// Copyright (c) 2008-2022 the Urho3D project // License: MIT #include "../Precompiled.h" #include "../Core/Context.h" #include "../Core/Profiler.h" #include "../Graphics/AnimatedModel.h" #include "../Graphics/Batch.h" #include "../Graphics/Camera.h" #include "../Graphics/Geometry.h" #include "../Graphics/Material.h" #include "../Graphics/OcclusionBuffer.h" #include "../Graphics/OctreeQuery.h" #include "../GraphicsAPI/VertexBuffer.h" #include "../IO/FileSystem.h" #include "../IO/Log.h" #include "../Resource/ResourceCache.h" #include "../Resource/ResourceEvents.h" #include "../DebugNew.h" namespace Urho3D { extern const char* GEOMETRY_CATEGORY; StaticModel::StaticModel(Context* context) : Drawable(context, DRAWABLE_GEOMETRY), occlusionLodLevel_(M_MAX_UNSIGNED), materialsAttr_(Material::GetTypeStatic()) { } StaticModel::~StaticModel() = default; void StaticModel::RegisterObject(Context* context) { context->RegisterFactory(GEOMETRY_CATEGORY); URHO3D_ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT); URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Model", GetModelAttr, SetModelAttr, ResourceRef, ResourceRef(Model::GetTypeStatic()), AM_DEFAULT); URHO3D_ACCESSOR_ATTRIBUTE("Material", GetMaterialsAttr, SetMaterialsAttr, ResourceRefList, ResourceRefList(Material::GetTypeStatic()), AM_DEFAULT); URHO3D_ATTRIBUTE("Is Occluder", bool, occluder_, false, AM_DEFAULT); URHO3D_ACCESSOR_ATTRIBUTE("Can Be Occluded", IsOccludee, SetOccludee, bool, true, AM_DEFAULT); URHO3D_ATTRIBUTE("Cast Shadows", bool, castShadows_, false, AM_DEFAULT); URHO3D_ACCESSOR_ATTRIBUTE("Draw Distance", GetDrawDistance, SetDrawDistance, float, 0.0f, AM_DEFAULT); URHO3D_ACCESSOR_ATTRIBUTE("Shadow Distance", GetShadowDistance, SetShadowDistance, float, 0.0f, AM_DEFAULT); URHO3D_ACCESSOR_ATTRIBUTE("LOD Bias", GetLodBias, SetLodBias, float, 1.0f, AM_DEFAULT); URHO3D_COPY_BASE_ATTRIBUTES(Drawable); URHO3D_ATTRIBUTE("Occlusion LOD Level", int, occlusionLodLevel_, M_MAX_UNSIGNED, AM_DEFAULT); } void StaticModel::ProcessRayQuery(const RayOctreeQuery& query, PODVector& results) { RayQueryLevel level = query.level_; switch (level) { case RAY_AABB: Drawable::ProcessRayQuery(query, results); break; case RAY_OBB: case RAY_TRIANGLE: case RAY_TRIANGLE_UV: Matrix3x4 inverse(node_->GetWorldTransform().Inverse()); Ray localRay = query.ray_.Transformed(inverse); float distance = localRay.HitDistance(boundingBox_); Vector3 normal = -query.ray_.direction_; Vector2 geometryUV; unsigned hitBatch = M_MAX_UNSIGNED; if (level >= RAY_TRIANGLE && distance < query.maxDistance_) { distance = M_INFINITY; for (unsigned i = 0; i < batches_.Size(); ++i) { Geometry* geometry = batches_[i].geometry_; if (geometry) { Vector3 geometryNormal; float geometryDistance = level == RAY_TRIANGLE ? geometry->GetHitDistance(localRay, &geometryNormal) : geometry->GetHitDistance(localRay, &geometryNormal, &geometryUV); if (geometryDistance < query.maxDistance_ && geometryDistance < distance) { distance = geometryDistance; normal = (node_->GetWorldTransform() * Vector4(geometryNormal, 0.0f)).Normalized(); hitBatch = i; } } } } if (distance < query.maxDistance_) { RayQueryResult result; result.position_ = query.ray_.origin_ + distance * query.ray_.direction_; result.normal_ = normal; result.textureUV_ = geometryUV; result.distance_ = distance; result.drawable_ = this; result.node_ = node_; result.subObject_ = hitBatch; results.Push(result); } break; } } void StaticModel::UpdateBatches(const FrameInfo& frame) { const BoundingBox& worldBoundingBox = GetWorldBoundingBox(); distance_ = frame.camera_->GetDistance(worldBoundingBox.Center()); if (batches_.Size() == 1) batches_[0].distance_ = distance_; else { const Matrix3x4& worldTransform = node_->GetWorldTransform(); for (unsigned i = 0; i < batches_.Size(); ++i) batches_[i].distance_ = frame.camera_->GetDistance(worldTransform * geometryData_[i].center_); } float scale = worldBoundingBox.Size().DotProduct(DOT_SCALE); float newLodDistance = frame.camera_->GetLodDistance(distance_, scale, lodBias_); if (newLodDistance != lodDistance_) { lodDistance_ = newLodDistance; CalculateLodLevels(); } } Geometry* StaticModel::GetLodGeometry(unsigned batchIndex, unsigned level) { if (batchIndex >= geometries_.Size()) return nullptr; // If level is out of range, use visible geometry if (level < geometries_[batchIndex].Size()) return geometries_[batchIndex][level]; else return batches_[batchIndex].geometry_; } unsigned StaticModel::GetNumOccluderTriangles() { unsigned triangles = 0; for (unsigned i = 0; i < batches_.Size(); ++i) { Geometry* geometry = GetLodGeometry(i, occlusionLodLevel_); if (!geometry) continue; // Check that the material is suitable for occlusion (default material always is) Material* mat = batches_[i].material_; if (mat && !mat->GetOcclusion()) continue; triangles += geometry->GetIndexCount() / 3; } return triangles; } bool StaticModel::DrawOcclusion(OcclusionBuffer* buffer) { for (unsigned i = 0; i < batches_.Size(); ++i) { Geometry* geometry = GetLodGeometry(i, occlusionLodLevel_); if (!geometry) continue; // Check that the material is suitable for occlusion (default material always is) and set culling mode Material* material = batches_[i].material_; if (material) { if (!material->GetOcclusion()) continue; buffer->SetCullMode(material->GetCullMode()); } else buffer->SetCullMode(CULL_CCW); const unsigned char* vertexData; unsigned vertexSize; const unsigned char* indexData; unsigned indexSize; const PODVector* elements; geometry->GetRawData(vertexData, vertexSize, indexData, indexSize, elements); // Check for valid geometry data if (!vertexData || !indexData || !elements || VertexBuffer::GetElementOffset(*elements, TYPE_VECTOR3, SEM_POSITION) != 0) continue; unsigned indexStart = geometry->GetIndexStart(); unsigned indexCount = geometry->GetIndexCount(); // Draw and check for running out of triangles if (!buffer->AddTriangles(node_->GetWorldTransform(), vertexData, vertexSize, indexData, indexSize, indexStart, indexCount)) return false; } return true; } void StaticModel::SetModel(Model* model) { if (model == model_) return; if (!node_) { URHO3D_LOGERROR("Can not set model while model component is not attached to a scene node"); return; } // Unsubscribe from the reload event of previous model (if any), then subscribe to the new if (model_) UnsubscribeFromEvent(model_, E_RELOADFINISHED); model_ = model; if (model) { SubscribeToEvent(model, E_RELOADFINISHED, URHO3D_HANDLER(StaticModel, HandleModelReloadFinished)); // Copy the subgeometry & LOD level structure SetNumGeometries(model->GetNumGeometries()); const Vector>>& geometries = model->GetGeometries(); const PODVector& geometryCenters = model->GetGeometryCenters(); const Matrix3x4* worldTransform = node_ ? &node_->GetWorldTransform() : nullptr; for (unsigned i = 0; i < geometries.Size(); ++i) { batches_[i].worldTransform_ = worldTransform; geometries_[i] = geometries[i]; geometryData_[i].center_ = geometryCenters[i]; } SetBoundingBox(model->GetBoundingBox()); ResetLodLevels(); } else { SetNumGeometries(0); SetBoundingBox(BoundingBox()); } MarkNetworkUpdate(); } void StaticModel::SetMaterial(Material* material) { for (unsigned i = 0; i < batches_.Size(); ++i) batches_[i].material_ = material; MarkNetworkUpdate(); } bool StaticModel::SetMaterial(unsigned index, Material* material) { if (index >= batches_.Size()) { URHO3D_LOGERROR("Material index out of bounds"); return false; } batches_[index].material_ = material; MarkNetworkUpdate(); return true; } void StaticModel::SetOcclusionLodLevel(unsigned level) { occlusionLodLevel_ = level; MarkNetworkUpdate(); } void StaticModel::ApplyMaterialList(const String& fileName) { String useFileName = fileName; if (useFileName.Trimmed().Empty() && model_) useFileName = ReplaceExtension(model_->GetName(), ".txt"); auto* cache = GetSubsystem(); SharedPtr file = cache->GetFile(useFileName, false); if (!file) return; unsigned index = 0; while (!file->IsEof() && index < batches_.Size()) { auto* material = cache->GetResource(file->ReadLine()); if (material) SetMaterial(index, material); ++index; } } Material* StaticModel::GetMaterial(unsigned index) const { return index < batches_.Size() ? batches_[index].material_ : nullptr; } bool StaticModel::IsInside(const Vector3& point) const { if (!node_) return false; Vector3 localPosition = node_->GetWorldTransform().Inverse() * point; return IsInsideLocal(localPosition); } bool StaticModel::IsInsideLocal(const Vector3& point) const { // Early-out if point is not inside bounding box if (boundingBox_.IsInside(point) == OUTSIDE) return false; Ray localRay(point, Vector3(1.0f, -1.0f, 1.0f)); for (unsigned i = 0; i < batches_.Size(); ++i) { Geometry* geometry = batches_[i].geometry_; if (geometry) { if (geometry->IsInside(localRay)) return true; } } return false; } void StaticModel::SetBoundingBox(const BoundingBox& box) { boundingBox_ = box; OnMarkedDirty(node_); } void StaticModel::SetNumGeometries(unsigned num) { batches_.Resize(num); geometries_.Resize(num); geometryData_.Resize(num); ResetLodLevels(); } void StaticModel::SetModelAttr(const ResourceRef& value) { auto* cache = GetSubsystem(); SetModel(cache->GetResource(value.name_)); } void StaticModel::SetMaterialsAttr(const ResourceRefList& value) { auto* cache = GetSubsystem(); for (unsigned i = 0; i < value.names_.Size(); ++i) SetMaterial(i, cache->GetResource(value.names_[i])); } ResourceRef StaticModel::GetModelAttr() const { return GetResourceRef(model_, Model::GetTypeStatic()); } const ResourceRefList& StaticModel::GetMaterialsAttr() const { materialsAttr_.names_.Resize(batches_.Size()); for (unsigned i = 0; i < batches_.Size(); ++i) materialsAttr_.names_[i] = GetResourceName(GetMaterial(i)); return materialsAttr_; } void StaticModel::OnWorldBoundingBoxUpdate() { worldBoundingBox_ = boundingBox_.Transformed(node_->GetWorldTransform()); } void StaticModel::ResetLodLevels() { // Ensure that each subgeometry has at least one LOD level, and reset the current LOD level for (unsigned i = 0; i < batches_.Size(); ++i) { if (!geometries_[i].Size()) geometries_[i].Resize(1); batches_[i].geometry_ = geometries_[i][0]; geometryData_[i].lodLevel_ = 0; } // Find out the real LOD levels on next geometry update lodDistance_ = M_INFINITY; } void StaticModel::CalculateLodLevels() { for (unsigned i = 0; i < batches_.Size(); ++i) { const Vector>& batchGeometries = geometries_[i]; // If only one LOD geometry, no reason to go through the LOD calculation if (batchGeometries.Size() <= 1) continue; unsigned j; for (j = 1; j < batchGeometries.Size(); ++j) { if (batchGeometries[j] && lodDistance_ <= batchGeometries[j]->GetLodDistance()) break; } unsigned newLodLevel = j - 1; if (geometryData_[i].lodLevel_ != newLodLevel) { geometryData_[i].lodLevel_ = newLodLevel; batches_[i].geometry_ = batchGeometries[newLodLevel]; } } } void StaticModel::HandleModelReloadFinished(StringHash eventType, VariantMap& eventData) { Model* currentModel = model_; model_.Reset(); // Set null to allow to be re-set SetModel(currentModel); } }