|
|
+#include "Precompiled.h"
|
|
|
+#include "Camera.h"
|
|
|
+#include "DebugRenderer.h"
|
|
|
+#include "Geometry.h"
|
|
|
+#include "Graphics.h"
|
|
|
+#include "Light.h"
|
|
|
+#include "Log.h"
|
|
|
+#include "Material.h"
|
|
|
+#include "OcclusionBuffer.h"
|
|
|
+#include "Octree.h"
|
|
|
+#include "Renderer.h"
|
|
|
+#include "Profiler.h"
|
|
|
+#include "Scene.h"
|
|
|
+#include "ShaderVariation.h"
|
|
|
+#include "Sort.h"
|
|
|
+#include "Technique.h"
|
|
|
+#include "Texture2D.h"
|
|
|
+#include "TextureCube.h"
|
|
|
+#include "VertexBuffer.h"
|
|
|
+#include "View.h"
|
|
|
+#include "WorkQueue.h"
|
|
|
+#include "Zone.h"
|
|
|
+
|
|
|
+#include "DebugNew.h"
|
|
|
+
|
|
|
+static const Vector3 directions[] =
|
|
|
+{
|
|
|
+ Vector3(1.0f, 0.0f, 0.0f),
|
|
|
+ Vector3(-1.0f, 0.0f, 0.0f),
|
|
|
+ Vector3(0.0f, 1.0f, 0.0f),
|
|
|
+ Vector3(0.0f, -1.0f, 0.0f),
|
|
|
+ Vector3(0.0f, 0.0f, 1.0f),
|
|
|
+ Vector3(0.0f, 0.0f, -1.0f)
|
|
|
+};
|
|
|
+
|
|
|
+static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
|
|
|
+
|
|
|
+void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
|
|
|
+{
|
|
|
+ View* view = reinterpret_cast<View*>(item->aux_);
|
|
|
+ Drawable** start = reinterpret_cast<Drawable**>(item->start_);
|
|
|
+ Drawable** end = reinterpret_cast<Drawable**>(item->end_);
|
|
|
+ Drawable** unculledStart = &view->tempDrawables_[0][0] + view->unculledDrawableStart_;
|
|
|
+ OcclusionBuffer* buffer = view->occlusionBuffer_;
|
|
|
+
|
|
|
+ while (start != end)
|
|
|
+ {
|
|
|
+ Drawable* drawable = *start;
|
|
|
+ bool useOcclusion = start < unculledStart;
|
|
|
+ unsigned char flags = drawable->GetDrawableFlags();
|
|
|
+ ++start;
|
|
|
+
|
|
|
+ if (flags & DRAWABLE_ZONE)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ drawable->UpdateDistance(view->frame_);
|
|
|
+
|
|
|
+ // If draw distance non-zero, check it
|
|
|
+ float maxDistance = drawable->GetDrawDistance();
|
|
|
+ if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (buffer && useOcclusion && !buffer->IsVisible(drawable->GetWorldBoundingBox()))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ drawable->MarkInView(view->frame_);
|
|
|
+
|
|
|
+ // For geometries, clear lights and find new zone if necessary
|
|
|
+ if (flags & DRAWABLE_GEOMETRY)
|
|
|
+ {
|
|
|
+ drawable->ClearLights();
|
|
|
+ if (!drawable->GetZone() && !view->cameraZoneOverride_)
|
|
|
+ view->FindZone(drawable, threadIndex);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
|
|
|
+{
|
|
|
+ View* view = reinterpret_cast<View*>(item->aux_);
|
|
|
+ LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
|
|
|
+
|
|
|
+ view->ProcessLight(*query, threadIndex);
|
|
|
+}
|
|
|
+
|
|
|
+void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
|
|
|
+{
|
|
|
+ const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
|
|
|
+ Drawable** start = reinterpret_cast<Drawable**>(item->start_);
|
|
|
+ Drawable** end = reinterpret_cast<Drawable**>(item->end_);
|
|
|
+
|
|
|
+ while (start != end)
|
|
|
+ {
|
|
|
+ Drawable* drawable = *start;
|
|
|
+ drawable->UpdateGeometry(frame);
|
|
|
+ ++start;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
|
|
|
+{
|
|
|
+ BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
|
|
|
+
|
|
|
+ queue->SortFrontToBack();
|
|
|
+}
|
|
|
+
|
|
|
+void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
|
|
|
+{
|
|
|
+ BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
|
|
|
+
|
|
|
+ queue->SortBackToFront();
|
|
|
+}
|
|
|
+
|
|
|
+void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
|
|
|
+{
|
|
|
+ LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
|
|
|
+ for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
|
|
|
+ start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
|
|
|
+ start->litBatches_.SortFrontToBack();
|
|
|
+}
|
|
|
+
|
|
|
+OBJECTTYPESTATIC(View);
|
|
|
+
|
|
|
+View::View(Context* context) :
|
|
|
+ Object(context),
|
|
|
+ graphics_(GetSubsystem<Graphics>()),
|
|
|
+ renderer_(GetSubsystem<Renderer>()),
|
|
|
+ octree_(0),
|
|
|
+ camera_(0),
|
|
|
+ cameraZone_(0),
|
|
|
+ farClipZone_(0),
|
|
|
+ renderTarget_(0),
|
|
|
+ depthStencil_(0)
|
|
|
+{
|
|
|
+ frame_.camera_ = 0;
|
|
|
+
|
|
|
+ // Create octree query vectors for each thread
|
|
|
+ tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
|
|
|
+ tempZones_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
|
|
|
+}
|
|
|
+
|
|
|
+View::~View()
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
|
|
|
+{
|
|
|
+ if (!viewport.scene_ || !viewport.camera_)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // If scene is loading asynchronously, it is incomplete and should not be rendered
|
|
|
+ if (viewport.scene_->IsAsyncLoading())
|
|
|
+ return false;
|
|
|
+
|
|
|
+ Octree* octree = viewport.scene_->GetComponent<Octree>();
|
|
|
+ if (!octree)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // Check for the render texture being too large
|
|
|
+ if (renderer_->GetLightPrepass() && renderTarget)
|
|
|
+ {
|
|
|
+ if (renderTarget->GetWidth() > graphics_->GetWidth() || renderTarget->GetHeight() > graphics_->GetHeight())
|
|
|
+ {
|
|
|
+ // Display message only once per render target, do not spam each frame
|
|
|
+ if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
|
|
|
+ {
|
|
|
+ gBufferErrorDisplayed_.Insert(renderTarget);
|
|
|
+ LOGERROR("Render texture is larger than the G-buffer, can not render");
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ octree_ = octree;
|
|
|
+ camera_ = viewport.camera_;
|
|
|
+ renderTarget_ = renderTarget;
|
|
|
+
|
|
|
+ if (!renderTarget)
|
|
|
+ depthStencil_ = 0;
|
|
|
+ else
|
|
|
+ depthStencil_ = renderTarget->GetLinkedDepthBuffer();
|
|
|
+
|
|
|
+ // Validate the rect and calculate size. If zero rect, use whole render target size
|
|
|
+ int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
|
|
|
+ int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
|
|
|
+ if (viewport.rect_ != IntRect::ZERO)
|
|
|
+ {
|
|
|
+ screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
|
|
|
+ screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
|
|
|
+ screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
|
|
|
+ screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
|
|
|
+ width_ = screenRect_.right_ - screenRect_.left_;
|
|
|
+ height_ = screenRect_.bottom_ - screenRect_.top_;
|
|
|
+
|
|
|
+ // Set possible quality overrides from the camera
|
|
|
+ drawShadows_ = renderer_->GetDrawShadows();
|
|
|
+ materialQuality_ = renderer_->GetMaterialQuality();
|
|
|
+ maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
|
|
|
+
|
|
|
+ unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
|
|
|
+ if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
|
|
|
+ materialQuality_ = QUALITY_LOW;
|
|
|
+ if (viewOverrideFlags & VO_DISABLE_SHADOWS)
|
|
|
+ drawShadows_ = false;
|
|
|
+ if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
|
|
|
+ maxOccluderTriangles_ = 0;
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+void View::Update(const FrameInfo& frame)
|
|
|
+{
|
|
|
+ if (!camera_ || !octree_)
|
|
|
+ return;
|
|
|
+
|
|
|
+ frame_.camera_ = camera_;
|
|
|
+ frame_.timeStep_ = frame.timeStep_;
|
|
|
+ frame_.frameNumber_ = frame.frameNumber_;
|
|
|
+ frame_.viewSize_ = IntVector2(width_, height_);
|
|
|
+
|
|
|
+ // Clear old light scissor cache, geometry, light, occluder & batch lists
|
|
|
+ lightScissorCache_.Clear();
|
|
|
+ geometries_.Clear();
|
|
|
+ allGeometries_.Clear();
|
|
|
+ geometryDepthBounds_.Clear();
|
|
|
+ lights_.Clear();
|
|
|
+ zones_.Clear();
|
|
|
+ occluders_.Clear();
|
|
|
+ baseQueue_.Clear();
|
|
|
+ preAlphaQueue_.Clear();
|
|
|
+ gbufferQueue_.Clear();
|
|
|
+ alphaQueue_.Clear();
|
|
|
+ postAlphaQueue_.Clear();
|
|
|
+ lightQueues_.Clear();
|
|
|
+ vertexLightQueues_.Clear();
|
|
|
+
|
|
|
+ // Do not update if camera projection is illegal
|
|
|
+ // (there is a possibility of crash if occlusion is used and it can not clip properly)
|
|
|
+ if (!camera_->IsProjectionValid())
|
|
|
+ return;
|
|
|
+
|
|
|
+ // Set automatic aspect ratio if required
|
|
|
+ if (camera_->GetAutoAspectRatio())
|
|
|
+ camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
|
|
|
+
|
|
|
+ // Cache the camera frustum to avoid recalculating it constantly
|
|
|
+ frustum_ = camera_->GetFrustum();
|
|
|
+
|
|
|
+ // Reset shadow map allocations; they can be reused between views as each is rendered completely at a time
|
|
|
+ renderer_->ResetShadowMapAllocations();
|
|
|
+
|
|
|
+ GetDrawables();
|
|
|
+ GetBatches();
|
|
|
+ UpdateGeometries();
|
|
|
+}
|
|
|
+
|
|
|
+void View::Render()
|
|
|
+{
|
|
|
+ if (!octree_ || !camera_)
|
|
|
+ return;
|
|
|
+
|
|
|
+ // Forget parameter sources from the previous view
|
|
|
+ graphics_->ClearParameterSources();
|
|
|
+
|
|
|
+ // If stream offset is supported, write all instance transforms to a single large buffer
|
|
|
+ // Else we must lock the instance buffer for each batch group
|
|
|
+ if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
|
|
|
+ PrepareInstancingBuffer();
|
|
|
+
|
|
|
+ // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
|
|
|
+ // again to ensure correct projection will be used
|
|
|
+ if (camera_->GetAutoAspectRatio())
|
|
|
+ camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_));
|
|
|
+
|
|
|
+ graphics_->SetColorWrite(true);
|
|
|
+ graphics_->SetFillMode(FILL_SOLID);
|
|
|
+
|
|
|
+ // Bind the face selection and indirection cube maps for point light shadows
|
|
|
+ graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
|
|
|
+ graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
|
|
|
+
|
|
|
+ // Render
|
|
|
+ if (renderer_->GetLightPrepass())
|
|
|
+ RenderBatchesLightPrepass();
|
|
|
+ else
|
|
|
+ RenderBatchesForward();
|
|
|
+
|
|
|
+ graphics_->SetScissorTest(false);
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+ graphics_->ResetStreamFrequencies();
|
|
|
+
|
|
|
+ // If this is a main view, draw the associated debug geometry now
|
|
|
+ if (!renderTarget_)
|
|
|
+ {
|
|
|
+ Scene* scene = static_cast<Scene*>(octree_->GetNode());
|
|
|
+ if (scene)
|
|
|
+ {
|
|
|
+ DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
|
|
|
+ if (debug)
|
|
|
+ {
|
|
|
+ debug->SetView(camera_);
|
|
|
+ debug->Render();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // "Forget" the camera, octree and zone after rendering
|
|
|
+ camera_ = 0;
|
|
|
+ octree_ = 0;
|
|
|
+ cameraZone_ = 0;
|
|
|
+ farClipZone_ = 0;
|
|
|
+ occlusionBuffer_ = 0;
|
|
|
+ frame_.camera_ = 0;
|
|
|
+}
|
|
|
+
|
|
|
+void View::GetDrawables()
|
|
|
+{
|
|
|
+ PROFILE(GetDrawables);
|
|
|
+
|
|
|
+ WorkQueue* queue = GetSubsystem<WorkQueue>();
|
|
|
+ PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
|
|
|
+
|
|
|
+ // Perform one octree query to get everything, then examine the results
|
|
|
+ FrustumOctreeQuery query(tempDrawables, frustum_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT | DRAWABLE_ZONE);
|
|
|
+ octree_->GetDrawables(query);
|
|
|
+
|
|
|
+ // Add unculled geometries & lights
|
|
|
+ unculledDrawableStart_ = tempDrawables.Size();
|
|
|
+ octree_->GetUnculledDrawables(tempDrawables, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
|
|
|
+
|
|
|
+ // Get zones and occluders first
|
|
|
+ highestZonePriority_ = M_MIN_INT;
|
|
|
+ int bestPriority = M_MIN_INT;
|
|
|
+ Vector3 cameraPos = camera_->GetWorldPosition();
|
|
|
+
|
|
|
+ // Get default zone first in case we do not have zones defined
|
|
|
+ Zone* defaultZone = renderer_->GetDefaultZone();
|
|
|
+ cameraZone_ = farClipZone_ = defaultZone;
|
|
|
+
|
|
|
+ for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
|
|
|
+ {
|
|
|
+ Drawable* drawable = *i;
|
|
|
+ unsigned char flags = drawable->GetDrawableFlags();
|
|
|
+
|
|
|
+ if (flags & DRAWABLE_ZONE)
|
|
|
+ {
|
|
|
+ Zone* zone = static_cast<Zone*>(drawable);
|
|
|
+ zones_.Push(zone);
|
|
|
+ int priority = zone->GetPriority();
|
|
|
+ if (priority > highestZonePriority_)
|
|
|
+ highestZonePriority_ = priority;
|
|
|
+ if (zone->IsInside(cameraPos) && priority > bestPriority)
|
|
|
+ {
|
|
|
+ cameraZone_ = zone;
|
|
|
+ bestPriority = priority;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (flags & DRAWABLE_GEOMETRY && drawable->IsOccluder())
|
|
|
+ occluders_.Push(drawable);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
|
|
|
+ cameraZoneOverride_ = cameraZone_->GetOverride();
|
|
|
+ if (!cameraZoneOverride_)
|
|
|
+ {
|
|
|
+ Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0, 0, camera_->GetFarClip());
|
|
|
+ bestPriority = M_MIN_INT;
|
|
|
+
|
|
|
+ for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
|
|
|
+ {
|
|
|
+ int priority = (*i)->GetPriority();
|
|
|
+ if ((*i)->IsInside(farClipPos) && priority > bestPriority)
|
|
|
+ {
|
|
|
+ farClipZone_ = *i;
|
|
|
+ bestPriority = priority;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (farClipZone_ == defaultZone)
|
|
|
+ farClipZone_ = cameraZone_;
|
|
|
+
|
|
|
+ // If occlusion in use, get & render the occluders
|
|
|
+ occlusionBuffer_ = 0;
|
|
|
+ if (maxOccluderTriangles_ > 0)
|
|
|
+ {
|
|
|
+ UpdateOccluders(occluders_, camera_);
|
|
|
+ if (occluders_.Size())
|
|
|
+ {
|
|
|
+ PROFILE(DrawOcclusion);
|
|
|
+
|
|
|
+ occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
|
|
|
+ DrawOccluders(occlusionBuffer_, occluders_);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check visibility and find zones for moved drawables in worker threads
|
|
|
+ {
|
|
|
+ WorkItem item;
|
|
|
+ item.workFunction_ = CheckVisibilityWork;
|
|
|
+ item.aux_ = this;
|
|
|
+
|
|
|
+ PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
|
|
|
+ while (start != tempDrawables.End())
|
|
|
+ {
|
|
|
+ PODVector<Drawable*>::Iterator end = tempDrawables.End();
|
|
|
+ if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
|
|
|
+ end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
|
|
|
+
|
|
|
+ item.start_ = &(*start);
|
|
|
+ item.end_ = &(*end);
|
|
|
+ queue->AddWorkItem(item);
|
|
|
+
|
|
|
+ start = end;
|
|
|
+ }
|
|
|
+
|
|
|
+ queue->Complete();
|
|
|
+ }
|
|
|
+
|
|
|
+ // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
|
|
|
+ sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
|
|
|
+ sceneBox_.defined_ = false;
|
|
|
+ sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
|
|
|
+ sceneViewBox_.defined_ = false;
|
|
|
+ Matrix3x4 view(camera_->GetInverseWorldTransform());
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < tempDrawables.Size(); ++i)
|
|
|
+ {
|
|
|
+ Drawable* drawable = tempDrawables[i];
|
|
|
+ unsigned char flags = drawable->GetDrawableFlags();
|
|
|
+ if (flags & DRAWABLE_ZONE || !drawable->IsInView(frame_))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (flags & DRAWABLE_GEOMETRY)
|
|
|
+ {
|
|
|
+ // Expand the scene bounding boxes. However, do not take "infinite" objects such as the skybox into account,
|
|
|
+ // as the bounding boxes are also used for shadow focusing
|
|
|
+ const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
|
|
|
+ BoundingBox geomViewBox = geomBox.Transformed(view);
|
|
|
+ if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
|
|
|
+ {
|
|
|
+ sceneBox_.Merge(geomBox);
|
|
|
+ sceneViewBox_.Merge(geomViewBox);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Store depth info for split directional light queries
|
|
|
+ GeometryDepthBounds bounds;
|
|
|
+ bounds.min_ = geomViewBox.min_.z_;
|
|
|
+ bounds.max_ = geomViewBox.max_.z_;
|
|
|
+
|
|
|
+ geometryDepthBounds_.Push(bounds);
|
|
|
+ geometries_.Push(drawable);
|
|
|
+ allGeometries_.Push(drawable);
|
|
|
+ }
|
|
|
+ else if (flags & DRAWABLE_LIGHT)
|
|
|
+ {
|
|
|
+ Light* light = static_cast<Light*>(drawable);
|
|
|
+ lights_.Push(light);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Sort the lights to brightest/closest first
|
|
|
+ for (unsigned i = 0; i < lights_.Size(); ++i)
|
|
|
+ {
|
|
|
+ Light* light = lights_[i];
|
|
|
+ light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
|
|
|
+ }
|
|
|
+
|
|
|
+ Sort(lights_.Begin(), lights_.End(), CompareDrawables);
|
|
|
+}
|
|
|
+
|
|
|
+void View::GetBatches()
|
|
|
+{
|
|
|
+ WorkQueue* queue = GetSubsystem<WorkQueue>();
|
|
|
+ bool prepass = renderer_->GetLightPrepass();
|
|
|
+
|
|
|
+ // Process lit geometries and shadow casters for each light
|
|
|
+ {
|
|
|
+ PROFILE_MULTIPLE(ProcessLights, lights_.Size());
|
|
|
+
|
|
|
+ lightQueryResults_.Resize(lights_.Size());
|
|
|
+
|
|
|
+ WorkItem item;
|
|
|
+ item.workFunction_ = ProcessLightWork;
|
|
|
+ item.aux_ = this;
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
|
|
|
+ {
|
|
|
+ LightQueryResult& query = lightQueryResults_[i];
|
|
|
+ query.light_ = lights_[i];
|
|
|
+
|
|
|
+ item.start_ = &query;
|
|
|
+ queue->AddWorkItem(item);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Ensure all lights have been processed before proceeding
|
|
|
+ queue->Complete();
|
|
|
+ }
|
|
|
+
|
|
|
+ // Build light queues and lit batches
|
|
|
+ {
|
|
|
+ bool fallback = graphics_->GetFallback();
|
|
|
+
|
|
|
+ maxLightsDrawables_.Clear();
|
|
|
+ lightQueueMapping_.Clear();
|
|
|
+
|
|
|
+ for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
|
|
|
+ {
|
|
|
+ const LightQueryResult& query = *i;
|
|
|
+ if (query.litGeometries_.Empty())
|
|
|
+ continue;
|
|
|
+
|
|
|
+ PROFILE(GetLightBatches);
|
|
|
+
|
|
|
+ Light* light = query.light_;
|
|
|
+
|
|
|
+ // Per-pixel light
|
|
|
+ if (!light->GetPerVertex())
|
|
|
+ {
|
|
|
+ unsigned shadowSplits = query.numSplits_;
|
|
|
+
|
|
|
+ // Initialize light queue. Store light-to-queue mapping so that the queue can be found later
|
|
|
+ lightQueues_.Resize(lightQueues_.Size() + 1);
|
|
|
+ LightBatchQueue& lightQueue = lightQueues_.Back();
|
|
|
+ lightQueueMapping_[light] = &lightQueue;
|
|
|
+ lightQueue.light_ = light;
|
|
|
+ lightQueue.litBatches_.Clear();
|
|
|
+ lightQueue.volumeBatches_.Clear();
|
|
|
+
|
|
|
+ // Allocate shadow map now
|
|
|
+ lightQueue.shadowMap_ = 0;
|
|
|
+ if (shadowSplits > 0)
|
|
|
+ {
|
|
|
+ lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, width_, height_);
|
|
|
+ // If did not manage to get a shadow map, convert the light to unshadowed
|
|
|
+ if (!lightQueue.shadowMap_)
|
|
|
+ shadowSplits = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Setup shadow batch queues
|
|
|
+ lightQueue.shadowSplits_.Resize(shadowSplits);
|
|
|
+ for (unsigned j = 0; j < shadowSplits; ++j)
|
|
|
+ {
|
|
|
+ ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
|
|
|
+ Camera* shadowCamera = query.shadowCameras_[j];
|
|
|
+ shadowQueue.shadowCamera_ = shadowCamera;
|
|
|
+ shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
|
|
|
+ shadowQueue.farSplit_ = query.shadowFarSplits_[j];
|
|
|
+
|
|
|
+ // Setup the shadow split viewport and finalize shadow camera parameters
|
|
|
+ shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
|
|
|
+ FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
|
|
|
+
|
|
|
+ // Loop through shadow casters
|
|
|
+ for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
|
|
|
+ k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
|
|
|
+ {
|
|
|
+ Drawable* drawable = *k;
|
|
|
+ if (!drawable->IsInView(frame_, false))
|
|
|
+ {
|
|
|
+ drawable->MarkInView(frame_, false);
|
|
|
+ allGeometries_.Push(drawable);
|
|
|
+ }
|
|
|
+
|
|
|
+ unsigned numBatches = drawable->GetNumBatches();
|
|
|
+
|
|
|
+ for (unsigned l = 0; l < numBatches; ++l)
|
|
|
+ {
|
|
|
+ Batch shadowBatch;
|
|
|
+ drawable->GetBatch(shadowBatch, frame_, l);
|
|
|
+
|
|
|
+ Technique* tech = GetTechnique(drawable, shadowBatch.material_);
|
|
|
+ if (!shadowBatch.geometry_ || !tech)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ Pass* pass = tech->GetPass(PASS_SHADOW);
|
|
|
+ // Skip if material has no shadow pass
|
|
|
+ if (!pass)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Fill the rest of the batch
|
|
|
+ shadowBatch.camera_ = shadowCamera;
|
|
|
+ shadowBatch.zone_ = GetZone(drawable);
|
|
|
+ shadowBatch.lightQueue_ = &lightQueue;
|
|
|
+
|
|
|
+ FinalizeBatch(shadowBatch, tech, pass);
|
|
|
+ shadowQueue.shadowBatches_.AddBatch(shadowBatch);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Loop through lit geometries
|
|
|
+ for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
|
|
|
+ {
|
|
|
+ Drawable* drawable = *j;
|
|
|
+ drawable->AddLight(light);
|
|
|
+
|
|
|
+ // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
|
|
|
+ if (!drawable->GetMaxLights())
|
|
|
+ GetLitBatches(drawable, lightQueue);
|
|
|
+ else
|
|
|
+ maxLightsDrawables_.Insert(drawable);
|
|
|
+ }
|
|
|
+
|
|
|
+ // In light pre-pass mode, store the light volume batch now
|
|
|
+ if (prepass)
|
|
|
+ {
|
|
|
+ /// \todo Handle SM2 multiple batches for shadowed directional lights
|
|
|
+ Batch volumeBatch;
|
|
|
+ volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
|
|
|
+ volumeBatch.worldTransform_ = &light->GetVolumeTransform(*camera_);
|
|
|
+ volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
|
|
|
+ volumeBatch.camera_ = camera_;
|
|
|
+ volumeBatch.lightQueue_ = &lightQueue;
|
|
|
+ volumeBatch.distance_ = light->GetDistance();
|
|
|
+ volumeBatch.material_ = 0;
|
|
|
+ volumeBatch.pass_ = 0;
|
|
|
+ volumeBatch.zone_ = 0;
|
|
|
+ renderer_->SetLightVolumeShaders(volumeBatch);
|
|
|
+ lightQueue.volumeBatches_.Push(volumeBatch);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Per-vertex light
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Loop through lit geometries
|
|
|
+ for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
|
|
|
+ {
|
|
|
+ Drawable* drawable = *j;
|
|
|
+ drawable->AddVertexLight(light);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Process drawables with limited per-pixel light count
|
|
|
+ if (maxLightsDrawables_.Size())
|
|
|
+ {
|
|
|
+ PROFILE(GetMaxLightsBatches);
|
|
|
+
|
|
|
+ for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
|
|
|
+ {
|
|
|
+ Drawable* drawable = *i;
|
|
|
+ drawable->LimitLights();
|
|
|
+ const PODVector<Light*>& lights = drawable->GetLights();
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < lights.Size(); ++i)
|
|
|
+ {
|
|
|
+ Light* light = lights[i];
|
|
|
+ // Find the correct light queue again
|
|
|
+ Map<Light*, LightBatchQueue*>::Iterator j = lightQueueMapping_.Find(light);
|
|
|
+ if (j != lightQueueMapping_.End())
|
|
|
+ GetLitBatches(drawable, *(j->second_));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Build base pass batches
|
|
|
+ {
|
|
|
+ PROFILE(GetBaseBatches);
|
|
|
+ for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
|
|
|
+ {
|
|
|
+ Drawable* drawable = *i;
|
|
|
+ unsigned numBatches = drawable->GetNumBatches();
|
|
|
+
|
|
|
+ for (unsigned j = 0; j < numBatches; ++j)
|
|
|
+ {
|
|
|
+ Batch baseBatch;
|
|
|
+ drawable->GetBatch(baseBatch, frame_, j);
|
|
|
+
|
|
|
+ Technique* tech = GetTechnique(drawable, baseBatch.material_);
|
|
|
+ if (!baseBatch.geometry_ || !tech)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Check here if the material technique refers to a render target texture with camera(s) attached
|
|
|
+ // Only check this for the main view (null render target)
|
|
|
+ if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
|
|
|
+ CheckMaterialForAuxView(baseBatch.material_);
|
|
|
+
|
|
|
+ // Fill the rest of the batch
|
|
|
+ baseBatch.camera_ = camera_;
|
|
|
+ baseBatch.zone_ = GetZone(drawable);
|
|
|
+ baseBatch.isBase_ = true;
|
|
|
+
|
|
|
+ Pass* pass = 0;
|
|
|
+
|
|
|
+ // In light prepass mode check for G-buffer and material passes first
|
|
|
+ if (prepass)
|
|
|
+ {
|
|
|
+ pass = tech->GetPass(PASS_GBUFFER);
|
|
|
+ if (pass)
|
|
|
+ {
|
|
|
+ FinalizeBatch(baseBatch, tech, pass);
|
|
|
+ gbufferQueue_.AddBatch(baseBatch);
|
|
|
+
|
|
|
+ // Use PASS_MATERIAL instead of PASS_BASE to distinguish between light pre-pass forward pass (which
|
|
|
+ // uses the light accumulation result) and actual forward unlit base pass
|
|
|
+ pass = tech->GetPass(PASS_MATERIAL);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // If object already has a pixel lit base pass, can skip the unlit base pass
|
|
|
+ if (!pass)
|
|
|
+ {
|
|
|
+ if (drawable->HasBasePass(j))
|
|
|
+ continue;
|
|
|
+ // Check for unlit or vertex lit base pass
|
|
|
+ pass = tech->GetPass(PASS_BASE);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (pass)
|
|
|
+ {
|
|
|
+ // Check for vertex lights now
|
|
|
+ const PODVector<Light*>& vertexLights = drawable->GetVertexLights();
|
|
|
+ if (!vertexLights.Empty())
|
|
|
+ {
|
|
|
+ drawable->LimitVertexLights();
|
|
|
+
|
|
|
+ // Find a vertex light queue. If not found, create new
|
|
|
+ unsigned long long hash = GetVertexLightQueueHash(vertexLights);
|
|
|
+ HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
|
|
|
+ if (i == vertexLightQueues_.End())
|
|
|
+ {
|
|
|
+ vertexLightQueues_[hash].vertexLights_ = vertexLights;
|
|
|
+ i = vertexLightQueues_.Find(hash);
|
|
|
+ }
|
|
|
+
|
|
|
+ baseBatch.lightQueue_ = &(i->second_);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (pass->GetBlendMode() == BLEND_REPLACE)
|
|
|
+ {
|
|
|
+ FinalizeBatch(baseBatch, tech, pass);
|
|
|
+ baseQueue_.AddBatch(baseBatch);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Transparent batches can not be instanced
|
|
|
+ FinalizeBatch(baseBatch, tech, pass, false);
|
|
|
+ alphaQueue_.AddBatch(baseBatch);
|
|
|
+ }
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // If no base pass, finally check for pre-alpha / post-alpha custom passes
|
|
|
+ pass = tech->GetPass(PASS_PREALPHA);
|
|
|
+ if (pass)
|
|
|
+ {
|
|
|
+ FinalizeBatch(baseBatch, tech, pass);
|
|
|
+ preAlphaQueue_.AddBatch(baseBatch);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ pass = tech->GetPass(PASS_POSTALPHA);
|
|
|
+ if (pass)
|
|
|
+ {
|
|
|
+ // Post-alpha pass is treated similarly as alpha, and is not instanced
|
|
|
+ FinalizeBatch(baseBatch, tech, pass, false);
|
|
|
+ postAlphaQueue_.AddBatch(baseBatch);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::UpdateGeometries()
|
|
|
+{
|
|
|
+ PROFILE(UpdateGeometries);
|
|
|
+
|
|
|
+ WorkQueue* queue = GetSubsystem<WorkQueue>();
|
|
|
+
|
|
|
+ // Sort batches
|
|
|
+ {
|
|
|
+ WorkItem item;
|
|
|
+
|
|
|
+ item.workFunction_ = SortBatchQueueFrontToBackWork;
|
|
|
+ item.start_ = &baseQueue_;
|
|
|
+ queue->AddWorkItem(item);
|
|
|
+ item.start_ = &preAlphaQueue_;
|
|
|
+ queue->AddWorkItem(item);
|
|
|
+ if (renderer_->GetLightPrepass())
|
|
|
+ {
|
|
|
+ item.start_ = &gbufferQueue_;
|
|
|
+ queue->AddWorkItem(item);
|
|
|
+ }
|
|
|
+
|
|
|
+ item.workFunction_ = SortBatchQueueBackToFrontWork;
|
|
|
+ item.start_ = &alphaQueue_;
|
|
|
+ queue->AddWorkItem(item);
|
|
|
+ item.start_ = &postAlphaQueue_;
|
|
|
+ queue->AddWorkItem(item);
|
|
|
+
|
|
|
+ for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
+ {
|
|
|
+ item.workFunction_ = SortLightQueueWork;
|
|
|
+ item.start_ = &(*i);
|
|
|
+ queue->AddWorkItem(item);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Update geometries. Split into threaded and non-threaded updates.
|
|
|
+ {
|
|
|
+ nonThreadedGeometries_.Clear();
|
|
|
+ threadedGeometries_.Clear();
|
|
|
+ for (PODVector<Drawable*>::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i)
|
|
|
+ {
|
|
|
+ UpdateGeometryType type = (*i)->GetUpdateGeometryType();
|
|
|
+ if (type == UPDATE_MAIN_THREAD)
|
|
|
+ nonThreadedGeometries_.Push(*i);
|
|
|
+ else if (type == UPDATE_WORKER_THREAD)
|
|
|
+ threadedGeometries_.Push(*i);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (threadedGeometries_.Size())
|
|
|
+ {
|
|
|
+ WorkItem item;
|
|
|
+ item.workFunction_ = UpdateDrawableGeometriesWork;
|
|
|
+ item.aux_ = const_cast<FrameInfo*>(&frame_);
|
|
|
+
|
|
|
+ PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
|
|
|
+ while (start != threadedGeometries_.End())
|
|
|
+ {
|
|
|
+ PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
|
|
|
+ if (end - start > DRAWABLES_PER_WORK_ITEM)
|
|
|
+ end = start + DRAWABLES_PER_WORK_ITEM;
|
|
|
+
|
|
|
+ item.start_ = &(*start);
|
|
|
+ item.end_ = &(*end);
|
|
|
+ queue->AddWorkItem(item);
|
|
|
+
|
|
|
+ start = end;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // While the work queue is processed, update non-threaded geometries
|
|
|
+ for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
|
|
|
+ (*i)->UpdateGeometry(frame_);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Finally ensure all threaded work has completed
|
|
|
+ queue->Complete();
|
|
|
+}
|
|
|
+
|
|
|
+void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
|
|
|
+{
|
|
|
+ Light* light = lightQueue.light_;
|
|
|
+ Light* firstLight = drawable->GetFirstLight();
|
|
|
+ bool prepass = renderer_->GetLightPrepass();
|
|
|
+ // Shadows on transparencies can only be rendered if shadow maps are not reused
|
|
|
+ bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
|
|
|
+ bool hasVertexLights = drawable->GetVertexLights().Size() > 0;
|
|
|
+ unsigned numBatches = drawable->GetNumBatches();
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < numBatches; ++i)
|
|
|
+ {
|
|
|
+ Batch litBatch;
|
|
|
+ drawable->GetBatch(litBatch, frame_, i);
|
|
|
+
|
|
|
+ Technique* tech = GetTechnique(drawable, litBatch.material_);
|
|
|
+ if (!litBatch.geometry_ || !tech)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ Pass* pass = 0;
|
|
|
+
|
|
|
+ // Do not create pixel lit passes for materials that render into the G-buffer
|
|
|
+ if (prepass && tech->HasPass(PASS_GBUFFER))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
|
|
|
+ // Also vertex lighting requires the non-lit base pass, so skip if any vertex lights
|
|
|
+ if (light == firstLight && !hasVertexLights && !drawable->HasBasePass(i))
|
|
|
+ {
|
|
|
+ pass = tech->GetPass(PASS_LITBASE);
|
|
|
+ if (pass)
|
|
|
+ {
|
|
|
+ litBatch.isBase_ = true;
|
|
|
+ drawable->SetBasePass(i);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // If no lit base pass, get ordinary light pass
|
|
|
+ if (!pass)
|
|
|
+ pass = tech->GetPass(PASS_LIGHT);
|
|
|
+ // Skip if material does not receive light at all
|
|
|
+ if (!pass)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Fill the rest of the batch
|
|
|
+ litBatch.camera_ = camera_;
|
|
|
+ litBatch.lightQueue_ = &lightQueue;
|
|
|
+ litBatch.zone_ = GetZone(drawable);
|
|
|
+
|
|
|
+ // Check from the ambient pass whether the object is opaque or transparent
|
|
|
+ Pass* ambientPass = tech->GetPass(PASS_BASE);
|
|
|
+ if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
|
|
|
+ {
|
|
|
+ FinalizeBatch(litBatch, tech, pass);
|
|
|
+ lightQueue.litBatches_.AddBatch(litBatch);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Transparent batches can not be instanced
|
|
|
+ FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows);
|
|
|
+ alphaQueue_.AddBatch(litBatch);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::RenderBatchesForward()
|
|
|
+{
|
|
|
+ // Reset the light optimization stencil reference value
|
|
|
+ lightStencilValue_ = 1;
|
|
|
+
|
|
|
+ // If not reusing shadowmaps, render all of them first
|
|
|
+ if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
|
|
|
+ {
|
|
|
+ PROFILE(RenderShadowMaps);
|
|
|
+
|
|
|
+ for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
+ {
|
|
|
+ if (i->shadowMap_)
|
|
|
+ RenderShadowMap(*i);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ graphics_->SetRenderTarget(0, renderTarget_);
|
|
|
+ graphics_->SetDepthStencil(depthStencil_);
|
|
|
+ graphics_->SetViewport(screenRect_);
|
|
|
+ graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, farClipZone_->GetFogColor());
|
|
|
+
|
|
|
+ if (!baseQueue_.IsEmpty())
|
|
|
+ {
|
|
|
+ // Render opaque object unlit base pass
|
|
|
+ PROFILE(RenderBase);
|
|
|
+
|
|
|
+ RenderBatchQueue(baseQueue_);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!lightQueues_.Empty())
|
|
|
+ {
|
|
|
+ // Render shadow maps + opaque objects' shadowed additive lighting
|
|
|
+ PROFILE(RenderLights);
|
|
|
+
|
|
|
+ for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
+ {
|
|
|
+ // If reusing shadowmaps, render each of them before the lit batches
|
|
|
+ if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
|
|
|
+ {
|
|
|
+ RenderShadowMap(*i);
|
|
|
+ graphics_->SetRenderTarget(0, renderTarget_);
|
|
|
+ graphics_->SetDepthStencil(depthStencil_);
|
|
|
+ graphics_->SetViewport(screenRect_);
|
|
|
+ }
|
|
|
+
|
|
|
+ RenderLightBatchQueue(i->litBatches_, i->light_);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ graphics_->SetScissorTest(false);
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+ graphics_->SetRenderTarget(0, renderTarget_);
|
|
|
+ graphics_->SetDepthStencil(depthStencil_);
|
|
|
+ graphics_->SetViewport(screenRect_);
|
|
|
+
|
|
|
+ if (!preAlphaQueue_.IsEmpty())
|
|
|
+ {
|
|
|
+ // Render pre-alpha custom pass
|
|
|
+ PROFILE(RenderPreAlpha);
|
|
|
+
|
|
|
+ RenderBatchQueue(preAlphaQueue_);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!alphaQueue_.IsEmpty())
|
|
|
+ {
|
|
|
+ // Render transparent objects (both base passes & additive lighting)
|
|
|
+ PROFILE(RenderAlpha);
|
|
|
+
|
|
|
+ RenderBatchQueue(alphaQueue_, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!postAlphaQueue_.IsEmpty())
|
|
|
+ {
|
|
|
+ // Render pre-alpha custom pass
|
|
|
+ PROFILE(RenderPostAlpha);
|
|
|
+
|
|
|
+ RenderBatchQueue(postAlphaQueue_);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::RenderBatchesLightPrepass()
|
|
|
+{
|
|
|
+ // If not reusing shadowmaps, render all of them first
|
|
|
+ if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
|
|
|
+ {
|
|
|
+ PROFILE(RenderShadowMaps);
|
|
|
+
|
|
|
+ for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
+ {
|
|
|
+ if (i->shadowMap_)
|
|
|
+ RenderShadowMap(*i);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Render the G-buffer
|
|
|
+ Texture2D* normalBuffer = renderer_->GetNormalBuffer();
|
|
|
+ Texture2D* depthBuffer = renderer_->GetDepthBuffer();
|
|
|
+ RenderSurface* depthStencil = 0;
|
|
|
+
|
|
|
+ if (graphics_->GetFallback())
|
|
|
+ {
|
|
|
+ graphics_->SetRenderTarget(0, normalBuffer);
|
|
|
+ graphics_->SetDepthStencil(depthStencil);
|
|
|
+ graphics_->SetViewport(screenRect_);
|
|
|
+ graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, Color(0.5f, 0.5f, 1.0f, 1.0f));
|
|
|
+ }
|
|
|
+ if (graphics_->GetHardwareDepthSupport())
|
|
|
+ {
|
|
|
+ depthStencil = depthBuffer->GetRenderSurface();
|
|
|
+
|
|
|
+ graphics_->SetRenderTarget(0, normalBuffer);
|
|
|
+ graphics_->SetDepthStencil(depthStencil);
|
|
|
+ graphics_->SetViewport(screenRect_);
|
|
|
+ // Clear depth and stencil only
|
|
|
+ graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ graphics_->SetRenderTarget(0, depthBuffer);
|
|
|
+ graphics_->SetDepthStencil(depthStencil);
|
|
|
+ graphics_->SetViewport(screenRect_);
|
|
|
+ // Clear the depth render target to far depth
|
|
|
+ graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, Color::WHITE);
|
|
|
+ graphics_->SetRenderTarget(1, normalBuffer);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!gbufferQueue_.IsEmpty())
|
|
|
+ {
|
|
|
+ // Render G-buffer batches
|
|
|
+ PROFILE(RenderGBuffer);
|
|
|
+
|
|
|
+ RenderBatchQueue(gbufferQueue_);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Clear the light accumulation buffer
|
|
|
+ Texture2D* lightBuffer = renderer_->GetLightBuffer();
|
|
|
+ graphics_->ResetRenderTarget(1);
|
|
|
+ graphics_->SetRenderTarget(0, lightBuffer);
|
|
|
+ graphics_->SetDepthStencil(depthStencil);
|
|
|
+ graphics_->SetViewport(screenRect_);
|
|
|
+ graphics_->Clear(CLEAR_COLOR);
|
|
|
+
|
|
|
+ if (!lightQueues_.Empty())
|
|
|
+ {
|
|
|
+ // Render shadow maps + light volumes
|
|
|
+ PROFILE(RenderLights);
|
|
|
+
|
|
|
+ for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
+ {
|
|
|
+ // If reusing shadowmaps, render each of them before the lit batches
|
|
|
+ if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
|
|
|
+ {
|
|
|
+ RenderShadowMap(*i);
|
|
|
+ graphics_->SetRenderTarget(0, lightBuffer);
|
|
|
+ graphics_->SetDepthStencil(depthStencil);
|
|
|
+ graphics_->SetViewport(screenRect_);
|
|
|
+ }
|
|
|
+
|
|
|
+ graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
|
|
|
+ graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
|
|
|
+
|
|
|
+ for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
|
|
|
+ {
|
|
|
+ SetupLightBatch(i->volumeBatches_[j]);
|
|
|
+ i->volumeBatches_[j].Draw(graphics_, renderer_);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ graphics_->SetScissorTest(false);
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+ graphics_->SetRenderTarget(0, renderTarget_);
|
|
|
+ graphics_->SetDepthStencil(depthStencil);
|
|
|
+ graphics_->SetViewport(screenRect_);
|
|
|
+ graphics_->Clear(CLEAR_COLOR, farClipZone_->GetFogColor());
|
|
|
+
|
|
|
+ if (!baseQueue_.IsEmpty())
|
|
|
+ {
|
|
|
+ // Render opaque objects with deferred lighting result
|
|
|
+ PROFILE(RenderBase);
|
|
|
+
|
|
|
+ graphics_->SetTexture(TU_LIGHTBUFFER, lightBuffer);
|
|
|
+
|
|
|
+ RenderBatchQueue(baseQueue_);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!preAlphaQueue_.IsEmpty())
|
|
|
+ {
|
|
|
+ // Render pre-alpha custom pass
|
|
|
+ PROFILE(RenderPreAlpha);
|
|
|
+
|
|
|
+ RenderBatchQueue(preAlphaQueue_);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!alphaQueue_.IsEmpty())
|
|
|
+ {
|
|
|
+ // Render transparent objects (both base passes & additive lighting)
|
|
|
+ PROFILE(RenderAlpha);
|
|
|
+
|
|
|
+ RenderBatchQueue(alphaQueue_, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!postAlphaQueue_.IsEmpty())
|
|
|
+ {
|
|
|
+ // Render pre-alpha custom pass
|
|
|
+ PROFILE(RenderPostAlpha);
|
|
|
+
|
|
|
+ RenderBatchQueue(postAlphaQueue_);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
|
|
|
+{
|
|
|
+ float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
|
|
|
+ float halfViewSize = camera->GetHalfViewSize();
|
|
|
+ float invOrthoSize = 1.0f / camera->GetOrthoSize();
|
|
|
+ Vector3 cameraPos = camera->GetWorldPosition();
|
|
|
+
|
|
|
+ for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
|
|
|
+ {
|
|
|
+ Drawable* occluder = *i;
|
|
|
+ bool erase = false;
|
|
|
+
|
|
|
+ if (!occluder->IsInView(frame_, false))
|
|
|
+ occluder->UpdateDistance(frame_);
|
|
|
+
|
|
|
+ // Check occluder's draw distance (in main camera view)
|
|
|
+ float maxDistance = occluder->GetDrawDistance();
|
|
|
+ if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
|
|
|
+ erase = true;
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Check that occluder is big enough on the screen
|
|
|
+ const BoundingBox& box = occluder->GetWorldBoundingBox();
|
|
|
+ float diagonal = (box.max_ - box.min_).LengthFast();
|
|
|
+ float compare;
|
|
|
+ if (!camera->IsOrthographic())
|
|
|
+ compare = diagonal * halfViewSize / occluder->GetDistance();
|
|
|
+ else
|
|
|
+ compare = diagonal * invOrthoSize;
|
|
|
+
|
|
|
+ if (compare < occluderSizeThreshold_)
|
|
|
+ erase = true;
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // Store amount of triangles divided by screen size as a sorting key
|
|
|
+ // (best occluders are big and have few triangles)
|
|
|
+ occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (erase)
|
|
|
+ i = occluders.Erase(i);
|
|
|
+ else
|
|
|
+ ++i;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
|
|
|
+ if (occluders.Size())
|
|
|
+ Sort(occluders.Begin(), occluders.End(), CompareDrawables);
|
|
|
+}
|
|
|
+
|
|
|
+void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
|
|
|
+{
|
|
|
+ buffer->SetMaxTriangles(maxOccluderTriangles_);
|
|
|
+ buffer->Clear();
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < occluders.Size(); ++i)
|
|
|
+ {
|
|
|
+ Drawable* occluder = occluders[i];
|
|
|
+ if (i > 0)
|
|
|
+ {
|
|
|
+ // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
|
|
|
+ if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check for running out of triangles
|
|
|
+ if (!occluder->DrawOcclusion(buffer))
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ buffer->BuildDepthHierarchy();
|
|
|
+}
|
|
|
+
|
|
|
+void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
|
|
|
+{
|
|
|
+ Light* light = query.light_;
|
|
|
+ LightType type = light->GetLightType();
|
|
|
+
|
|
|
+ // Check if light should be shadowed
|
|
|
+ bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
|
|
|
+ // If shadow distance non-zero, check it
|
|
|
+ if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
|
|
|
+ isShadowed = false;
|
|
|
+
|
|
|
+ // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
|
|
|
+ PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
|
|
|
+ query.litGeometries_.Clear();
|
|
|
+
|
|
|
+ switch (type)
|
|
|
+ {
|
|
|
+ case LIGHT_DIRECTIONAL:
|
|
|
+ for (unsigned i = 0; i < geometries_.Size(); ++i)
|
|
|
+ {
|
|
|
+ if (GetLightMask(geometries_[i]) & light->GetLightMask())
|
|
|
+ query.litGeometries_.Push(geometries_[i]);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+
|
|
|
+ case LIGHT_SPOT:
|
|
|
+ {
|
|
|
+ FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
|
|
|
+ octree_->GetDrawables(octreeQuery);
|
|
|
+ for (unsigned i = 0; i < tempDrawables.Size(); ++i)
|
|
|
+ {
|
|
|
+ if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
|
|
|
+ query.litGeometries_.Push(tempDrawables[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+
|
|
|
+ case LIGHT_POINT:
|
|
|
+ {
|
|
|
+ SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()),
|
|
|
+ DRAWABLE_GEOMETRY, camera_->GetViewMask());
|
|
|
+ octree_->GetDrawables(octreeQuery);
|
|
|
+ for (unsigned i = 0; i < tempDrawables.Size(); ++i)
|
|
|
+ {
|
|
|
+ if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
|
|
|
+ query.litGeometries_.Push(tempDrawables[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ // If no lit geometries or not shadowed, no need to process shadow cameras
|
|
|
+ if (query.litGeometries_.Empty() || !isShadowed)
|
|
|
+ {
|
|
|
+ query.numSplits_ = 0;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Determine number of shadow cameras and setup their initial positions
|
|
|
+ SetupShadowCameras(query);
|
|
|
+
|
|
|
+ // Process each split for shadow casters
|
|
|
+ query.shadowCasters_.Clear();
|
|
|
+ for (unsigned i = 0; i < query.numSplits_; ++i)
|
|
|
+ {
|
|
|
+ Camera* shadowCamera = query.shadowCameras_[i];
|
|
|
+ Frustum shadowCameraFrustum = shadowCamera->GetFrustum();
|
|
|
+ query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
|
|
|
+
|
|
|
+ // For point light check that the face is visible: if not, can skip the split
|
|
|
+ if (type == LIGHT_POINT)
|
|
|
+ {
|
|
|
+ BoundingBox shadowCameraBox(shadowCameraFrustum);
|
|
|
+ if (frustum_.IsInsideFast(shadowCameraBox) == OUTSIDE)
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // For directional light check that the split is inside the visible scene: if not, can skip the split
|
|
|
+ if (type == LIGHT_DIRECTIONAL)
|
|
|
+ {
|
|
|
+ if (sceneViewBox_.min_.z_ > query.shadowFarSplits_[i])
|
|
|
+ continue;
|
|
|
+ if (sceneViewBox_.max_.z_ < query.shadowNearSplits_[i])
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // For spot light (which has only one shadow split) we can optimize by reusing the query for
|
|
|
+ // lit geometries, whose result still exists in tempDrawables
|
|
|
+ if (type != LIGHT_SPOT)
|
|
|
+ {
|
|
|
+ FrustumOctreeQuery octreeQuery(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
|
|
|
+ camera_->GetViewMask(), true);
|
|
|
+ octree_->GetDrawables(octreeQuery);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check which shadow casters actually contribute to the shadowing
|
|
|
+ ProcessShadowCasters(query, tempDrawables, i);
|
|
|
+ }
|
|
|
+
|
|
|
+ // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
|
|
|
+ // only cost has been the shadow camera setup & queries
|
|
|
+ if (query.shadowCasters_.Empty())
|
|
|
+ query.numSplits_ = 0;
|
|
|
+}
|
|
|
+
|
|
|
+void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
|
|
|
+{
|
|
|
+ Light* light = query.light_;
|
|
|
+ Matrix3x4 lightView;
|
|
|
+ Matrix4 lightProj;
|
|
|
+
|
|
|
+ Camera* shadowCamera = query.shadowCameras_[splitIndex];
|
|
|
+ lightView = shadowCamera->GetInverseWorldTransform();
|
|
|
+ lightProj = shadowCamera->GetProjection();
|
|
|
+ bool dirLight = shadowCamera->IsOrthographic();
|
|
|
+
|
|
|
+ query.shadowCasterBox_[splitIndex].defined_ = false;
|
|
|
+
|
|
|
+ // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
|
|
|
+ // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
|
|
|
+ // frustum, so that shadow casters do not get rendered into unnecessary splits
|
|
|
+ Frustum lightViewFrustum;
|
|
|
+ if (!dirLight)
|
|
|
+ lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
|
|
|
+ else
|
|
|
+ lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, query.shadowNearSplits_[splitIndex]),
|
|
|
+ Min(sceneViewBox_.max_.z_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
|
|
|
+
|
|
|
+ BoundingBox lightViewFrustumBox(lightViewFrustum);
|
|
|
+
|
|
|
+ // Check for degenerate split frustum: in that case there is no need to get shadow casters
|
|
|
+ if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
|
|
|
+ return;
|
|
|
+
|
|
|
+ BoundingBox lightViewBox;
|
|
|
+ BoundingBox lightProjBox;
|
|
|
+
|
|
|
+ for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
|
|
|
+ {
|
|
|
+ Drawable* drawable = *i;
|
|
|
+ // In case this is a spot light query result reused for optimization, we may have non-shadowcasters included.
|
|
|
+ // Check for that first
|
|
|
+ if (!drawable->GetCastShadows())
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
|
|
|
+ // times. However, this should not cause problems as no scene modification happens at this point.
|
|
|
+ if (!drawable->IsInView(frame_, false))
|
|
|
+ drawable->UpdateDistance(frame_);
|
|
|
+
|
|
|
+ // Check shadow distance
|
|
|
+ float maxShadowDistance = drawable->GetShadowDistance();
|
|
|
+ if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Check shadow mask
|
|
|
+ if (!(GetShadowMask(drawable) & light->GetLightMask()))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Project shadow caster bounding box to light view space for visibility check
|
|
|
+ lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
|
|
|
+
|
|
|
+ if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
|
|
|
+ {
|
|
|
+ // Merge to shadow caster bounding box and add to the list
|
|
|
+ if (dirLight)
|
|
|
+ query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
|
|
|
+ else
|
|
|
+ {
|
|
|
+ lightProjBox = lightViewBox.Projected(lightProj);
|
|
|
+ query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
|
|
|
+ }
|
|
|
+ query.shadowCasters_.Push(drawable);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
|
|
|
+}
|
|
|
+
|
|
|
+bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
|
|
|
+ const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
|
|
|
+{
|
|
|
+ if (shadowCamera->IsOrthographic())
|
|
|
+ {
|
|
|
+ // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
|
|
|
+ lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
|
|
|
+ return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ // If light is not directional, can do a simple check: if object is visible, its shadow is too
|
|
|
+ if (drawable->IsInView(frame_))
|
|
|
+ return true;
|
|
|
+
|
|
|
+ // For perspective lights, extrusion direction depends on the position of the shadow caster
|
|
|
+ Vector3 center = lightViewBox.Center();
|
|
|
+ Ray extrusionRay(center, center.Normalized());
|
|
|
+
|
|
|
+ float extrusionDistance = shadowCamera->GetFarClip();
|
|
|
+ float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
|
|
|
+
|
|
|
+ // Because of the perspective, the bounding box must also grow when it is extruded to the distance
|
|
|
+ float sizeFactor = extrusionDistance / originalDistance;
|
|
|
+
|
|
|
+ // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
|
|
|
+ // than necessary, so the test will be conservative
|
|
|
+ Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
|
|
|
+ Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
|
|
|
+ BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
|
|
|
+ lightViewBox.Merge(extrudedBox);
|
|
|
+
|
|
|
+ return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
|
|
|
+{
|
|
|
+ unsigned width = shadowMap->GetWidth();
|
|
|
+ unsigned height = shadowMap->GetHeight();
|
|
|
+ int maxCascades = renderer_->GetMaxShadowCascades();
|
|
|
+
|
|
|
+ switch (light->GetLightType())
|
|
|
+ {
|
|
|
+ case LIGHT_DIRECTIONAL:
|
|
|
+ if (maxCascades == 1)
|
|
|
+ return IntRect(0, 0, width, height);
|
|
|
+ else if (maxCascades == 2)
|
|
|
+ return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
|
|
|
+ else
|
|
|
+ return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
|
|
|
+ (splitIndex / 2 + 1) * height / 2);
|
|
|
+
|
|
|
+ case LIGHT_SPOT:
|
|
|
+ return IntRect(0, 0, width, height);
|
|
|
+
|
|
|
+ case LIGHT_POINT:
|
|
|
+ return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
|
|
|
+ (splitIndex / 2 + 1) * height / 3);
|
|
|
+ }
|
|
|
+
|
|
|
+ return IntRect();
|
|
|
+}
|
|
|
+
|
|
|
+void View::OptimizeLightByScissor(Light* light)
|
|
|
+{
|
|
|
+ if (light)
|
|
|
+ graphics_->SetScissorTest(true, GetLightScissor(light));
|
|
|
+ else
|
|
|
+ graphics_->SetScissorTest(false);
|
|
|
+}
|
|
|
+
|
|
|
+void View::OptimizeLightByStencil(Light* light)
|
|
|
+{
|
|
|
+ if (light && renderer_->GetLightStencilMasking())
|
|
|
+ {
|
|
|
+ Geometry* geometry = renderer_->GetLightGeometry(light);
|
|
|
+ if (!geometry)
|
|
|
+ {
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ LightType type = light->GetLightType();
|
|
|
+ Matrix3x4 view(camera_->GetInverseWorldTransform());
|
|
|
+ Matrix4 projection(camera_->GetProjection());
|
|
|
+ float lightDist;
|
|
|
+
|
|
|
+ if (type == LIGHT_POINT)
|
|
|
+ lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
|
|
|
+ else
|
|
|
+ lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
|
|
|
+
|
|
|
+ // If the camera is actually inside the light volume, do not draw to stencil as it would waste fillrate
|
|
|
+ if (lightDist < M_EPSILON)
|
|
|
+ {
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // If the stencil value has wrapped, clear the whole stencil first
|
|
|
+ if (!lightStencilValue_)
|
|
|
+ {
|
|
|
+ graphics_->Clear(CLEAR_STENCIL);
|
|
|
+ lightStencilValue_ = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ // If possible, render the stencil volume front faces. However, close to the near clip plane render back faces instead
|
|
|
+ // to avoid clipping the front faces.
|
|
|
+ if (lightDist < camera_->GetNearClip() * 2.0f)
|
|
|
+ {
|
|
|
+ graphics_->SetCullMode(CULL_CW);
|
|
|
+ graphics_->SetDepthTest(CMP_GREATER);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ graphics_->SetCullMode(CULL_CCW);
|
|
|
+ graphics_->SetDepthTest(CMP_LESSEQUAL);
|
|
|
+ }
|
|
|
+
|
|
|
+ graphics_->SetColorWrite(false);
|
|
|
+ graphics_->SetDepthWrite(false);
|
|
|
+ graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, lightStencilValue_);
|
|
|
+ graphics_->SetShaders(renderer_->GetStencilVS(), renderer_->GetStencilPS());
|
|
|
+ graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
|
|
|
+ graphics_->SetShaderParameter(VSP_MODEL, light->GetVolumeTransform(*camera_));
|
|
|
+
|
|
|
+ geometry->Draw(graphics_);
|
|
|
+
|
|
|
+ graphics_->ClearTransformSources();
|
|
|
+ graphics_->SetColorWrite(true);
|
|
|
+ graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, lightStencilValue_);
|
|
|
+
|
|
|
+ // Increase stencil value for next light
|
|
|
+ ++lightStencilValue_;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+}
|
|
|
+
|
|
|
+const Rect& View::GetLightScissor(Light* light)
|
|
|
+{
|
|
|
+ HashMap<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
|
|
|
+ if (i != lightScissorCache_.End())
|
|
|
+ return i->second_;
|
|
|
+
|
|
|
+ Matrix3x4 view(camera_->GetInverseWorldTransform());
|
|
|
+ Matrix4 projection(camera_->GetProjection());
|
|
|
+
|
|
|
+ switch (light->GetLightType())
|
|
|
+ {
|
|
|
+ case LIGHT_POINT:
|
|
|
+ {
|
|
|
+ BoundingBox viewBox(light->GetWorldBoundingBox().Transformed(view));
|
|
|
+ return lightScissorCache_[light] = viewBox.Projected(projection);
|
|
|
+ }
|
|
|
+
|
|
|
+ case LIGHT_SPOT:
|
|
|
+ {
|
|
|
+ Frustum viewFrustum(light->GetFrustum().Transformed(view));
|
|
|
+ return lightScissorCache_[light] = viewFrustum.Projected(projection);
|
|
|
+ }
|
|
|
+
|
|
|
+ default:
|
|
|
+ return lightScissorCache_[light] = Rect::FULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::SetupShadowCameras(LightQueryResult& query)
|
|
|
+{
|
|
|
+ Light* light = query.light_;
|
|
|
+
|
|
|
+ LightType type = light->GetLightType();
|
|
|
+ int splits = 0;
|
|
|
+
|
|
|
+ if (type == LIGHT_DIRECTIONAL)
|
|
|
+ {
|
|
|
+ const CascadeParameters& cascade = light->GetShadowCascade();
|
|
|
+
|
|
|
+ float nearSplit = camera_->GetNearClip();
|
|
|
+ float farSplit;
|
|
|
+
|
|
|
+ while (splits < renderer_->GetMaxShadowCascades())
|
|
|
+ {
|
|
|
+ // If split is completely beyond camera far clip, we are done
|
|
|
+ if (nearSplit > camera_->GetFarClip())
|
|
|
+ break;
|
|
|
+
|
|
|
+ farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
|
|
|
+ if (farSplit <= nearSplit)
|
|
|
+ break;
|
|
|
+
|
|
|
+ // Setup the shadow camera for the split
|
|
|
+ Camera* shadowCamera = renderer_->GetShadowCamera();
|
|
|
+ query.shadowCameras_[splits] = shadowCamera;
|
|
|
+ query.shadowNearSplits_[splits] = nearSplit;
|
|
|
+ query.shadowFarSplits_[splits] = farSplit;
|
|
|
+ SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
|
|
|
+
|
|
|
+ nearSplit = farSplit;
|
|
|
+ ++splits;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (type == LIGHT_SPOT)
|
|
|
+ {
|
|
|
+ Camera* shadowCamera = renderer_->GetShadowCamera();
|
|
|
+ query.shadowCameras_[0] = shadowCamera;
|
|
|
+ Node* cameraNode = shadowCamera->GetNode();
|
|
|
+
|
|
|
+ cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
|
|
|
+ shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
|
|
|
+ shadowCamera->SetFarClip(light->GetRange());
|
|
|
+ shadowCamera->SetFov(light->GetFov());
|
|
|
+ shadowCamera->SetAspectRatio(light->GetAspectRatio());
|
|
|
+
|
|
|
+ splits = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (type == LIGHT_POINT)
|
|
|
+ {
|
|
|
+ for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
|
|
|
+ {
|
|
|
+ Camera* shadowCamera = renderer_->GetShadowCamera();
|
|
|
+ query.shadowCameras_[i] = shadowCamera;
|
|
|
+ Node* cameraNode = shadowCamera->GetNode();
|
|
|
+
|
|
|
+ // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
|
|
|
+ cameraNode->SetPosition(light->GetWorldPosition());
|
|
|
+ cameraNode->SetDirection(directions[i]);
|
|
|
+ shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
|
|
|
+ shadowCamera->SetFarClip(light->GetRange());
|
|
|
+ shadowCamera->SetFov(90.0f);
|
|
|
+ shadowCamera->SetAspectRatio(1.0f);
|
|
|
+ }
|
|
|
+
|
|
|
+ splits = MAX_CUBEMAP_FACES;
|
|
|
+ }
|
|
|
+
|
|
|
+ query.numSplits_ = splits;
|
|
|
+}
|
|
|
+
|
|
|
+void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
|
|
|
+{
|
|
|
+ Node* cameraNode = shadowCamera->GetNode();
|
|
|
+ float extrusionDistance = camera_->GetFarClip();
|
|
|
+ const FocusParameters& parameters = light->GetShadowFocus();
|
|
|
+
|
|
|
+ // Calculate initial position & rotation
|
|
|
+ Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
|
|
|
+ Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
|
|
|
+ cameraNode->SetTransform(pos, light->GetWorldRotation());
|
|
|
+
|
|
|
+ // Calculate main camera shadowed frustum in light's view space
|
|
|
+ farSplit = Min(farSplit, camera_->GetFarClip());
|
|
|
+ // Use the scene Z bounds to limit frustum size if applicable
|
|
|
+ if (parameters.focus_)
|
|
|
+ {
|
|
|
+ nearSplit = Max(sceneViewBox_.min_.z_, nearSplit);
|
|
|
+ farSplit = Min(sceneViewBox_.max_.z_, farSplit);
|
|
|
+ }
|
|
|
+
|
|
|
+ Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
|
|
|
+ frustumVolume_.Define(splitFrustum);
|
|
|
+ // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
|
|
|
+ if (parameters.focus_)
|
|
|
+ {
|
|
|
+ BoundingBox litGeometriesBox;
|
|
|
+ for (unsigned i = 0; i < geometries_.Size(); ++i)
|
|
|
+ {
|
|
|
+ // Skip "infinite" objects like the skybox
|
|
|
+ const BoundingBox& geomBox = geometries_[i]->GetWorldBoundingBox();
|
|
|
+ if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
|
|
|
+ {
|
|
|
+ if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit &&
|
|
|
+ (GetLightMask(geometries_[i]) & light->GetLightMask()))
|
|
|
+ litGeometriesBox.Merge(geomBox);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (litGeometriesBox.defined_)
|
|
|
+ {
|
|
|
+ frustumVolume_.Clip(litGeometriesBox);
|
|
|
+ // If volume became empty, restore it to avoid zero size
|
|
|
+ if (frustumVolume_.Empty())
|
|
|
+ frustumVolume_.Define(splitFrustum);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Transform frustum volume to light space
|
|
|
+ Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
|
|
|
+ frustumVolume_.Transform(lightView);
|
|
|
+
|
|
|
+ // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
|
|
|
+ BoundingBox shadowBox;
|
|
|
+ if (!parameters.nonUniform_)
|
|
|
+ shadowBox.Define(Sphere(frustumVolume_));
|
|
|
+ else
|
|
|
+ shadowBox.Define(frustumVolume_);
|
|
|
+
|
|
|
+ shadowCamera->SetOrthographic(true);
|
|
|
+ shadowCamera->SetAspectRatio(1.0f);
|
|
|
+ shadowCamera->SetNearClip(0.0f);
|
|
|
+ shadowCamera->SetFarClip(shadowBox.max_.z_);
|
|
|
+
|
|
|
+ // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
|
|
|
+ QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
|
|
|
+}
|
|
|
+
|
|
|
+void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
|
|
|
+ const BoundingBox& shadowCasterBox)
|
|
|
+{
|
|
|
+ const FocusParameters& parameters = light->GetShadowFocus();
|
|
|
+ float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
|
|
|
+ LightType type = light->GetLightType();
|
|
|
+
|
|
|
+ if (type == LIGHT_DIRECTIONAL)
|
|
|
+ {
|
|
|
+ BoundingBox shadowBox;
|
|
|
+ shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
|
|
|
+ shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
|
|
|
+ shadowBox.min_.y_ = -shadowBox.max_.y_;
|
|
|
+ shadowBox.min_.x_ = -shadowBox.max_.x_;
|
|
|
+
|
|
|
+ // Requantize and snap to shadow map texels
|
|
|
+ QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (type == LIGHT_SPOT)
|
|
|
+ {
|
|
|
+ if (parameters.focus_)
|
|
|
+ {
|
|
|
+ float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
|
|
|
+ float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
|
|
|
+ float viewSize = Max(viewSizeX, viewSizeY);
|
|
|
+ // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
|
|
|
+ float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
|
|
|
+ float quantize = parameters.quantize_ * invOrthoSize;
|
|
|
+ float minView = parameters.minView_ * invOrthoSize;
|
|
|
+
|
|
|
+ viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
|
|
|
+ if (viewSize < 1.0f)
|
|
|
+ shadowCamera->SetZoom(1.0f / viewSize);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
|
|
|
+ // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
|
|
|
+ if (shadowCamera->GetZoom() >= 1.0f)
|
|
|
+ {
|
|
|
+ if (light->GetLightType() != LIGHT_POINT)
|
|
|
+ shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
|
|
|
+ else
|
|
|
+ {
|
|
|
+ #ifdef USE_OPENGL
|
|
|
+ shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
|
|
|
+ #else
|
|
|
+ shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
|
|
|
+ const BoundingBox& viewBox)
|
|
|
+{
|
|
|
+ Node* cameraNode = shadowCamera->GetNode();
|
|
|
+ const FocusParameters& parameters = light->GetShadowFocus();
|
|
|
+ float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
|
|
|
+
|
|
|
+ float minX = viewBox.min_.x_;
|
|
|
+ float minY = viewBox.min_.y_;
|
|
|
+ float maxX = viewBox.max_.x_;
|
|
|
+ float maxY = viewBox.max_.y_;
|
|
|
+
|
|
|
+ Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
|
|
|
+ Vector2 viewSize(maxX - minX, maxY - minY);
|
|
|
+
|
|
|
+ // Quantize size to reduce swimming
|
|
|
+ // Note: if size is uniform and there is no focusing, quantization is unnecessary
|
|
|
+ if (parameters.nonUniform_)
|
|
|
+ {
|
|
|
+ viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
|
|
|
+ viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
|
|
|
+ viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
|
|
|
+ viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
|
|
|
+ }
|
|
|
+ else if (parameters.focus_)
|
|
|
+ {
|
|
|
+ viewSize.x_ = Max(viewSize.x_, viewSize.y_);
|
|
|
+ viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
|
|
|
+ viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
|
|
|
+ viewSize.y_ = viewSize.x_;
|
|
|
+ }
|
|
|
+
|
|
|
+ shadowCamera->SetOrthoSize(viewSize);
|
|
|
+
|
|
|
+ // Center shadow camera to the view space bounding box
|
|
|
+ Vector3 pos(shadowCamera->GetWorldPosition());
|
|
|
+ Quaternion rot(shadowCamera->GetWorldRotation());
|
|
|
+ Vector3 adjust(center.x_, center.y_, 0.0f);
|
|
|
+ cameraNode->Translate(rot * adjust);
|
|
|
+
|
|
|
+ // If the shadow map viewport is known, snap to whole texels
|
|
|
+ if (shadowMapWidth > 0.0f)
|
|
|
+ {
|
|
|
+ Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
|
|
|
+ // Take into account that shadow map border will not be used
|
|
|
+ float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
|
|
|
+ Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
|
|
|
+ Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
|
|
|
+ cameraNode->Translate(rot * snap);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::FindZone(Drawable* drawable, unsigned threadIndex)
|
|
|
+{
|
|
|
+ Vector3 center = drawable->GetWorldBoundingBox().Center();
|
|
|
+ int bestPriority = M_MIN_INT;
|
|
|
+ Zone* newZone = 0;
|
|
|
+
|
|
|
+ // If bounding box center is in view, can use the visible zones. Else must query via the octree
|
|
|
+ if (frustum_.IsInside(center))
|
|
|
+ {
|
|
|
+ // First check if the last zone remains a conclusive result
|
|
|
+ Zone* lastZone = drawable->GetLastZone();
|
|
|
+ if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
|
|
|
+ lastZone->GetPriority() >= highestZonePriority_)
|
|
|
+ newZone = lastZone;
|
|
|
+ else
|
|
|
+ {
|
|
|
+ for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
|
|
|
+ {
|
|
|
+ int priority = (*i)->GetPriority();
|
|
|
+ if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
|
|
|
+ {
|
|
|
+ newZone = *i;
|
|
|
+ bestPriority = priority;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ PODVector<Zone*>& tempZones = tempZones_[threadIndex];
|
|
|
+ PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>&>(tempZones), center, DRAWABLE_ZONE);
|
|
|
+ octree_->GetDrawables(query);
|
|
|
+
|
|
|
+ bestPriority = M_MIN_INT;
|
|
|
+ for (PODVector<Zone*>::Iterator i = tempZones.Begin(); i != tempZones.End(); ++i)
|
|
|
+ {
|
|
|
+ int priority = (*i)->GetPriority();
|
|
|
+ if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
|
|
|
+ {
|
|
|
+ newZone = *i;
|
|
|
+ bestPriority = priority;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ drawable->SetZone(newZone);
|
|
|
+}
|
|
|
+
|
|
|
+Zone* View::GetZone(Drawable* drawable)
|
|
|
+{
|
|
|
+ if (cameraZoneOverride_)
|
|
|
+ return cameraZone_;
|
|
|
+ Zone* drawableZone = drawable->GetZone();
|
|
|
+ return drawableZone ? drawableZone : cameraZone_;
|
|
|
+}
|
|
|
+
|
|
|
+unsigned View::GetLightMask(Drawable* drawable)
|
|
|
+{
|
|
|
+ return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
|
|
|
+}
|
|
|
+
|
|
|
+unsigned View::GetShadowMask(Drawable* drawable)
|
|
|
+{
|
|
|
+ return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
|
|
|
+}
|
|
|
+
|
|
|
+unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
|
|
|
+{
|
|
|
+ unsigned long long hash = 0;
|
|
|
+ for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
|
|
|
+ hash += (unsigned long long)(*i);
|
|
|
+ return hash;
|
|
|
+}
|
|
|
+
|
|
|
+Technique* View::GetTechnique(Drawable* drawable, Material*& material)
|
|
|
+{
|
|
|
+ if (!material)
|
|
|
+ material = renderer_->GetDefaultMaterial();
|
|
|
+ if (!material)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ float lodDistance = drawable->GetLodDistance();
|
|
|
+ const Vector<TechniqueEntry>& techniques = material->GetTechniques();
|
|
|
+ if (techniques.Empty())
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ // Check for suitable technique. Techniques should be ordered like this:
|
|
|
+ // Most distant & highest quality
|
|
|
+ // Most distant & lowest quality
|
|
|
+ // Second most distant & highest quality
|
|
|
+ // ...
|
|
|
+ for (unsigned i = 0; i < techniques.Size(); ++i)
|
|
|
+ {
|
|
|
+ const TechniqueEntry& entry = techniques[i];
|
|
|
+ Technique* technique = entry.technique_;
|
|
|
+ if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
|
|
|
+ continue;
|
|
|
+ if (lodDistance >= entry.lodDistance_)
|
|
|
+ return technique;
|
|
|
+ }
|
|
|
+
|
|
|
+ // If no suitable technique found, fallback to the last
|
|
|
+ return techniques.Back().technique_;
|
|
|
+}
|
|
|
+
|
|
|
+void View::CheckMaterialForAuxView(Material* material)
|
|
|
+{
|
|
|
+ const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < textures.Size(); ++i)
|
|
|
+ {
|
|
|
+ // Have to check cube & 2D textures separately
|
|
|
+ Texture* texture = textures[i];
|
|
|
+ if (texture)
|
|
|
+ {
|
|
|
+ if (texture->GetType() == Texture2D::GetTypeStatic())
|
|
|
+ {
|
|
|
+ Texture2D* tex2D = static_cast<Texture2D*>(texture);
|
|
|
+ RenderSurface* target = tex2D->GetRenderSurface();
|
|
|
+ if (target)
|
|
|
+ {
|
|
|
+ const Viewport& viewport = target->GetViewport();
|
|
|
+ if (viewport.scene_ && viewport.camera_)
|
|
|
+ renderer_->AddView(target, viewport);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else if (texture->GetType() == TextureCube::GetTypeStatic())
|
|
|
+ {
|
|
|
+ TextureCube* texCube = static_cast<TextureCube*>(texture);
|
|
|
+ for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
|
|
|
+ {
|
|
|
+ RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
|
|
|
+ if (target)
|
|
|
+ {
|
|
|
+ const Viewport& viewport = target->GetViewport();
|
|
|
+ if (viewport.scene_ && viewport.camera_)
|
|
|
+ renderer_->AddView(target, viewport);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Set frame number so that we can early-out next time we come across this material on the same frame
|
|
|
+ material->MarkForAuxView(frame_.frameNumber_);
|
|
|
+}
|
|
|
+
|
|
|
+void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows)
|
|
|
+{
|
|
|
+ // Convert to instanced if possible
|
|
|
+ if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
|
|
|
+ batch.geometryType_ = GEOM_INSTANCED;
|
|
|
+
|
|
|
+ batch.pass_ = pass;
|
|
|
+ renderer_->SetBatchShaders(batch, tech, pass, allowShadows);
|
|
|
+ batch.CalculateSortKey();
|
|
|
+}
|
|
|
+
|
|
|
+void View::PrepareInstancingBuffer()
|
|
|
+{
|
|
|
+ PROFILE(PrepareInstancingBuffer);
|
|
|
+
|
|
|
+ unsigned totalInstances = 0;
|
|
|
+ bool prepass = renderer_->GetLightPrepass();
|
|
|
+
|
|
|
+ totalInstances += baseQueue_.GetNumInstances(renderer_);
|
|
|
+ totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
|
|
|
+ if (prepass)
|
|
|
+ totalInstances += gbufferQueue_.GetNumInstances(renderer_);
|
|
|
+
|
|
|
+ for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
+ {
|
|
|
+ for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
|
|
|
+ totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
|
|
|
+ totalInstances += i->litBatches_.GetNumInstances(renderer_);
|
|
|
+ }
|
|
|
+
|
|
|
+ // If fail to set buffer size, fall back to per-group locking
|
|
|
+ if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
|
|
|
+ {
|
|
|
+ VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
|
|
|
+ unsigned freeIndex = 0;
|
|
|
+ void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
|
|
|
+ if (lockedData)
|
|
|
+ {
|
|
|
+ baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
+ preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
+ if (prepass)
|
|
|
+ gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
+
|
|
|
+ for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
|
|
|
+ {
|
|
|
+ for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
|
|
|
+ i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
+ i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
|
|
|
+ }
|
|
|
+
|
|
|
+ instancingBuffer->Unlock();
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::SetupLightBatch(Batch& batch)
|
|
|
+{
|
|
|
+ Light* light = batch.lightQueue_->light_;
|
|
|
+ LightType type = light->GetLightType();
|
|
|
+ float lightDist;
|
|
|
+
|
|
|
+ graphics_->SetAlphaTest(false);
|
|
|
+ graphics_->SetBlendMode(BLEND_ADD);
|
|
|
+ graphics_->SetDepthWrite(false);
|
|
|
+
|
|
|
+ if (type != LIGHT_DIRECTIONAL)
|
|
|
+ {
|
|
|
+ if (type == LIGHT_POINT)
|
|
|
+ lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
|
|
|
+ else
|
|
|
+ lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
|
|
|
+
|
|
|
+ // Draw front faces if not inside light volume
|
|
|
+ if (lightDist < camera_->GetNearClip() * 2.0f)
|
|
|
+ {
|
|
|
+ graphics_->SetCullMode(CULL_CW);
|
|
|
+ graphics_->SetDepthTest(CMP_GREATER);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ graphics_->SetCullMode(CULL_CCW);
|
|
|
+ graphics_->SetDepthTest(CMP_LESSEQUAL);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ graphics_->SetCullMode(CULL_NONE);
|
|
|
+ graphics_->SetDepthTest(CMP_LESSEQUAL);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// \todo Set stencil test to check for light masks
|
|
|
+ graphics_->SetScissorTest(false);
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+}
|
|
|
+
|
|
|
+void View::DrawFullscreenQuad(Camera& camera, bool nearQuad)
|
|
|
+{
|
|
|
+ Light quadDirLight(context_);
|
|
|
+ Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
|
|
|
+
|
|
|
+ graphics_->SetCullMode(CULL_NONE);
|
|
|
+ graphics_->SetShaderParameter(VSP_MODEL, model);
|
|
|
+ graphics_->SetShaderParameter(VSP_VIEWPROJ, camera.GetProjection());
|
|
|
+ graphics_->ClearTransformSources();
|
|
|
+
|
|
|
+ renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
|
|
|
+}
|
|
|
+
|
|
|
+void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor)
|
|
|
+{
|
|
|
+ graphics_->SetScissorTest(false);
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+
|
|
|
+ // Base instanced
|
|
|
+ for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
|
|
|
+ queue.sortedBaseBatchGroups_.End(); ++i)
|
|
|
+ {
|
|
|
+ BatchGroup* group = *i;
|
|
|
+ group->Draw(graphics_, renderer_);
|
|
|
+ }
|
|
|
+ // Base non-instanced
|
|
|
+ for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
|
|
|
+ {
|
|
|
+ Batch* batch = *i;
|
|
|
+ batch->Draw(graphics_, renderer_);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Non-base instanced
|
|
|
+ for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
|
|
|
+ {
|
|
|
+ BatchGroup* group = *i;
|
|
|
+ if (useScissor && group->lightQueue_)
|
|
|
+ OptimizeLightByScissor(group->lightQueue_->light_);
|
|
|
+ group->Draw(graphics_, renderer_);
|
|
|
+ }
|
|
|
+ // Non-base non-instanced
|
|
|
+ for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
|
|
|
+ {
|
|
|
+ Batch* batch = *i;
|
|
|
+ if (useScissor)
|
|
|
+ {
|
|
|
+ if (!batch->isBase_ && batch->lightQueue_)
|
|
|
+ OptimizeLightByScissor(batch->lightQueue_->light_);
|
|
|
+ else
|
|
|
+ graphics_->SetScissorTest(false);
|
|
|
+ }
|
|
|
+ batch->Draw(graphics_, renderer_);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::RenderLightBatchQueue(const BatchQueue& queue, Light* light)
|
|
|
+{
|
|
|
+ graphics_->SetScissorTest(false);
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+
|
|
|
+ // Base instanced
|
|
|
+ for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
|
|
|
+ queue.sortedBaseBatchGroups_.End(); ++i)
|
|
|
+ {
|
|
|
+ BatchGroup* group = *i;
|
|
|
+ group->Draw(graphics_, renderer_);
|
|
|
+ }
|
|
|
+ // Base non-instanced
|
|
|
+ for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
|
|
|
+ {
|
|
|
+ Batch* batch = *i;
|
|
|
+ batch->Draw(graphics_, renderer_);
|
|
|
+ }
|
|
|
+
|
|
|
+ // All base passes have been drawn. Optimize at this point by both stencil volume and scissor
|
|
|
+ OptimizeLightByStencil(light);
|
|
|
+ OptimizeLightByScissor(light);
|
|
|
+
|
|
|
+ // Non-base instanced
|
|
|
+ for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
|
|
|
+ {
|
|
|
+ BatchGroup* group = *i;
|
|
|
+ group->Draw(graphics_, renderer_);
|
|
|
+ }
|
|
|
+ // Non-base non-instanced
|
|
|
+ for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
|
|
|
+ {
|
|
|
+ Batch* batch = *i;
|
|
|
+ batch->Draw(graphics_, renderer_);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void View::RenderShadowMap(const LightBatchQueue& queue)
|
|
|
+{
|
|
|
+ PROFILE(RenderShadowMap);
|
|
|
+
|
|
|
+ Texture2D* shadowMap = queue.shadowMap_;
|
|
|
+
|
|
|
+ graphics_->SetStencilTest(false);
|
|
|
+ graphics_->SetTexture(TU_SHADOWMAP, 0);
|
|
|
+
|
|
|
+ if (!graphics_->GetFallback())
|
|
|
+ {
|
|
|
+ graphics_->SetColorWrite(false);
|
|
|
+ graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
|
|
|
+ graphics_->SetDepthStencil(shadowMap);
|
|
|
+ graphics_->Clear(CLEAR_DEPTH);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ graphics_->SetColorWrite(true);
|
|
|
+ graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface());
|
|
|
+ graphics_->SetDepthStencil(shadowMap->GetRenderSurface()->GetLinkedDepthBuffer());
|
|
|
+ graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH, Color::WHITE);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Set shadow depth bias
|
|
|
+ BiasParameters parameters = queue.light_->GetShadowBias();
|
|
|
+ // Adjust the light's constant depth bias according to global shadow map resolution
|
|
|
+ /// \todo Should remove this adjustment and find a more flexible solution
|
|
|
+ unsigned shadowMapSize = renderer_->GetShadowMapSize();
|
|
|
+ if (shadowMapSize <= 512)
|
|
|
+ parameters.constantBias_ *= 2.0f;
|
|
|
+ else if (shadowMapSize >= 2048)
|
|
|
+ parameters.constantBias_ *= 0.5f;
|
|
|
+
|
|
|
+ graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
|
|
|
+
|
|
|
+ // Render each of the splits
|
|
|
+ for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
|
|
|
+ {
|
|
|
+ const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
|
|
|
+ if (!shadowQueue.shadowBatches_.IsEmpty())
|
|
|
+ {
|
|
|
+ graphics_->SetViewport(shadowQueue.shadowViewport_);
|
|
|
+
|
|
|
+ // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
|
|
|
+ // However, do not do this for point lights, which need to render continuously across cube faces
|
|
|
+ float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
|
|
|
+ if (queue.light_->GetLightType() != LIGHT_POINT)
|
|
|
+ {
|
|
|
+ float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
|
|
|
+ Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
|
|
|
+ graphics_->SetScissorTest(true, zoomRect, false);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ graphics_->SetScissorTest(false);
|
|
|
+
|
|
|
+ // Draw instanced and non-instanced shadow casters
|
|
|
+ RenderBatchQueue(shadowQueue.shadowBatches_);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ graphics_->SetColorWrite(true);
|
|
|
+ graphics_->SetDepthBias(0.0f, 0.0f);
|
|
|
+}
|