Browse Source

Code formatting.

Lasse Öörni 10 years ago
parent
commit
f9de34e994
1 changed files with 14 additions and 15 deletions
  1. 14 15
      Source/Urho3D/Math/Quaternion.cpp

+ 14 - 15
Source/Urho3D/Math/Quaternion.cpp

@@ -242,29 +242,28 @@ Quaternion Quaternion::Slerp(Quaternion rhs, float t) const
     float sign = 1.f; // Multiply by a sign of +/-1 to guarantee we rotate the shorter arc.
     if (angle < 0.f)
     {
-    angle = -angle;
-    sign = -1.f;
+        angle = -angle;
+        sign = -1.f;
     }
 
     float a;
     float b;
-    if (angle < 0.999) // perform spherical linear interpolation.
+    if (angle < 0.999f) // perform spherical linear interpolation.
     {
-    // angle = acos(angle); // After this, angle is in the range pi/2 -> 0 as the original angle variable ranged from 0 -> 1.
-    angle = (-0.69813170079773212f * angle * angle - 0.87266462599716477f) * angle + 1.5707963267948966f;
-
-    float ta = t*angle;
-    // Manually compute the two sines by using a very rough approximation.
-    float ta2 = ta*ta;
-    b = ((5.64311797634681035370e-03f * ta2 - 1.55271410633428644799e-01f) * ta2 + 9.87862135574673806965e-01f) * ta;
-    a = angle - ta;
-    float a2 = a*a;
-    a = ((5.64311797634681035370e-03f * a2 - 1.55271410633428644799e-01f) * a2 + 9.87862135574673806965e-01f) * a;
+        // angle = acos(angle); // After this, angle is in the range pi/2 -> 0 as the original angle variable ranged from 0 -> 1.
+        angle = (-0.69813170079773212f * angle * angle - 0.87266462599716477f) * angle + 1.5707963267948966f;
+        float ta = t*angle;
+        // Manually compute the two sines by using a very rough approximation.
+        float ta2 = ta*ta;
+        b = ((5.64311797634681035370e-03f * ta2 - 1.55271410633428644799e-01f) * ta2 + 9.87862135574673806965e-01f) * ta;
+        a = angle - ta;
+        float a2 = a*a;
+        a = ((5.64311797634681035370e-03f * a2 - 1.55271410633428644799e-01f) * a2 + 9.87862135574673806965e-01f) * a;
     }
     else // If angle is close to taking the denominator to zero, resort to linear interpolation (and normalization).
     {
-    a = 1.f - t;
-    b = t;
+        a = 1.f - t;
+        b = t;
     }
     // Lerp and renormalize.
     return (*this * (a * sign) + rhs * b).Normalized();