// // Copyright (c) 2008-2013 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include "Precompiled.h" #include "AnimatedModel.h" #include "Animation.h" #include "AnimationController.h" #include "Camera.h" #include "Context.h" #include "CustomGeometry.h" #include "DebugRenderer.h" #include "DecalSet.h" #include "Graphics.h" #include "GraphicsEvents.h" #include "GraphicsImpl.h" #include "IndexBuffer.h" #include "Log.h" #include "Material.h" #include "Octree.h" #include "ParticleEmitter.h" #include "ProcessUtils.h" #include "Profiler.h" #include "Shader.h" #include "ShaderVariation.h" #include "Skybox.h" #include "StaticModelGroup.h" #include "StringUtils.h" #include "Technique.h" #include "Terrain.h" #include "TerrainPatch.h" #include "Texture2D.h" #include "TextureCube.h" #include "VertexBuffer.h" #include "VertexDeclaration.h" #include "Zone.h" #include "DebugNew.h" #ifdef _MSC_VER #pragma warning(disable:4355) #endif namespace Urho3D { extern "C" HWND WIN_GetWindowHandle(SDL_Window* window); static const D3DCMPFUNC d3dCmpFunc[] = { D3DCMP_ALWAYS, D3DCMP_EQUAL, D3DCMP_NOTEQUAL, D3DCMP_LESS, D3DCMP_LESSEQUAL, D3DCMP_GREATER, D3DCMP_GREATEREQUAL }; static const D3DTEXTUREFILTERTYPE d3dMinMagFilter[] = { D3DTEXF_POINT, D3DTEXF_LINEAR, D3DTEXF_LINEAR, D3DTEXF_ANISOTROPIC }; static const D3DTEXTUREFILTERTYPE d3dMipFilter[] = { D3DTEXF_POINT, D3DTEXF_POINT, D3DTEXF_LINEAR, D3DTEXF_ANISOTROPIC }; static const D3DTEXTUREADDRESS d3dAddressMode[] = { D3DTADDRESS_WRAP, D3DTADDRESS_MIRROR, D3DTADDRESS_CLAMP, D3DTADDRESS_BORDER }; static const DWORD d3dBlendEnable[] = { FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE }; static const D3DBLEND d3dSrcBlend[] = { D3DBLEND_ONE, D3DBLEND_ONE, D3DBLEND_DESTCOLOR, D3DBLEND_SRCALPHA, D3DBLEND_SRCALPHA, D3DBLEND_ONE, D3DBLEND_INVDESTALPHA, }; static const D3DBLEND d3dDestBlend[] = { D3DBLEND_ZERO, D3DBLEND_ONE, D3DBLEND_ZERO, D3DBLEND_INVSRCALPHA, D3DBLEND_ONE, D3DBLEND_INVSRCALPHA, D3DBLEND_DESTALPHA }; static const D3DCULL d3dCullMode[] = { D3DCULL_NONE, D3DCULL_CCW, D3DCULL_CW }; static const D3DFILLMODE d3dFillMode[] = { D3DFILL_SOLID, D3DFILL_WIREFRAME, D3DFILL_POINT }; static const D3DSTENCILOP d3dStencilOp[] = { D3DSTENCILOP_KEEP, D3DSTENCILOP_ZERO, D3DSTENCILOP_REPLACE, D3DSTENCILOP_INCR, D3DSTENCILOP_DECR }; static unsigned GetD3DColor(const Color& color) { unsigned r = (unsigned)(Clamp(color.r_ * 255.0f, 0.0f, 255.0f)); unsigned g = (unsigned)(Clamp(color.g_ * 255.0f, 0.0f, 255.0f)); unsigned b = (unsigned)(Clamp(color.b_ * 255.0f, 0.0f, 255.0f)); unsigned a = (unsigned)(Clamp(color.a_ * 255.0f, 0.0f, 255.0f)); return (((a) & 0xff) << 24) | (((r) & 0xff) << 16) | (((g) & 0xff) << 8) | ((b) & 0xff); } static unsigned depthStencilFormat = D3DFMT_D24S8; Graphics::Graphics(Context* context) : Object(context), impl_(new GraphicsImpl()), externalWindow_(0), width_(0), height_(0), multiSample_(1), windowPosX_(0), windowPosY_(0), fullscreen_(false), resizable_(false), vsync_(false), tripleBuffer_(false), sRGB_(false), deviceLost_(false), lightPrepassSupport_(false), deferredSupport_(false), hardwareShadowSupport_(false), streamOffsetSupport_(false), sRGBSupport_(false), sRGBWriteSupport_(false), hasSM3_(false), forceSM2_(false), numPrimitives_(0), numBatches_(0), maxScratchBufferRequest_(0), defaultTextureFilterMode_(FILTER_BILINEAR) { SetTextureUnitMappings(); // Initialize SDL now. Graphics should be the first SDL-using subsystem to be created SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO | SDL_INIT_JOYSTICK | SDL_INIT_NOPARACHUTE); // Register Graphics library object factories RegisterGraphicsLibrary(context_); } Graphics::~Graphics() { // Release all GPU objects that still exist for (Vector::Iterator i = gpuObjects_.Begin(); i != gpuObjects_.End(); ++i) (*i)->Release(); gpuObjects_.Clear(); vertexDeclarations_.Clear(); if (impl_->defaultColorSurface_) { impl_->defaultColorSurface_->Release(); impl_->defaultColorSurface_ = 0; } if (impl_->defaultDepthStencilSurface_) { impl_->defaultDepthStencilSurface_->Release(); impl_->defaultDepthStencilSurface_ = 0; } if (impl_->device_) { impl_->device_->Release(); impl_->device_ = 0; } if (impl_->interface_) { impl_->interface_->Release(); impl_->interface_ = 0; } if (impl_->window_) { SDL_ShowCursor(SDL_TRUE); SDL_DestroyWindow(impl_->window_); impl_->window_ = 0; } delete impl_; impl_ = 0; // Shut down SDL now. Graphics should be the last SDL-using subsystem to be destroyed SDL_Quit(); } void Graphics::SetExternalWindow(void* window) { if (!impl_->window_) externalWindow_ = window; else LOGERROR("Window already opened, can not set external window"); } void Graphics::SetWindowTitle(const String& windowTitle) { windowTitle_ = windowTitle; if (impl_->window_) SDL_SetWindowTitle(impl_->window_, windowTitle_.CString()); } bool Graphics::SetMode(int width, int height, bool fullscreen, bool resizable, bool vsync, bool tripleBuffer, int multiSample) { PROFILE(SetScreenMode); // Find out the full screen mode display format (match desktop color depth) SDL_DisplayMode mode; SDL_GetDesktopDisplayMode(0, &mode); D3DFORMAT fullscreenFormat = SDL_BITSPERPIXEL(mode.format) == 16 ? D3DFMT_R5G6B5 : D3DFMT_X8R8G8B8; // If zero dimensions in windowed mode, set default. If zero in fullscreen, use desktop mode if (!width || !height) { if (!fullscreen) { width = 1024; height = 768; } else { width = mode.w; height = mode.h; } } // Fullscreen can not be resizable if (fullscreen) resizable = false; multiSample = Clamp(multiSample, 1, (int)D3DMULTISAMPLE_16_SAMPLES); // If nothing changes, do not reset the device if (width == width_ && height == height_ && fullscreen == fullscreen_ && resizable == resizable_ && vsync == vsync_ && tripleBuffer == tripleBuffer_ && multiSample == multiSample_) return true; if (!impl_->window_) { if (!OpenWindow(width, height, resizable)) return false; } if (!impl_->interface_) { if (!CreateInterface()) return false; CheckFeatureSupport(); } // Note: GetMultiSample() will not reflect the actual hardware multisample mode, but rather what the caller wanted. multiSample_ = multiSample; // Check fullscreen mode validity. If not valid, revert to windowed if (fullscreen) { PODVector resolutions = GetResolutions(); fullscreen = false; for (unsigned i = 0; i < resolutions.Size(); ++i) { if (width == resolutions[i].x_ && height == resolutions[i].y_) { fullscreen = true; break; } } } // Fall back to non-multisampled if unsupported multisampling mode if (multiSample > 1) { if (FAILED(impl_->interface_->CheckDeviceMultiSampleType(impl_->adapter_, impl_->deviceType_, fullscreenFormat, FALSE, (D3DMULTISAMPLE_TYPE)multiSample, NULL))) multiSample = 1; } AdjustWindow(width, height, fullscreen); if (fullscreen) { impl_->presentParams_.BackBufferFormat = fullscreenFormat; impl_->presentParams_.Windowed = false; } else { impl_->presentParams_.BackBufferFormat = D3DFMT_UNKNOWN; impl_->presentParams_.Windowed = true; } impl_->presentParams_.BackBufferWidth = width; impl_->presentParams_.BackBufferHeight = height; impl_->presentParams_.BackBufferCount = tripleBuffer ? 2 : 1; impl_->presentParams_.MultiSampleType = multiSample > 1 ? (D3DMULTISAMPLE_TYPE)multiSample : D3DMULTISAMPLE_NONE; impl_->presentParams_.MultiSampleQuality = 0; impl_->presentParams_.SwapEffect = D3DSWAPEFFECT_DISCARD; impl_->presentParams_.hDeviceWindow = WIN_GetWindowHandle(impl_->window_); impl_->presentParams_.EnableAutoDepthStencil = TRUE; impl_->presentParams_.AutoDepthStencilFormat = D3DFMT_D24S8; impl_->presentParams_.Flags = D3DPRESENT_LINEAR_CONTENT; impl_->presentParams_.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT; if (vsync) impl_->presentParams_.PresentationInterval = D3DPRESENT_INTERVAL_ONE; else impl_->presentParams_.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE; width_ = width; height_ = height; fullscreen_ = fullscreen; resizable_ = resizable; vsync_ = vsync; tripleBuffer_ = tripleBuffer; if (!impl_->device_) { unsigned adapter = D3DADAPTER_DEFAULT; unsigned deviceType = D3DDEVTYPE_HAL; // Check for PerfHUD adapter for (unsigned i=0; i < impl_->interface_->GetAdapterCount(); ++i) { D3DADAPTER_IDENTIFIER9 identifier; impl_->interface_->GetAdapterIdentifier(i, 0, &identifier); if (strstr(identifier.Description, "PerfHUD") != 0) { adapter = i; deviceType = D3DDEVTYPE_REF; break; } } impl_->interface_->GetAdapterIdentifier(adapter, 0, &impl_->adapterIdentifier_); if (!CreateDevice(adapter, deviceType)) return false; } else ResetDevice(); // Clear the initial window contents to black impl_->device_->BeginScene(); Clear(CLEAR_COLOR); impl_->device_->EndScene(); impl_->device_->Present(0, 0, 0, 0); #ifdef ENABLE_LOGGING String msg; msg.AppendWithFormat("Set screen mode %dx%d %s", width_, height_, (fullscreen_ ? "fullscreen" : "windowed")); if (resizable_) msg.Append(" resizable"); if (multiSample > 1) msg.AppendWithFormat(" multisample %d", multiSample); LOGINFO(msg); #endif using namespace ScreenMode; VariantMap eventData; eventData[P_WIDTH] = width_; eventData[P_HEIGHT] = height_; eventData[P_FULLSCREEN] = fullscreen_; eventData[P_RESIZABLE] = resizable_; SendEvent(E_SCREENMODE, eventData); return true; } bool Graphics::SetMode(int width, int height) { return SetMode(width, height, fullscreen_, resizable_, vsync_, tripleBuffer_, multiSample_); } void Graphics::SetSRGB(bool enable) { sRGB_ = enable && sRGBWriteSupport_; } bool Graphics::ToggleFullscreen() { return SetMode(width_, height_, !fullscreen_, resizable_, vsync_, tripleBuffer_, multiSample_); } void Graphics::Close() { if (impl_->window_) { SDL_ShowCursor(SDL_TRUE); SDL_DestroyWindow(impl_->window_); impl_->window_ = 0; } } bool Graphics::TakeScreenShot(Image& destImage) { PROFILE(TakeScreenShot); if (!impl_->device_) return false; D3DSURFACE_DESC surfaceDesc; impl_->defaultColorSurface_->GetDesc(&surfaceDesc); // If possible, get the backbuffer data, because it is a lot faster. // However, if we are multisampled, need to use the front buffer bool useBackBuffer = true; if (impl_->presentParams_.MultiSampleType) { useBackBuffer = false; surfaceDesc.Format = D3DFMT_A8R8G8B8; } IDirect3DSurface9* surface = 0; impl_->device_->CreateOffscreenPlainSurface(width_, height_, surfaceDesc.Format, D3DPOOL_SYSTEMMEM, &surface, 0); if (!surface) return false; if (useBackBuffer) impl_->device_->GetRenderTargetData(impl_->defaultColorSurface_, surface); else impl_->device_->GetFrontBufferData(0, surface); D3DLOCKED_RECT lockedRect; lockedRect.pBits = 0; surface->LockRect(&lockedRect, 0, D3DLOCK_NOSYSLOCK | D3DLOCK_READONLY); if (!lockedRect.pBits) { surface->Release(); return false; } destImage.SetSize(width_, height_, 3); unsigned char* destData = destImage.GetData(); if (surfaceDesc.Format == D3DFMT_R5G6B5) { for (int y = 0; y < height_; ++y) { unsigned short* src = (unsigned short*)((unsigned char*)lockedRect.pBits + y * lockedRect.Pitch); unsigned char* dest = destData + y * width_ * 3; for (int x = 0; x < width_; ++x) { unsigned short rgb = *src++; int b = rgb & 31; int g = (rgb >> 5) & 63; int r = (rgb >> 11); *dest++ = (int)(r * 255.0f / 31.0f); *dest++ = (int)(g * 255.0f / 63.0f); *dest++ = (int)(b * 255.0f / 31.0f); } } } else { for (int y = 0; y < height_; ++y) { unsigned char* src = (unsigned char*)lockedRect.pBits + y * lockedRect.Pitch; unsigned char* dest = destData + y * width_ * 3; for (int x = 0; x < width_; ++x) { *dest++ = src[2]; *dest++ = src[1]; *dest++ = src[0]; src += 4; } } } surface->UnlockRect(); surface->Release(); return true; } bool Graphics::BeginFrame() { if (!IsInitialized()) return false; // If using an external window, check it for size changes, and reset screen mode if necessary if (externalWindow_) { int width, height; SDL_GetWindowSize(impl_->window_, &width, &height); if (width != width_ || height != height_) SetMode(width, height); } // Check for lost device before rendering HRESULT hr = impl_->device_->TestCooperativeLevel(); if (hr != D3D_OK) { PROFILE(DeviceLost); deviceLost_ = true; // The device can not be reset yet, sleep and try again eventually if (hr == D3DERR_DEVICELOST) { Sleep(20); return false; } // The device is lost, but ready to be reset. Reset device but do not render on this frame yet if (hr == D3DERR_DEVICENOTRESET) { ResetDevice(); return false; } } impl_->device_->BeginScene(); // Set default rendertarget and depth buffer ResetRenderTargets(); // Cleanup textures from previous frame for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) SetTexture(i, 0); // Cleanup stream frequencies from previous frame ResetStreamFrequencies(); numPrimitives_ = 0; numBatches_ = 0; SendEvent(E_BEGINRENDERING); return true; } void Graphics::EndFrame() { if (!IsInitialized()) return; PROFILE(Present); SendEvent(E_ENDRENDERING); impl_->device_->EndScene(); impl_->device_->Present(0, 0, 0, 0); // Clean up too large scratch buffers CleanupScratchBuffers(); } void Graphics::Clear(unsigned flags, const Color& color, float depth, unsigned stencil) { DWORD d3dFlags = 0; if (flags & CLEAR_COLOR) d3dFlags |= D3DCLEAR_TARGET; if (flags & CLEAR_DEPTH) d3dFlags |= D3DCLEAR_ZBUFFER; if (flags & CLEAR_STENCIL) d3dFlags |= D3DCLEAR_STENCIL; impl_->device_->Clear(0, 0, d3dFlags, GetD3DColor(color), depth, stencil); } bool Graphics::ResolveToTexture(Texture2D* destination, const IntRect& viewport) { if (!destination || !destination->GetRenderSurface() || destination->GetWidth() != width_ || destination->GetHeight() != height_) return false; PROFILE(ResolveToTexture); IntRect vpCopy = viewport; if (vpCopy.right_ <= vpCopy.left_) vpCopy.right_ = vpCopy.left_ + 1; if (vpCopy.bottom_ <= vpCopy.top_) vpCopy.bottom_ = vpCopy.top_ + 1; RECT rect; rect.left = Clamp(vpCopy.left_, 0, width_); rect.top = Clamp(vpCopy.top_, 0, height_); rect.right = Clamp(vpCopy.right_, 0, width_); rect.bottom = Clamp(vpCopy.bottom_, 0, height_); return SUCCEEDED(impl_->device_->StretchRect(impl_->defaultColorSurface_, &rect, (IDirect3DSurface9*)destination->GetRenderSurface()->GetSurface(), &rect, D3DTEXF_NONE)); } void Graphics::Draw(PrimitiveType type, unsigned vertexStart, unsigned vertexCount) { if (!vertexCount) return; ResetStreamFrequencies(); unsigned primitiveCount = 0; switch (type) { case TRIANGLE_LIST: primitiveCount = vertexCount / 3; impl_->device_->DrawPrimitive(D3DPT_TRIANGLELIST, vertexStart, primitiveCount); break; case LINE_LIST: primitiveCount = vertexCount / 2; impl_->device_->DrawPrimitive(D3DPT_LINELIST, vertexStart, primitiveCount); break; } numPrimitives_ += primitiveCount; ++numBatches_; } void Graphics::Draw(PrimitiveType type, unsigned indexStart, unsigned indexCount, unsigned minVertex, unsigned vertexCount) { if (!indexCount) return; ResetStreamFrequencies(); unsigned primitiveCount = 0; switch (type) { case TRIANGLE_LIST: primitiveCount = indexCount / 3; impl_->device_->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, minVertex, vertexCount, indexStart, primitiveCount); break; case LINE_LIST: primitiveCount = indexCount / 2; impl_->device_->DrawIndexedPrimitive(D3DPT_LINELIST, 0, minVertex, vertexCount, indexStart, primitiveCount); break; } numPrimitives_ += primitiveCount; ++numBatches_; } void Graphics::DrawInstanced(PrimitiveType type, unsigned indexStart, unsigned indexCount, unsigned minVertex, unsigned vertexCount, unsigned instanceCount) { if (!indexCount || !instanceCount) return; for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { VertexBuffer* buffer = vertexBuffers_[i]; if (buffer) { if (buffer->GetElementMask() & MASK_INSTANCEMATRIX1) SetStreamFrequency(i, D3DSTREAMSOURCE_INSTANCEDATA | 1); else SetStreamFrequency(i, D3DSTREAMSOURCE_INDEXEDDATA | instanceCount); } } unsigned primitiveCount = 0; switch (type) { case TRIANGLE_LIST: primitiveCount = indexCount / 3; impl_->device_->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, minVertex, vertexCount, indexStart, primitiveCount); break; case LINE_LIST: primitiveCount = indexCount / 2; impl_->device_->DrawIndexedPrimitive(D3DPT_LINELIST, 0, minVertex, vertexCount, indexStart, primitiveCount); break; } numPrimitives_ += instanceCount * primitiveCount; ++numBatches_; } void Graphics::SetVertexBuffer(VertexBuffer* buffer) { // Note: this is not multi-instance safe static PODVector vertexBuffers(1); static PODVector elementMasks(1); vertexBuffers[0] = buffer; elementMasks[0] = MASK_DEFAULT; SetVertexBuffers(vertexBuffers, elementMasks); } bool Graphics::SetVertexBuffers(const PODVector& buffers, const PODVector& elementMasks, unsigned instanceOffset) { if (buffers.Size() > MAX_VERTEX_STREAMS) { LOGERROR("Too many vertex buffers"); return false; } if (buffers.Size() != elementMasks.Size()) { LOGERROR("Amount of element masks and vertex buffers does not match"); return false; } // Build vertex declaration hash code out of the buffers & masks unsigned long long hash = 0; for (unsigned i = 0; i < buffers.Size(); ++i) { if (!buffers[i]) continue; hash |= buffers[i]->GetBufferHash(i, elementMasks[i]); } if (hash) { // If no previous vertex declaration for that hash, create new if (!vertexDeclarations_.Contains(hash)) { SharedPtr newDeclaration(new VertexDeclaration(this, buffers, elementMasks)); if (!newDeclaration->GetDeclaration()) { LOGERROR("Failed to create vertex declaration"); return false; } vertexDeclarations_[hash] = newDeclaration; } VertexDeclaration* declaration = vertexDeclarations_[hash]; if (declaration != vertexDeclaration_) { impl_->device_->SetVertexDeclaration(declaration->GetDeclaration()); vertexDeclaration_ = declaration; } } for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { VertexBuffer* buffer = 0; unsigned offset = 0; if (i < buffers.Size()) { buffer = buffers[i]; if (buffer && buffer->GetElementMask() & MASK_INSTANCEMATRIX1) offset = instanceOffset * buffer->GetVertexSize(); } if (buffer != vertexBuffers_[i] || offset != streamOffsets_[i]) { if (buffer) impl_->device_->SetStreamSource(i, (IDirect3DVertexBuffer9*)buffer->GetGPUObject(), offset, buffer->GetVertexSize()); else impl_->device_->SetStreamSource(i, 0, 0, 0); vertexBuffers_[i] = buffer; streamOffsets_[i] = offset; } } return true; } bool Graphics::SetVertexBuffers(const Vector >& buffers, const PODVector& elementMasks, unsigned instanceOffset) { if (buffers.Size() > MAX_VERTEX_STREAMS) { LOGERROR("Too many vertex buffers"); return false; } if (buffers.Size() != elementMasks.Size()) { LOGERROR("Amount of element masks and vertex buffers does not match"); return false; } unsigned long long hash = 0; for (unsigned i = 0; i < buffers.Size(); ++i) { if (!buffers[i]) continue; hash |= buffers[i]->GetBufferHash(i, elementMasks[i]); } if (hash) { if (!vertexDeclarations_.Contains(hash)) { SharedPtr newDeclaration(new VertexDeclaration(this, buffers, elementMasks)); if (!newDeclaration->GetDeclaration()) { LOGERROR("Failed to create vertex declaration"); return false; } vertexDeclarations_[hash] = newDeclaration; } VertexDeclaration* declaration = vertexDeclarations_[hash]; if (declaration != vertexDeclaration_) { impl_->device_->SetVertexDeclaration(declaration->GetDeclaration()); vertexDeclaration_ = declaration; } } for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { VertexBuffer* buffer = 0; unsigned offset = 0; if (i < buffers.Size()) { buffer = buffers[i]; if (buffer && buffer->GetElementMask() & MASK_INSTANCEMATRIX1) offset = instanceOffset * buffer->GetVertexSize(); } if (buffer != vertexBuffers_[i] || offset != streamOffsets_[i]) { if (buffer) impl_->device_->SetStreamSource(i, (IDirect3DVertexBuffer9*)buffer->GetGPUObject(), offset, buffer->GetVertexSize()); else impl_->device_->SetStreamSource(i, 0, 0, 0); vertexBuffers_[i] = buffer; streamOffsets_[i] = offset; } } return true; } void Graphics::SetIndexBuffer(IndexBuffer* buffer) { if (buffer != indexBuffer_) { if (buffer) impl_->device_->SetIndices((IDirect3DIndexBuffer9*)buffer->GetGPUObject()); else impl_->device_->SetIndices(0); indexBuffer_ = buffer; } } void Graphics::SetShaders(ShaderVariation* vs, ShaderVariation* ps) { if (vs == vertexShader_ && ps == pixelShader_) return; ClearParameterSources(); if (vs != vertexShader_) { // Clear all previous vertex shader register mappings for (HashMap::Iterator i = shaderParameters_.Begin(); i != shaderParameters_.End(); ++i) { if (i->second_.type_ == VS) i->second_.register_ = M_MAX_UNSIGNED; } // Create the shader now if not yet created. If already attempted, do not retry if (vs && !vs->IsCreated()) { if (!vs->IsFailed()) { PROFILE(CreateVertexShader); bool success = vs->Create(); if (success) LOGDEBUG("Created vertex shader " + vs->GetName()); else { LOGERROR("Failed to create vertex shader " + vs->GetName()); vs = 0; } } else vs = 0; } if (vs && vs->GetShaderType() == VS) { impl_->device_->SetVertexShader((IDirect3DVertexShader9*)vs->GetGPUObject()); // Update the parameter-to-register mappings const HashMap& parameters = vs->GetParameters(); for (HashMap::ConstIterator i = parameters.Begin(); i != parameters.End(); ++i) shaderParameters_[i->first_].register_ = i->second_.register_; } else { impl_->device_->SetVertexShader(0); vs = 0; } vertexShader_ = vs; } if (ps != pixelShader_) { for (HashMap::Iterator i = shaderParameters_.Begin(); i != shaderParameters_.End(); ++i) { if (i->second_.type_ == PS) i->second_.register_ = M_MAX_UNSIGNED; } if (ps && !ps->IsCreated()) { if (!ps->IsFailed()) { PROFILE(CreatePixelShader); bool success = ps->Create(); if (success) LOGDEBUG("Created pixel shader " + ps->GetName()); else { LOGERROR("Failed to create pixel shader " + ps->GetName()); ps = 0; } } else ps = 0; } if (ps && ps->GetShaderType() == PS) { impl_->device_->SetPixelShader((IDirect3DPixelShader9*)ps->GetGPUObject()); const HashMap& parameters = ps->GetParameters(); for (HashMap::ConstIterator i = parameters.Begin(); i != parameters.End(); ++i) shaderParameters_[i->first_].register_ = i->second_.register_; } else { impl_->device_->SetPixelShader(0); ps = 0; } pixelShader_ = ps; } } void Graphics::SetShaderParameter(StringHash param, const float* data, unsigned count) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, data, count / 4); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, data, count / 4); } void Graphics::SetShaderParameter(StringHash param, float value) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; float data[4]; data[0] = value; data[1] = 0.0f; data[2] = 0.0f; data[3] = 0.0f; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, &data[0], 1); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, &data[0], 1); } void Graphics::SetShaderParameter(StringHash param, bool value) { /// \todo Bool constants possibly have no effect on Direct3D9 HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; BOOL data = value; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantB(i->second_.register_, &data, 1); else impl_->device_->SetPixelShaderConstantB(i->second_.register_, &data, 1); } void Graphics::SetShaderParameter(StringHash param, const Color& color) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, color.Data(), 1); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, color.Data(), 1); } void Graphics::SetShaderParameter(StringHash param, const Vector2& vector) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; float data[4]; data[0] = vector.x_; data[1] = vector.y_; data[2] = 0.0f; data[3] = 0.0f; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, &data[0], 1); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, &data[0], 1); } void Graphics::SetShaderParameter(StringHash param, const Matrix3& matrix) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; float data[12]; data[0] = matrix.m00_; data[1] = matrix.m01_; data[2] = matrix.m02_; data[3] = 0.0f; data[4] = matrix.m10_; data[5] = matrix.m11_; data[6] = matrix.m12_; data[7] = 0.0f; data[8] = matrix.m20_; data[9] = matrix.m21_; data[10] = matrix.m22_; data[11] = 0.0f; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, &data[0], 3); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, &data[0], 3); } void Graphics::SetShaderParameter(StringHash param, const Vector3& vector) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; float data[4]; data[0] = vector.x_; data[1] = vector.y_; data[2] = vector.z_; data[3] = 0.0f; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, &data[0], 1); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, &data[0], 1); } void Graphics::SetShaderParameter(StringHash param, const Matrix4& matrix) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, matrix.Data(), 4); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, matrix.Data(), 4); } void Graphics::SetShaderParameter(StringHash param, const Vector4& vector) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, vector.Data(), 1); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, vector.Data(), 1); } void Graphics::SetShaderParameter(StringHash param, const Matrix3x4& matrix) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, matrix.Data(), 3); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, matrix.Data(), 3); } void Graphics::SetShaderParameter(StringHash param, const Variant& value) { switch (value.GetType()) { case VAR_BOOL: SetShaderParameter(param, value.GetBool()); break; case VAR_FLOAT: SetShaderParameter(param, value.GetFloat()); break; case VAR_VECTOR2: SetShaderParameter(param, value.GetVector2()); break; case VAR_VECTOR3: SetShaderParameter(param, value.GetVector3()); break; case VAR_VECTOR4: SetShaderParameter(param, value.GetVector4()); break; default: // Unsupported parameter type, do nothing break; } } void Graphics::RegisterShaderParameter(StringHash param, const ShaderParameter& definition) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End()) { // Define new parameter i = shaderParameters_.Insert(MakePair(param, definition)); i->second_.register_ = M_MAX_UNSIGNED; // Rehash the parameters to ensure minimum load factor and fast queries shaderParameters_.Rehash(NextPowerOfTwo(shaderParameters_.Size())); } else { // Existing parameter: check that there is no conflict if (i->second_.type_ != definition.type_) LOGWARNING("Shader type mismatch on shader parameter " + String(param)); // The same parameter is possibly defined with different sizes in different shaders. Use the highest size if (i->second_.regCount_ < definition.regCount_) i->second_.regCount_ = definition.regCount_; } } bool Graphics::NeedParameterUpdate(ShaderParameterGroup group, const void* source) { if ((unsigned)(size_t)shaderParameterSources_[group] == M_MAX_UNSIGNED || shaderParameterSources_[group] != source) { shaderParameterSources_[group] = source; return true; } else return false; } bool Graphics::HasShaderParameter(ShaderType type, StringHash param) { if (type == VS) return vertexShader_ && vertexShader_->HasParameter(param); else return pixelShader_ && pixelShader_->HasParameter(param); } bool Graphics::HasTextureUnit(TextureUnit unit) { return pixelShader_ && pixelShader_->HasTextureUnit(unit); } void Graphics::ClearParameterSource(ShaderParameterGroup group) { shaderParameterSources_[group] = (const void*)M_MAX_UNSIGNED; } void Graphics::ClearParameterSources() { for (unsigned i = 0; i < MAX_SHADER_PARAMETER_GROUPS; ++i) shaderParameterSources_[i] = (const void*)M_MAX_UNSIGNED; } void Graphics::ClearTransformSources() { shaderParameterSources_[SP_CAMERA] = (const void*)M_MAX_UNSIGNED; shaderParameterSources_[SP_OBJECTTRANSFORM] = (const void*)M_MAX_UNSIGNED; } void Graphics::SetTexture(unsigned index, Texture* texture) { if (index >= MAX_TEXTURE_UNITS) return; // Check if texture is currently bound as a rendertarget. In that case, use its backup texture, or blank if not defined if (texture) { if (texture == viewTexture_ || (renderTargets_[0] && renderTargets_[0]->GetParentTexture() == texture)) texture = texture->GetBackupTexture(); } if (texture != textures_[index]) { if (texture) impl_->device_->SetTexture(index, (IDirect3DBaseTexture9*)texture->GetGPUObject()); else impl_->device_->SetTexture(index, 0); textures_[index] = texture; } if (texture) { TextureFilterMode filterMode = texture->GetFilterMode(); if (filterMode == FILTER_DEFAULT) filterMode = defaultTextureFilterMode_; D3DTEXTUREFILTERTYPE minMag, mip; minMag = d3dMinMagFilter[filterMode]; if (minMag != impl_->minMagFilters_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_MAGFILTER, minMag); impl_->device_->SetSamplerState(index, D3DSAMP_MINFILTER, minMag); impl_->minMagFilters_[index] = minMag; } mip = d3dMipFilter[filterMode]; if (mip != impl_->mipFilters_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_MIPFILTER, mip); impl_->mipFilters_[index] = mip; } D3DTEXTUREADDRESS u, v; u = d3dAddressMode[texture->GetAddressMode(COORD_U)]; if (u != impl_->uAddressModes_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_ADDRESSU, u); impl_->uAddressModes_[index] = u; } v = d3dAddressMode[texture->GetAddressMode(COORD_V)]; if (v != impl_->vAddressModes_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_ADDRESSV, v); impl_->vAddressModes_[index] = v; } if (texture->GetType() == TextureCube::GetTypeStatic()) { D3DTEXTUREADDRESS w = d3dAddressMode[texture->GetAddressMode(COORD_W)]; if (w != impl_->wAddressModes_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_ADDRESSW, w); impl_->wAddressModes_[index] = w; } } if (u == D3DTADDRESS_BORDER || v == D3DTADDRESS_BORDER) { const Color& borderColor = texture->GetBorderColor(); if (borderColor != impl_->borderColors_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_BORDERCOLOR, GetD3DColor(borderColor)); impl_->borderColors_[index] = borderColor; } } if (sRGBSupport_) { bool sRGB = texture->GetSRGB(); if (sRGB != impl_->sRGBModes_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_SRGBTEXTURE, sRGB ? TRUE : FALSE); impl_->sRGBModes_[index] = sRGB; } } } } void Graphics::SetDefaultTextureFilterMode(TextureFilterMode mode) { defaultTextureFilterMode_ = mode; } void Graphics::ResetRenderTargets() { for (unsigned i = 0; i < MAX_RENDERTARGETS; ++i) SetRenderTarget(i, (RenderSurface*)0); SetDepthStencil((RenderSurface*)0); SetViewport(IntRect(0, 0, width_, height_)); } void Graphics::ResetRenderTarget(unsigned index) { SetRenderTarget(index, (RenderSurface*)0); } void Graphics::ResetDepthStencil() { SetDepthStencil((RenderSurface*)0); } void Graphics::SetRenderTarget(unsigned index, RenderSurface* renderTarget) { if (index >= MAX_RENDERTARGETS) return; IDirect3DSurface9* newColorSurface = 0; if (renderTarget) { if (renderTarget->GetUsage() != TEXTURE_RENDERTARGET) return; newColorSurface = (IDirect3DSurface9*)renderTarget->GetSurface(); } else { if (!index) newColorSurface = impl_->defaultColorSurface_; } renderTargets_[index] = renderTarget; if (newColorSurface != impl_->colorSurfaces_[index]) { impl_->device_->SetRenderTarget(index, newColorSurface); impl_->colorSurfaces_[index] = newColorSurface; // Setting the first rendertarget causes viewport to be reset if (!index) { IntVector2 rtSize = GetRenderTargetDimensions(); viewport_ = IntRect(0, 0, rtSize.x_, rtSize.y_); } } // If the rendertarget is also bound as a texture, replace with backup texture or null if (renderTarget) { Texture* parentTexture = renderTarget->GetParentTexture(); for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) { if (textures_[i] == parentTexture) SetTexture(i, textures_[i]->GetBackupTexture()); } } // First rendertarget controls sRGB write mode if (!index && sRGBWriteSupport_) { bool sRGBWrite = renderTarget ? renderTarget->GetParentTexture()->GetSRGB() : sRGB_; if (sRGBWrite != impl_->sRGBWrite_) { impl_->device_->SetRenderState(D3DRS_SRGBWRITEENABLE, sRGBWrite ? TRUE : FALSE); impl_->sRGBWrite_ = sRGBWrite; } } } void Graphics::SetRenderTarget(unsigned index, Texture2D* texture) { RenderSurface* renderTarget = 0; if (texture) renderTarget = texture->GetRenderSurface(); SetRenderTarget(index, renderTarget); } void Graphics::SetDepthStencil(RenderSurface* depthStencil) { IDirect3DSurface9* newDepthStencilSurface = 0; if (depthStencil && depthStencil->GetUsage() == TEXTURE_DEPTHSTENCIL) { newDepthStencilSurface = (IDirect3DSurface9*)depthStencil->GetSurface(); depthStencil_ = depthStencil; } if (!newDepthStencilSurface) { newDepthStencilSurface = impl_->defaultDepthStencilSurface_; depthStencil_ = 0; } if (newDepthStencilSurface != impl_->depthStencilSurface_) { impl_->device_->SetDepthStencilSurface(newDepthStencilSurface); impl_->depthStencilSurface_ = newDepthStencilSurface; } } void Graphics::SetDepthStencil(Texture2D* texture) { RenderSurface* depthStencil = 0; if (texture) depthStencil = texture->GetRenderSurface(); SetDepthStencil(depthStencil); } void Graphics::SetViewTexture(Texture* texture) { viewTexture_ = texture; if (viewTexture_) { for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) { if (textures_[i] == viewTexture_) SetTexture(i, textures_[i]->GetBackupTexture()); } } } void Graphics::SetViewport(const IntRect& rect) { IntVector2 size = GetRenderTargetDimensions(); IntRect rectCopy = rect; if (rectCopy.right_ <= rectCopy.left_) rectCopy.right_ = rectCopy.left_ + 1; if (rectCopy.bottom_ <= rectCopy.top_) rectCopy.bottom_ = rectCopy.top_ + 1; rectCopy.left_ = Clamp(rectCopy.left_, 0, size.x_); rectCopy.top_ = Clamp(rectCopy.top_, 0, size.y_); rectCopy.right_ = Clamp(rectCopy.right_, 0, size.x_); rectCopy.bottom_ = Clamp(rectCopy.bottom_, 0, size.y_); D3DVIEWPORT9 vp; vp.MinZ = 0.0f; vp.MaxZ = 1.0f; vp.X = rectCopy.left_; vp.Y = rectCopy.top_; vp.Width = rectCopy.Width(); vp.Height = rectCopy.Height(); impl_->device_->SetViewport(&vp); viewport_ = rectCopy; // Disable scissor test, needs to be re-enabled by the user SetScissorTest(false); } void Graphics::SetTextureAnisotropy(unsigned level) { if (level < 1) level = 1; if (level != textureAnisotropy_) { for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) impl_->device_->SetSamplerState(i, D3DSAMP_MAXANISOTROPY, level); textureAnisotropy_ = level; } } void Graphics::SetBlendMode(BlendMode mode) { if (mode != blendMode_) { if (d3dBlendEnable[mode] != impl_->blendEnable_) { impl_->device_->SetRenderState(D3DRS_ALPHABLENDENABLE, d3dBlendEnable[mode]); impl_->blendEnable_ = d3dBlendEnable[mode]; } if (impl_->blendEnable_) { if (d3dSrcBlend[mode] != impl_->srcBlend_) { impl_->device_->SetRenderState(D3DRS_SRCBLEND, d3dSrcBlend[mode]); impl_->srcBlend_ = d3dSrcBlend[mode]; } if (d3dDestBlend[mode] != impl_->destBlend_) { impl_->device_->SetRenderState(D3DRS_DESTBLEND, d3dDestBlend[mode]); impl_->destBlend_ = d3dDestBlend[mode]; } } blendMode_ = mode; } } void Graphics::SetColorWrite(bool enable) { if (enable != colorWrite_) { impl_->device_->SetRenderState(D3DRS_COLORWRITEENABLE, enable ? D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_ALPHA : 0); colorWrite_ = enable; } } void Graphics::SetCullMode(CullMode mode) { if (mode != cullMode_) { impl_->device_->SetRenderState(D3DRS_CULLMODE, d3dCullMode[mode]); cullMode_ = mode; } } void Graphics::SetDepthBias(float constantBias, float slopeScaledBias) { if (constantBias != constantDepthBias_) { impl_->device_->SetRenderState(D3DRS_DEPTHBIAS, *((DWORD*)&constantBias)); constantDepthBias_ = constantBias; } if (slopeScaledBias != slopeScaledDepthBias_) { impl_->device_->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, *((DWORD*)&slopeScaledBias)); slopeScaledDepthBias_ = slopeScaledBias; } } void Graphics::SetDepthTest(CompareMode mode) { if (mode != depthTestMode_) { impl_->device_->SetRenderState(D3DRS_ZFUNC, d3dCmpFunc[mode]); depthTestMode_ = mode; } } void Graphics::SetDepthWrite(bool enable) { if (enable != depthWrite_) { impl_->device_->SetRenderState(D3DRS_ZWRITEENABLE, enable ? TRUE : FALSE); depthWrite_ = enable; } } void Graphics::SetFillMode(FillMode mode) { if (mode != fillMode_) { impl_->device_->SetRenderState(D3DRS_FILLMODE, d3dFillMode[mode]); fillMode_ = mode; } } void Graphics::SetScissorTest(bool enable, const Rect& rect, bool borderInclusive) { // During some light rendering loops, a full rect is toggled on/off repeatedly. // Disable scissor in that case to reduce state changes if (rect.min_.x_ <= 0.0f && rect.min_.y_ <= 0.0f && rect.max_.x_ >= 1.0f && rect.max_.y_ >= 1.0f) enable = false; if (enable) { IntVector2 rtSize(GetRenderTargetDimensions()); IntVector2 viewSize(viewport_.Size()); IntVector2 viewPos(viewport_.left_, viewport_.top_); IntRect intRect; int expand = borderInclusive ? 1 : 0; intRect.left_ = Clamp((int)((rect.min_.x_ + 1.0f) * 0.5f * viewSize.x_) + viewPos.x_, 0, rtSize.x_ - 1); intRect.top_ = Clamp((int)((-rect.max_.y_ + 1.0f) * 0.5f * viewSize.y_) + viewPos.y_, 0, rtSize.y_ - 1); intRect.right_ = Clamp((int)((rect.max_.x_ + 1.0f) * 0.5f * viewSize.x_) + viewPos.x_ + expand, 0, rtSize.x_); intRect.bottom_ = Clamp((int)((-rect.min_.y_ + 1.0f) * 0.5f * viewSize.y_) + viewPos.y_ + expand, 0, rtSize.y_); if (intRect.right_ == intRect.left_) intRect.right_++; if (intRect.bottom_ == intRect.top_) intRect.bottom_++; if (intRect.right_ < intRect.left_ || intRect.bottom_ < intRect.top_) enable = false; if (enable && scissorRect_ != intRect) { RECT d3dRect; d3dRect.left = intRect.left_; d3dRect.top = intRect.top_; d3dRect.right = intRect.right_; d3dRect.bottom = intRect.bottom_; impl_->device_->SetScissorRect(&d3dRect); scissorRect_ = intRect; } } else scissorRect_ = IntRect::ZERO; if (enable != scissorTest_) { impl_->device_->SetRenderState(D3DRS_SCISSORTESTENABLE, enable ? TRUE : FALSE); scissorTest_ = enable; } } void Graphics::SetScissorTest(bool enable, const IntRect& rect) { IntVector2 rtSize(GetRenderTargetDimensions()); IntVector2 viewSize(viewport_.Size()); IntVector2 viewPos(viewport_.left_, viewport_.top_); if (enable) { IntRect intRect; intRect.left_ = Clamp(rect.left_ + viewPos.x_, 0, rtSize.x_ - 1); intRect.top_ = Clamp(rect.top_ + viewPos.y_, 0, rtSize.y_ - 1); intRect.right_ = Clamp(rect.right_ + viewPos.x_, 0, rtSize.x_); intRect.bottom_ = Clamp(rect.bottom_ + viewPos.y_, 0, rtSize.y_); if (intRect.right_ == intRect.left_) intRect.right_++; if (intRect.bottom_ == intRect.top_) intRect.bottom_++; if (intRect.right_ < intRect.left_ || intRect.bottom_ < intRect.top_) enable = false; if (enable && scissorRect_ != intRect) { RECT d3dRect; d3dRect.left = intRect.left_; d3dRect.top = intRect.top_; d3dRect.right = intRect.right_; d3dRect.bottom = intRect.bottom_; impl_->device_->SetScissorRect(&d3dRect); scissorRect_ = intRect; } } else scissorRect_ = IntRect::ZERO; if (enable != scissorTest_) { impl_->device_->SetRenderState(D3DRS_SCISSORTESTENABLE, enable ? TRUE : FALSE); scissorTest_ = enable; } } void Graphics::SetStencilTest(bool enable, CompareMode mode, StencilOp pass, StencilOp fail, StencilOp zFail, unsigned stencilRef, unsigned compareMask, unsigned writeMask) { if (enable != stencilTest_) { impl_->device_->SetRenderState(D3DRS_STENCILENABLE, enable ? TRUE : FALSE); stencilTest_ = enable; } if (enable) { if (mode != stencilTestMode_) { impl_->device_->SetRenderState(D3DRS_STENCILFUNC, d3dCmpFunc[mode]); stencilTestMode_ = mode; } if (pass != stencilPass_) { impl_->device_->SetRenderState(D3DRS_STENCILPASS, d3dStencilOp[pass]); stencilPass_ = pass; } if (fail != stencilFail_) { impl_->device_->SetRenderState(D3DRS_STENCILFAIL, d3dStencilOp[fail]); stencilFail_ = fail; } if (zFail != stencilZFail_) { impl_->device_->SetRenderState(D3DRS_STENCILZFAIL, d3dStencilOp[zFail]); stencilZFail_ = zFail; } if (stencilRef != stencilRef_) { impl_->device_->SetRenderState(D3DRS_STENCILREF, stencilRef); stencilRef_ = stencilRef; } if (compareMask != stencilCompareMask_) { impl_->device_->SetRenderState(D3DRS_STENCILMASK, compareMask); stencilCompareMask_ = compareMask; } if (writeMask != stencilWriteMask_) { impl_->device_->SetRenderState(D3DRS_STENCILWRITEMASK, writeMask); stencilWriteMask_ = writeMask; } } } void Graphics::SetStreamFrequency(unsigned index, unsigned frequency) { if (index < MAX_VERTEX_STREAMS && streamFrequencies_[index] != frequency) { impl_->device_->SetStreamSourceFreq(index, frequency); streamFrequencies_[index] = frequency; } } void Graphics::ResetStreamFrequencies() { for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { if (streamFrequencies_[i] != 1) { impl_->device_->SetStreamSourceFreq(i, 1); streamFrequencies_[i] = 1; } } } void Graphics::SetForceSM2(bool enable) { if (!IsInitialized()) forceSM2_ = enable; else LOGERROR("Force Shader Model 2 can not be changed after setting the initial screen mode"); } bool Graphics::IsInitialized() const { return impl_->window_ != 0 && impl_->GetDevice() != 0; } PODVector Graphics::GetResolutions() const { PODVector ret; unsigned numModes = SDL_GetNumDisplayModes(0); for (unsigned i = 0; i < numModes; ++i) { SDL_DisplayMode mode; SDL_GetDisplayMode(0, i, &mode); int width = mode.w; int height = mode.h; // Store mode if unique bool unique = true; for (unsigned j = 0; j < ret.Size(); ++j) { if (ret[j].x_ == width && ret[j].y_ == height) { unique = false; break; } } if (unique) ret.Push(IntVector2(width, height)); } return ret; } PODVector Graphics::GetMultiSampleLevels() const { PODVector ret; // No multisampling always supported ret.Push(1); if (!impl_->interface_) return ret; SDL_DisplayMode mode; SDL_GetDesktopDisplayMode(0, &mode); D3DFORMAT fullscreenFormat = SDL_BITSPERPIXEL(mode.format) == 16 ? D3DFMT_R5G6B5 : D3DFMT_X8R8G8B8; for (unsigned i = (int)D3DMULTISAMPLE_2_SAMPLES; i < (int)D3DMULTISAMPLE_16_SAMPLES; ++i) { if (SUCCEEDED(impl_->interface_->CheckDeviceMultiSampleType(impl_->adapter_, impl_->deviceType_, fullscreenFormat, FALSE, (D3DMULTISAMPLE_TYPE)i, NULL))) ret.Push(i); } return ret; } unsigned Graphics::GetFormat(CompressedFormat format) const { switch (format) { case CF_DXT1: return D3DFMT_DXT1; case CF_DXT3: return D3DFMT_DXT3; case CF_DXT5: return D3DFMT_DXT5; } return 0; } VertexBuffer* Graphics::GetVertexBuffer(unsigned index) const { return index < MAX_VERTEX_STREAMS ? vertexBuffers_[index] : 0; } TextureUnit Graphics::GetTextureUnit(const String& name) { HashMap::Iterator i = textureUnits_.Find(name); if (i != textureUnits_.End()) return i->second_; else return MAX_TEXTURE_UNITS; } Texture* Graphics::GetTexture(unsigned index) const { return index < MAX_TEXTURE_UNITS ? textures_[index] : 0; } RenderSurface* Graphics::GetRenderTarget(unsigned index) const { return index < MAX_RENDERTARGETS ? renderTargets_[index] : 0; } unsigned Graphics::GetStreamFrequency(unsigned index) const { return index < MAX_VERTEX_STREAMS ? streamFrequencies_[index] : 0; } IntVector2 Graphics::GetRenderTargetDimensions() const { int width, height; if (renderTargets_[0]) { width = renderTargets_[0]->GetWidth(); height = renderTargets_[0]->GetHeight(); } else { width = width_; height = height_; } return IntVector2(width, height); } void Graphics::WindowResized() { if (!impl_->device_ || !impl_->window_) return; int newWidth, newHeight; SDL_GetWindowSize(impl_->window_, &newWidth, &newHeight); if (newWidth == width_ && newHeight == height_) return; width_ = newWidth; height_ = newHeight; impl_->presentParams_.BackBufferWidth = width_; impl_->presentParams_.BackBufferHeight = height_; ResetDevice(); // Reset rendertargets and viewport for the new screen size ResetRenderTargets(); LOGDEBUG(ToString("Window was resized to %dx%d", width_, height_)); using namespace ScreenMode; VariantMap eventData; eventData[P_WIDTH] = width_; eventData[P_HEIGHT] = height_; eventData[P_FULLSCREEN] = fullscreen_; eventData[P_RESIZABLE] = resizable_; SendEvent(E_SCREENMODE, eventData); } void Graphics::AddGPUObject(GPUObject* object) { gpuObjects_.Push(object); } void Graphics::RemoveGPUObject(GPUObject* object) { gpuObjects_.Remove(object); } void* Graphics::ReserveScratchBuffer(unsigned size) { if (!size) return 0; if (size > maxScratchBufferRequest_) maxScratchBufferRequest_ = size; // First check for a free buffer that is large enough for (Vector::Iterator i = scratchBuffers_.Begin(); i != scratchBuffers_.End(); ++i) { if (!i->reserved_ && i->size_ >= size) { i->reserved_ = true; return i->data_.Get(); } } // Then check if a free buffer can be resized for (Vector::Iterator i = scratchBuffers_.Begin(); i != scratchBuffers_.End(); ++i) { if (!i->reserved_) { i->data_ = new unsigned char[size]; i->size_ = size; i->reserved_ = true; LOGDEBUG("Resized scratch buffer to size " + String(size)); return i->data_.Get(); } } // Finally allocate a new buffer ScratchBuffer newBuffer; newBuffer.data_ = new unsigned char[size]; newBuffer.size_ = size; newBuffer.reserved_ = true; scratchBuffers_.Push(newBuffer); return newBuffer.data_.Get(); LOGDEBUG("Allocated scratch buffer with size " + String(size)); } void Graphics::FreeScratchBuffer(void* buffer) { if (!buffer) return; for (Vector::Iterator i = scratchBuffers_.Begin(); i != scratchBuffers_.End(); ++i) { if (i->reserved_ && i->data_.Get() == buffer) { i->reserved_ = false; return; } } LOGWARNING("Reserved scratch buffer " + ToStringHex((unsigned)(size_t)buffer) + " not found"); } void Graphics::CleanupScratchBuffers() { for (Vector::Iterator i = scratchBuffers_.Begin(); i != scratchBuffers_.End(); ++i) { if (!i->reserved_ && i->size_ > maxScratchBufferRequest_ * 2) { i->data_ = maxScratchBufferRequest_ > 0 ? new unsigned char[maxScratchBufferRequest_] : 0; i->size_ = maxScratchBufferRequest_; LOGDEBUG("Resized scratch buffer to size " + String(maxScratchBufferRequest_)); } } maxScratchBufferRequest_ = 0; } unsigned Graphics::GetAlphaFormat() { return D3DFMT_A8; } unsigned Graphics::GetLuminanceFormat() { return D3DFMT_L8; } unsigned Graphics::GetLuminanceAlphaFormat() { return D3DFMT_A8L8; } unsigned Graphics::GetRGBFormat() { return D3DFMT_X8R8G8B8; } unsigned Graphics::GetRGBAFormat() { return D3DFMT_A8R8G8B8; } unsigned Graphics::GetRGBA16Format() { return D3DFMT_A16B16G16R16; } unsigned Graphics::GetRGBAFloat16Format() { return D3DFMT_A16B16G16R16F; } unsigned Graphics::GetRGBAFloat32Format() { return D3DFMT_A32B32G32R32F; } unsigned Graphics::GetRG16Format() { return D3DFMT_G16R16; } unsigned Graphics::GetRGFloat16Format() { return D3DFMT_G16R16F; } unsigned Graphics::GetRGFloat32Format() { return D3DFMT_G32R32F; } unsigned Graphics::GetFloat16Format() { return D3DFMT_R16F; } unsigned Graphics::GetFloat32Format() { return D3DFMT_R32F; } unsigned Graphics::GetLinearDepthFormat() { return D3DFMT_R32F; } unsigned Graphics::GetDepthStencilFormat() { return depthStencilFormat; } unsigned Graphics::GetFormat(const String& formatName) { String nameLower = formatName.ToLower().Trimmed(); if (nameLower == "a") return GetAlphaFormat(); if (nameLower == "l") return GetLuminanceFormat(); if (nameLower == "la") return GetLuminanceAlphaFormat(); if (nameLower == "rgb") return GetRGBFormat(); if (nameLower == "rgba") return GetRGBAFormat(); if (nameLower == "rgba16") return GetRGBA16Format(); if (nameLower == "rgba16f") return GetRGBAFloat16Format(); if (nameLower == "rgba32f") return GetRGBAFloat32Format(); if (nameLower == "rg16") return GetRG16Format(); if (nameLower == "rg16f") return GetRGFloat16Format(); if (nameLower == "rg32f") return GetRGFloat32Format(); if (nameLower == "r16f") return GetFloat16Format(); if (nameLower == "r32f" || nameLower == "float") return GetFloat32Format(); if (nameLower == "lineardepth" || nameLower == "depth") return GetLinearDepthFormat(); if (nameLower == "d24s8") return GetDepthStencilFormat(); return GetRGBFormat(); } bool Graphics::OpenWindow(int width, int height, bool resizable) { if (!externalWindow_) impl_->window_ = SDL_CreateWindow(windowTitle_.CString(), SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED, width, height, resizable ? SDL_WINDOW_RESIZABLE : 0); else impl_->window_ = SDL_CreateWindowFrom(externalWindow_, 0); if (!impl_->window_) { LOGERROR("Could not create window"); return false; } return true; } void Graphics::AdjustWindow(int& newWidth, int& newHeight, bool& newFullscreen) { if (!externalWindow_) { SDL_SetWindowSize(impl_->window_, newWidth, newHeight); SDL_SetWindowFullscreen(impl_->window_, newFullscreen ? SDL_TRUE : SDL_FALSE); } else { // If external window, must ask its dimensions instead of trying to set them SDL_GetWindowSize(impl_->window_, &newWidth, &newHeight); newFullscreen = false; } } bool Graphics::CreateInterface() { impl_->interface_ = Direct3DCreate9(D3D_SDK_VERSION); if (!impl_->interface_) { LOGERROR("Could not create Direct3D9 interface"); return false; } if (FAILED(impl_->interface_->GetDeviceCaps(impl_->adapter_, impl_->deviceType_, &impl_->deviceCaps_))) { LOGERROR("Could not get Direct3D capabilities"); return false; } if (FAILED(impl_->interface_->GetAdapterIdentifier(impl_->adapter_, 0, &impl_->adapterIdentifier_))) { LOGERROR("Could not get Direct3D adapter identifier"); return false; } if (impl_->deviceCaps_.PixelShaderVersion < D3DPS_VERSION(2, 0)) { LOGERROR("Shader model 2.0 display adapter is required"); return false; } return true; } bool Graphics::CreateDevice(unsigned adapter, unsigned deviceType) { #ifdef ENABLE_LUA_JIT DWORD behaviorFlags = D3DCREATE_FPU_PRESERVE; #else DWORD behaviorFlags = 0; #endif if (impl_->deviceCaps_.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT) { behaviorFlags |= D3DCREATE_HARDWARE_VERTEXPROCESSING; if (impl_->deviceCaps_.DevCaps & D3DDEVCAPS_PUREDEVICE) behaviorFlags |= D3DCREATE_PUREDEVICE; } else behaviorFlags |= D3DCREATE_SOFTWARE_VERTEXPROCESSING; if (FAILED(impl_->interface_->CreateDevice( adapter, (D3DDEVTYPE)deviceType, WIN_GetWindowHandle(impl_->window_), behaviorFlags, &impl_->presentParams_, &impl_->device_))) { LOGERROR("Could not create Direct3D9 device"); return false; } impl_->adapter_ = adapter; impl_->deviceType_ = (D3DDEVTYPE)deviceType; OnDeviceReset(); LOGINFO("Created Direct3D9 device"); return true; } void Graphics::CheckFeatureSupport() { // Reset features first lightPrepassSupport_ = false; deferredSupport_ = false; hardwareShadowSupport_ = false; streamOffsetSupport_ = false; hasSM3_ = false; depthStencilFormat = D3DFMT_D24S8; // Check hardware shadow map support: prefer NVIDIA style hardware depth compared shadow maps if available shadowMapFormat_ = D3DFMT_D16; if (impl_->CheckFormatSupport((D3DFORMAT)shadowMapFormat_, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE)) { hardwareShadowSupport_ = true; // Check for hires depth support hiresShadowMapFormat_ = D3DFMT_D24X8; if (!impl_->CheckFormatSupport((D3DFORMAT)hiresShadowMapFormat_, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE)) hiresShadowMapFormat_ = 0; } else { // ATI DF16 format needs manual depth compare in the shader shadowMapFormat_ = MAKEFOURCC('D', 'F', '1', '6'); if (impl_->CheckFormatSupport((D3DFORMAT)shadowMapFormat_, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE)) { // Check for hires depth support hiresShadowMapFormat_ = MAKEFOURCC('D', 'F', '2', '4'); if (!impl_->CheckFormatSupport((D3DFORMAT)hiresShadowMapFormat_, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE)) hiresShadowMapFormat_ = 0; } else { // No shadow map support shadowMapFormat_ = 0; hiresShadowMapFormat_ = 0; } } // Check for Intel 4 Series with an old driver, enable manual shadow map compare in that case if (shadowMapFormat_ == D3DFMT_D16) { if (impl_->adapterIdentifier_.VendorId == 0x8086 && impl_->adapterIdentifier_.DeviceId == 0x2a42 && impl_->adapterIdentifier_.DriverVersion.QuadPart <= 0x0007000f000a05d0ULL) hardwareShadowSupport_ = false; } // Check for dummy color rendertarget format used with hardware shadow maps dummyColorFormat_ = D3DFMT_A8R8G8B8; D3DFORMAT nullFormat = (D3DFORMAT)MAKEFOURCC('N', 'U', 'L', 'L'); if (impl_->CheckFormatSupport(nullFormat, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) dummyColorFormat_ = nullFormat; else if (impl_->CheckFormatSupport(D3DFMT_R16F, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) dummyColorFormat_ = D3DFMT_R16F; else if (impl_->CheckFormatSupport(D3DFMT_R5G6B5, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) dummyColorFormat_ = D3DFMT_R5G6B5; else if (impl_->CheckFormatSupport(D3DFMT_A4R4G4B4, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) dummyColorFormat_ = D3DFMT_A4R4G4B4; // Check for Shader Model 3 if (!forceSM2_) { if (impl_->deviceCaps_.VertexShaderVersion >= D3DVS_VERSION(3, 0) && impl_->deviceCaps_.PixelShaderVersion >= D3DPS_VERSION(3, 0)) hasSM3_ = true; } // Check for light prepass and deferred rendering support if (impl_->deviceCaps_.NumSimultaneousRTs >= 2 && impl_->CheckFormatSupport(D3DFMT_R32F, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) { lightPrepassSupport_ = true; if (impl_->deviceCaps_.NumSimultaneousRTs >= 4) deferredSupport_ = true; } // Check for stream offset (needed for instancing) if (impl_->deviceCaps_.DevCaps2 & D3DDEVCAPS2_STREAMOFFSET) streamOffsetSupport_ = true; // Check for sRGB read & write /// \todo Should be checked for each texture format separately sRGBSupport_ = impl_->CheckFormatSupport(D3DFMT_X8R8G8B8, D3DUSAGE_QUERY_SRGBREAD, D3DRTYPE_TEXTURE); sRGBWriteSupport_ = impl_->CheckFormatSupport(D3DFMT_X8R8G8B8, D3DUSAGE_QUERY_SRGBWRITE, D3DRTYPE_TEXTURE); SendEvent(E_GRAPHICSFEATURES); } void Graphics::ResetDevice() { OnDeviceLost(); if (SUCCEEDED(impl_->device_->Reset(&impl_->presentParams_))) { deviceLost_ = false; OnDeviceReset(); } } void Graphics::OnDeviceLost() { LOGINFO("Device lost"); if (impl_->defaultColorSurface_) { impl_->defaultColorSurface_->Release(); impl_->defaultColorSurface_ = 0; } if (impl_->defaultDepthStencilSurface_) { impl_->defaultDepthStencilSurface_->Release(); impl_->defaultDepthStencilSurface_ = 0; } for (unsigned i = 0; i < gpuObjects_.Size(); ++i) gpuObjects_[i]->OnDeviceLost(); } void Graphics::OnDeviceReset() { for (unsigned i = 0; i < gpuObjects_.Size(); ++i) gpuObjects_[i]->OnDeviceReset(); // Get default surfaces impl_->device_->GetRenderTarget(0, &impl_->defaultColorSurface_); impl_->device_->GetDepthStencilSurface(&impl_->defaultDepthStencilSurface_); ResetCachedState(); } void Graphics::ResetCachedState() { for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { vertexBuffers_[i] = 0; streamOffsets_[i] = 0; } for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) { textures_[i] = 0; impl_->minMagFilters_[i] = D3DTEXF_POINT; impl_->mipFilters_[i] = D3DTEXF_NONE; impl_->uAddressModes_[i] = D3DTADDRESS_WRAP; impl_->vAddressModes_[i] = D3DTADDRESS_WRAP; impl_->wAddressModes_[i] = D3DTADDRESS_WRAP; impl_->borderColors_[i] = Color(0.0f, 0.0f, 0.0f, 0.0f); impl_->sRGBModes_[i] = false; } for (unsigned i = 0; i < MAX_RENDERTARGETS; ++i) { renderTargets_[i] = 0; impl_->colorSurfaces_[i] = 0; } depthStencil_ = 0; impl_->depthStencilSurface_ = 0; viewTexture_ = 0; viewport_ = IntRect(0, 0, width_, height_); impl_->sRGBWrite_ = false; for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) streamFrequencies_[i] = 1; indexBuffer_ = 0; vertexDeclaration_ = 0; vertexShader_ = 0; pixelShader_ = 0; blendMode_ = BLEND_REPLACE; textureAnisotropy_ = 1; colorWrite_ = true; cullMode_ = CULL_CCW; constantDepthBias_ = 0.0f; slopeScaledDepthBias_ = 0.0f; depthTestMode_ = CMP_LESSEQUAL; depthWrite_ = true; fillMode_ = FILL_SOLID; scissorTest_ = false; scissorRect_ = IntRect::ZERO; stencilTest_ = false; stencilTestMode_ = CMP_ALWAYS; stencilPass_ = OP_KEEP; stencilFail_ = OP_KEEP; stencilZFail_ = OP_KEEP; stencilRef_ = 0; stencilCompareMask_ = M_MAX_UNSIGNED; stencilWriteMask_ = M_MAX_UNSIGNED; impl_->blendEnable_ = FALSE; impl_->srcBlend_ = D3DBLEND_ONE; impl_->destBlend_ = D3DBLEND_ZERO; } void Graphics::SetTextureUnitMappings() { textureUnits_["DiffMap"] = TU_DIFFUSE; textureUnits_["DiffCubeMap"] = TU_DIFFUSE; textureUnits_["NormalMap"] = TU_NORMAL; textureUnits_["SpecMap"] = TU_SPECULAR; textureUnits_["EmissiveMap"] = TU_EMISSIVE; textureUnits_["EnvMap"] = TU_ENVIRONMENT; textureUnits_["EnvCubeMap"] = TU_ENVIRONMENT; textureUnits_["LightRampMap"] = TU_LIGHTRAMP; textureUnits_["LightSpotMap"] = TU_LIGHTSHAPE; textureUnits_["LightCubeMap"] = TU_LIGHTSHAPE; textureUnits_["ShadowMap"] = TU_SHADOWMAP; textureUnits_["FaceSelectCubeMap"] = TU_FACESELECT; textureUnits_["IndirectionCubeMap"] = TU_INDIRECTION; } void RegisterGraphicsLibrary(Context* context) { Animation::RegisterObject(context); Material::RegisterObject(context); Model::RegisterObject(context); Shader::RegisterObject(context); Technique::RegisterObject(context); Texture2D::RegisterObject(context); TextureCube::RegisterObject(context); Camera::RegisterObject(context); Drawable::RegisterObject(context); Light::RegisterObject(context); StaticModel::RegisterObject(context); StaticModelGroup::RegisterObject(context); Skybox::RegisterObject(context); AnimatedModel::RegisterObject(context); AnimationController::RegisterObject(context); BillboardSet::RegisterObject(context); ParticleEmitter::RegisterObject(context); CustomGeometry::RegisterObject(context); DecalSet::RegisterObject(context); Terrain::RegisterObject(context); TerrainPatch::RegisterObject(context); DebugRenderer::RegisterObject(context); Octree::RegisterObject(context); Zone::RegisterObject(context); } }