/* AngelCode Scripting Library Copyright (c) 2003-2011 Andreas Jonsson This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. The original version of this library can be located at: http://www.angelcode.com/angelscript/ Andreas Jonsson andreas@angelcode.com */ // // as_context.cpp // // This class handles the execution of the byte code // #include // fmodf() #include "as_config.h" #include "as_context.h" #include "as_scriptengine.h" #include "as_tokendef.h" #include "as_texts.h" #include "as_callfunc.h" #include "as_generic.h" #include "as_debug.h" // mkdir() #include "as_bytecode.h" #include "as_scriptobject.h" #ifdef _MSC_VER #pragma warning(disable:4702) // unreachable code #endif BEGIN_AS_NAMESPACE // We need at least 2 DWORDs reserved for exception handling // We need at least 1 DWORD reserved for calling system functions const int RESERVE_STACK = 2*AS_PTR_SIZE; // For each script function call we push 5 DWORDs on the call stack const int CALLSTACK_FRAME_SIZE = 5; #ifdef AS_DEBUG // Instruction statistics int instrCount[256]; int instrCount2[256][256]; int lastBC; class asCDebugStats { public: asCDebugStats() { memset(instrCount, 0, sizeof(instrCount)); } ~asCDebugStats() { /* // This code writes out some statistics for the VM. // It's useful for determining what needs to be optimized. _mkdir("AS_DEBUG"); FILE *f = fopen("AS_DEBUG/total.txt", "at"); if( f ) { // Output instruction statistics fprintf(f, "\nTotal count\n"); int n; for( n = 0; n < BC_MAXBYTECODE; n++ ) { if( bcName[n].name && instrCount[n] > 0 ) fprintf(f, "%-10.10s : %.0f\n", bcName[n].name, instrCount[n]); } fprintf(f, "\nNever executed\n"); for( n = 0; n < BC_MAXBYTECODE; n++ ) { if( bcName[n].name && instrCount[n] == 0 ) fprintf(f, "%-10.10s\n", bcName[n].name); } fclose(f); } */ } double instrCount[256]; } stats; #endif AS_API asIScriptContext *asGetActiveContext() { asASSERT(threadManager); asCThreadLocalData *tld = threadManager->GetLocalData(); if( tld->activeContexts.GetLength() == 0 ) return 0; return tld->activeContexts[tld->activeContexts.GetLength()-1]; } void asPushActiveContext(asIScriptContext *ctx) { asASSERT(threadManager); asCThreadLocalData *tld = threadManager->GetLocalData(); tld->activeContexts.PushLast(ctx); } void asPopActiveContext(asIScriptContext *ctx) { asASSERT(threadManager); asCThreadLocalData *tld = threadManager->GetLocalData(); asASSERT(tld->activeContexts.GetLength() > 0); asASSERT(tld->activeContexts[tld->activeContexts.GetLength()-1] == ctx); UNUSED_VAR(ctx); tld->activeContexts.PopLast(); } asCContext::asCContext(asCScriptEngine *engine, bool holdRef) { #ifdef AS_DEBUG memset(instrCount, 0, sizeof(instrCount)); memset(instrCount2, 0, sizeof(instrCount2)); lastBC = 255; #endif holdEngineRef = holdRef; if( holdRef ) engine->AddRef(); this->engine = engine; status = asEXECUTION_UNINITIALIZED; stackBlockSize = 0; refCount.set(1); inExceptionHandler = false; isStackMemoryNotAllocated = false; currentFunction = 0; regs.objectRegister = 0; initialFunction = 0; lineCallback = false; exceptionCallback = false; regs.doProcessSuspend = false; doSuspend = false; userData = 0; } asCContext::~asCContext() { DetachEngine(); } int asCContext::AddRef() const { return refCount.atomicInc(); } int asCContext::Release() const { int r = refCount.atomicDec(); if( r == 0 ) { asDELETE(const_cast(this),asCContext); return 0; } return r; } void asCContext::DetachEngine() { if( engine == 0 ) return; // Abort any execution Abort(); // Free all resources Unprepare(); // Free the stack blocks for( asUINT n = 0; n < stackBlocks.GetLength(); n++ ) { if( stackBlocks[n] ) { asDELETEARRAY(stackBlocks[n]); } } stackBlocks.SetLength(0); stackBlockSize = 0; // Clean the user data if( userData && engine->cleanContextFunc ) engine->cleanContextFunc(this); // Clear engine pointer if( holdEngineRef ) engine->Release(); engine = 0; } asIScriptEngine *asCContext::GetEngine() const { return engine; } void *asCContext::SetUserData(void *data) { void *oldData = userData; userData = data; return oldData; } void *asCContext::GetUserData() const { return userData; } int asCContext::Prepare(int funcID) { if( status == asEXECUTION_ACTIVE || status == asEXECUTION_SUSPENDED ) return asCONTEXT_ACTIVE; // Clean the stack if not done before if( status != asEXECUTION_FINISHED && status != asEXECUTION_UNINITIALIZED ) CleanStack(); // Release the returned object (if any) CleanReturnObject(); if( funcID == -1 ) { // Use the previously prepared function if( initialFunction == 0 ) return asNO_FUNCTION; currentFunction = initialFunction; } else if( initialFunction && initialFunction->id == funcID ) { currentFunction = initialFunction; } else { // Check engine pointer asASSERT( engine ); if( initialFunction ) initialFunction->Release(); initialFunction = engine->GetScriptFunction(funcID); if( initialFunction == 0 ) return asNO_FUNCTION; initialFunction->AddRef(); currentFunction = initialFunction; // Determine the minimum stack size needed // TODO: optimize: GetSpaceNeededForArguments() should be precomputed int stackSize = currentFunction->GetSpaceNeededForArguments() + currentFunction->stackNeeded + RESERVE_STACK; stackSize = stackSize > engine->initialContextStackSize ? stackSize : engine->initialContextStackSize; if( stackSize > stackBlockSize ) { // Free old stack blocks so new ones can be allocted for( asUINT n = 0; n < stackBlocks.GetLength(); n++ ) if( stackBlocks[n] ) { asDELETEARRAY(stackBlocks[n]); } stackBlocks.SetLength(0); stackBlockSize = stackSize; asDWORD *stack = asNEWARRAY(asDWORD,stackBlockSize); stackBlocks.PushLast(stack); } // Reserve space for the arguments and return value returnValueSize = currentFunction->GetSpaceNeededForReturnValue(); // TODO: optimize: GetSpaceNeededForArguments() should be precomputed argumentsSize = currentFunction->GetSpaceNeededForArguments() + (currentFunction->objectType ? AS_PTR_SIZE : 0); } // Reset state // Most of the time the previous state will be asEXECUTION_FINISHED, in which case the values are already initialized if( status != asEXECUTION_FINISHED ) { exceptionLine = -1; exceptionFunction = 0; isCallingSystemFunction = false; doAbort = false; doSuspend = false; regs.doProcessSuspend = lineCallback; externalSuspendRequest = false; stackIndex = 0; } status = asEXECUTION_PREPARED; // Reserve space for the arguments and return value regs.stackFramePointer = stackBlocks[0] + stackBlockSize - argumentsSize; regs.stackPointer = regs.stackFramePointer; // Set arguments to 0 memset(regs.stackPointer, 0, 4*argumentsSize); if( currentFunction->funcType == asFUNC_SCRIPT ) { regs.programPointer = currentFunction->byteCode.AddressOf(); // Set all object variables to 0 for( asUINT n = 0; n < currentFunction->objVariablePos.GetLength(); n++ ) { if( !currentFunction->objVariableIsOnHeap[n] ) continue; int pos = currentFunction->objVariablePos[n]; *(size_t*)®s.stackFramePointer[-pos] = 0; } } else regs.programPointer = 0; return asSUCCESS; } // Free all resources int asCContext::Unprepare() { if( status == asEXECUTION_ACTIVE || status == asEXECUTION_SUSPENDED ) return asCONTEXT_ACTIVE; // Only clean the stack if the context was prepared but not executed until the end if( status != asEXECUTION_UNINITIALIZED && status != asEXECUTION_FINISHED ) CleanStack(); // Release the returned object (if any) CleanReturnObject(); // Release the initial function if( initialFunction ) initialFunction->Release(); // Clear function pointers initialFunction = 0; currentFunction = 0; exceptionFunction = 0; regs.programPointer = 0; // Reset status status = asEXECUTION_UNINITIALIZED; regs.stackFramePointer = 0; regs.stackPointer = 0; stackIndex = 0; return 0; } asBYTE asCContext::GetReturnByte() { if( status != asEXECUTION_FINISHED ) return 0; asCDataType *dt = &initialFunction->returnType; if( dt->IsObject() || dt->IsReference() ) return 0; return *(asBYTE*)®s.valueRegister; } asWORD asCContext::GetReturnWord() { if( status != asEXECUTION_FINISHED ) return 0; asCDataType *dt = &initialFunction->returnType; if( dt->IsObject() || dt->IsReference() ) return 0; return *(asWORD*)®s.valueRegister; } asDWORD asCContext::GetReturnDWord() { if( status != asEXECUTION_FINISHED ) return 0; asCDataType *dt = &initialFunction->returnType; if( dt->IsObject() || dt->IsReference() ) return 0; return *(asDWORD*)®s.valueRegister; } asQWORD asCContext::GetReturnQWord() { if( status != asEXECUTION_FINISHED ) return 0; asCDataType *dt = &initialFunction->returnType; if( dt->IsObject() || dt->IsReference() ) return 0; return regs.valueRegister; } float asCContext::GetReturnFloat() { if( status != asEXECUTION_FINISHED ) return 0; asCDataType *dt = &initialFunction->returnType; if( dt->IsObject() || dt->IsReference() ) return 0; return *(float*)®s.valueRegister; } double asCContext::GetReturnDouble() { if( status != asEXECUTION_FINISHED ) return 0; asCDataType *dt = &initialFunction->returnType; if( dt->IsObject() || dt->IsReference() ) return 0; return *(double*)®s.valueRegister; } void *asCContext::GetReturnAddress() { if( status != asEXECUTION_FINISHED ) return 0; asCDataType *dt = &initialFunction->returnType; if( dt->IsReference() ) return *(void**)®s.valueRegister; else if( dt->IsObject() ) return regs.objectRegister; return 0; } void *asCContext::GetReturnObject() { if( status != asEXECUTION_FINISHED ) return 0; asCDataType *dt = &initialFunction->returnType; if( !dt->IsObject() ) return 0; if( dt->IsReference() ) return *(void**)(size_t)regs.valueRegister; else return regs.objectRegister; } void *asCContext::GetAddressOfReturnValue() { if( status != asEXECUTION_FINISHED ) return 0; asCDataType *dt = &initialFunction->returnType; // An object is stored in the objectRegister if( !dt->IsReference() && dt->IsObject() ) { // Need to dereference objects if( !dt->IsObjectHandle() ) return *(void**)®s.objectRegister; return ®s.objectRegister; } // Primitives and references are stored in valueRegister return ®s.valueRegister; } int asCContext::SetObject(void *obj) { if( status != asEXECUTION_PREPARED ) return asCONTEXT_NOT_PREPARED; if( !initialFunction->objectType ) { status = asEXECUTION_ERROR; return asERROR; } *(size_t*)®s.stackFramePointer[0] = (size_t)obj; return 0; } int asCContext::SetArgByte(asUINT arg, asBYTE value) { if( status != asEXECUTION_PREPARED ) return asCONTEXT_NOT_PREPARED; if( arg >= (unsigned)initialFunction->parameterTypes.GetLength() ) { status = asEXECUTION_ERROR; return asINVALID_ARG; } // Verify the type of the argument asCDataType *dt = &initialFunction->parameterTypes[arg]; if( dt->IsObject() || dt->IsReference() ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } if( dt->GetSizeInMemoryBytes() != 1 ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } // Determine the position of the argument int offset = 0; if( initialFunction->objectType ) offset += AS_PTR_SIZE; for( asUINT n = 0; n < arg; n++ ) offset += initialFunction->parameterTypes[n].GetSizeOnStackDWords(); // Set the value *(asBYTE*)®s.stackFramePointer[offset] = value; return 0; } int asCContext::SetArgWord(asUINT arg, asWORD value) { if( status != asEXECUTION_PREPARED ) return asCONTEXT_NOT_PREPARED; if( arg >= (unsigned)initialFunction->parameterTypes.GetLength() ) { status = asEXECUTION_ERROR; return asINVALID_ARG; } // Verify the type of the argument asCDataType *dt = &initialFunction->parameterTypes[arg]; if( dt->IsObject() || dt->IsReference() ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } if( dt->GetSizeInMemoryBytes() != 2 ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } // Determine the position of the argument int offset = 0; if( initialFunction->objectType ) offset += AS_PTR_SIZE; for( asUINT n = 0; n < arg; n++ ) offset += initialFunction->parameterTypes[n].GetSizeOnStackDWords(); // Set the value *(asWORD*)®s.stackFramePointer[offset] = value; return 0; } int asCContext::SetArgDWord(asUINT arg, asDWORD value) { if( status != asEXECUTION_PREPARED ) return asCONTEXT_NOT_PREPARED; if( arg >= (unsigned)initialFunction->parameterTypes.GetLength() ) { status = asEXECUTION_ERROR; return asINVALID_ARG; } // Verify the type of the argument asCDataType *dt = &initialFunction->parameterTypes[arg]; if( dt->IsObject() || dt->IsReference() ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } if( dt->GetSizeInMemoryBytes() != 4 ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } // Determine the position of the argument int offset = 0; if( initialFunction->objectType ) offset += AS_PTR_SIZE; for( asUINT n = 0; n < arg; n++ ) offset += initialFunction->parameterTypes[n].GetSizeOnStackDWords(); // Set the value *(asDWORD*)®s.stackFramePointer[offset] = value; return 0; } int asCContext::SetArgQWord(asUINT arg, asQWORD value) { if( status != asEXECUTION_PREPARED ) return asCONTEXT_NOT_PREPARED; if( arg >= (unsigned)initialFunction->parameterTypes.GetLength() ) { status = asEXECUTION_ERROR; return asINVALID_ARG; } // Verify the type of the argument asCDataType *dt = &initialFunction->parameterTypes[arg]; if( dt->IsObject() || dt->IsReference() ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } if( dt->GetSizeOnStackDWords() != 2 ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } // Determine the position of the argument int offset = 0; if( initialFunction->objectType ) offset += AS_PTR_SIZE; for( asUINT n = 0; n < arg; n++ ) offset += initialFunction->parameterTypes[n].GetSizeOnStackDWords(); // Set the value *(asQWORD*)(®s.stackFramePointer[offset]) = value; return 0; } int asCContext::SetArgFloat(asUINT arg, float value) { if( status != asEXECUTION_PREPARED ) return asCONTEXT_NOT_PREPARED; if( arg >= (unsigned)initialFunction->parameterTypes.GetLength() ) { status = asEXECUTION_ERROR; return asINVALID_ARG; } // Verify the type of the argument asCDataType *dt = &initialFunction->parameterTypes[arg]; if( dt->IsObject() || dt->IsReference() ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } if( dt->GetSizeOnStackDWords() != 1 ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } // Determine the position of the argument int offset = 0; if( initialFunction->objectType ) offset += AS_PTR_SIZE; for( asUINT n = 0; n < arg; n++ ) offset += initialFunction->parameterTypes[n].GetSizeOnStackDWords(); // Set the value *(float*)(®s.stackFramePointer[offset]) = value; return 0; } int asCContext::SetArgDouble(asUINT arg, double value) { if( status != asEXECUTION_PREPARED ) return asCONTEXT_NOT_PREPARED; if( arg >= (unsigned)initialFunction->parameterTypes.GetLength() ) { status = asEXECUTION_ERROR; return asINVALID_ARG; } // Verify the type of the argument asCDataType *dt = &initialFunction->parameterTypes[arg]; if( dt->IsObject() || dt->IsReference() ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } if( dt->GetSizeOnStackDWords() != 2 ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } // Determine the position of the argument int offset = 0; if( initialFunction->objectType ) offset += AS_PTR_SIZE; for( asUINT n = 0; n < arg; n++ ) offset += initialFunction->parameterTypes[n].GetSizeOnStackDWords(); // Set the value *(double*)(®s.stackFramePointer[offset]) = value; return 0; } int asCContext::SetArgAddress(asUINT arg, void *value) { if( status != asEXECUTION_PREPARED ) return asCONTEXT_NOT_PREPARED; if( arg >= (unsigned)initialFunction->parameterTypes.GetLength() ) { status = asEXECUTION_ERROR; return asINVALID_ARG; } // Verify the type of the argument asCDataType *dt = &initialFunction->parameterTypes[arg]; if( !dt->IsReference() && !dt->IsObjectHandle() ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } // Determine the position of the argument int offset = 0; if( initialFunction->objectType ) offset += AS_PTR_SIZE; for( asUINT n = 0; n < arg; n++ ) offset += initialFunction->parameterTypes[n].GetSizeOnStackDWords(); // Set the value *(size_t*)(®s.stackFramePointer[offset]) = (size_t)value; return 0; } int asCContext::SetArgObject(asUINT arg, void *obj) { if( status != asEXECUTION_PREPARED ) return asCONTEXT_NOT_PREPARED; if( arg >= (unsigned)initialFunction->parameterTypes.GetLength() ) { status = asEXECUTION_ERROR; return asINVALID_ARG; } // Verify the type of the argument asCDataType *dt = &initialFunction->parameterTypes[arg]; if( !dt->IsObject() ) { status = asEXECUTION_ERROR; return asINVALID_TYPE; } // If the object should be sent by value we must make a copy of it if( !dt->IsReference() ) { if( dt->IsObjectHandle() ) { // Increase the reference counter asSTypeBehaviour *beh = &dt->GetObjectType()->beh; if( obj && beh->addref ) engine->CallObjectMethod(obj, beh->addref); } else { obj = engine->CreateScriptObjectCopy(obj, engine->GetTypeIdFromDataType(*dt)); } } // Determine the position of the argument int offset = 0; if( initialFunction->objectType ) offset += AS_PTR_SIZE; for( asUINT n = 0; n < arg; n++ ) offset += initialFunction->parameterTypes[n].GetSizeOnStackDWords(); // Set the value *(size_t*)(®s.stackFramePointer[offset]) = (size_t)obj; return 0; } // TODO: Instead of GetAddressOfArg, maybe we need a SetArgValue(int arg, void *value, bool takeOwnership) instead. // interface void *asCContext::GetAddressOfArg(asUINT arg) { if( status != asEXECUTION_PREPARED ) return 0; if( arg >= (unsigned)initialFunction->parameterTypes.GetLength() ) return 0; // Determine the position of the argument int offset = 0; if( initialFunction->objectType ) offset += AS_PTR_SIZE; for( asUINT n = 0; n < arg; n++ ) offset += initialFunction->parameterTypes[n].GetSizeOnStackDWords(); // We should return the address of the location where the argument value will be placed // All registered types are always sent by reference, even if // the function is declared to receive the argument by value. return ®s.stackFramePointer[offset]; } int asCContext::Abort() { // TODO: multithread: Make thread safe if( engine == 0 ) return asERROR; if( status == asEXECUTION_SUSPENDED ) status = asEXECUTION_ABORTED; doSuspend = true; regs.doProcessSuspend = true; externalSuspendRequest = true; doAbort = true; return 0; } // interface int asCContext::Suspend() { // This function just sets some internal flags and is safe // to call from a secondary thread, even if the library has // been built without multi-thread support. if( engine == 0 ) return asERROR; doSuspend = true; externalSuspendRequest = true; regs.doProcessSuspend = true; return 0; } // interface int asCContext::Execute() { asASSERT( engine != 0 ); if( status != asEXECUTION_SUSPENDED && status != asEXECUTION_PREPARED ) return asERROR; status = asEXECUTION_ACTIVE; asPushActiveContext((asIScriptContext *)this); if( regs.programPointer == 0 ) { if( currentFunction->funcType == asFUNC_VIRTUAL || currentFunction->funcType == asFUNC_INTERFACE ) { // The currentFunction is a virtual method // Determine the true function from the object asCScriptObject *obj = *(asCScriptObject**)(size_t*)regs.stackFramePointer; if( obj == 0 ) { SetInternalException(TXT_NULL_POINTER_ACCESS); } else { asCObjectType *objType = obj->objType; asCScriptFunction *realFunc = 0; if( currentFunction->funcType == asFUNC_VIRTUAL ) { if( objType->virtualFunctionTable.GetLength() > (asUINT)currentFunction->vfTableIdx ) { realFunc = objType->virtualFunctionTable[currentFunction->vfTableIdx]; } } else { // Search the object type for a function that matches the interface function for( asUINT n = 0; n < objType->methods.GetLength(); n++ ) { asCScriptFunction *f2 = engine->scriptFunctions[objType->methods[n]]; if( f2->signatureId == currentFunction->signatureId ) { if( f2->funcType == asFUNC_VIRTUAL ) realFunc = objType->virtualFunctionTable[f2->vfTableIdx]; else realFunc = f2; break; } } } if( realFunc ) { if( realFunc->signatureId != currentFunction->signatureId ) { SetInternalException(TXT_NULL_POINTER_ACCESS); } else { currentFunction = realFunc; regs.programPointer = currentFunction->byteCode.AddressOf(); // Set the local objects to 0 for( asUINT n = 0; n < currentFunction->objVariablePos.GetLength(); n++ ) { int pos = currentFunction->objVariablePos[n]; *(size_t*)®s.stackFramePointer[-pos] = 0; } } } } } else if( currentFunction->funcType == asFUNC_SYSTEM ) { // The current function is an application registered function // Call the function directly CallSystemFunction(currentFunction->id, this, 0); // Was the call successful? if( status == asEXECUTION_ACTIVE ) { status = asEXECUTION_FINISHED; } } else { // This shouldn't happen asASSERT(false); } } while( status == asEXECUTION_ACTIVE ) ExecuteNext(); doSuspend = false; regs.doProcessSuspend = lineCallback; asPopActiveContext((asIScriptContext *)this); #ifdef AS_DEBUG /* // Output instruction statistics // This is useful for determining what needs to be optimized. _mkdir("AS_DEBUG"); FILE *f = fopen("AS_DEBUG/stats.txt", "at"); fprintf(f, "\n"); asQWORD total = 0; int n; for( n = 0; n < 256; n++ ) { if( bcName[n].name && instrCount[n] ) fprintf(f, "%-10.10s : %d\n", bcName[n].name, instrCount[n]); total += instrCount[n]; } fprintf(f, "\ntotal : %I64d\n", total); fprintf(f, "\n"); for( n = 0; n < 256; n++ ) { if( bcName[n].name ) { for( int m = 0; m < 256; m++ ) { if( instrCount2[n][m] ) fprintf(f, "%-10.10s, %-10.10s : %d\n", bcName[n].name, bcName[m].name, instrCount2[n][m]); } } } fclose(f); */ #endif if( status == asEXECUTION_FINISHED ) { regs.objectType = initialFunction->returnType.GetObjectType(); return asEXECUTION_FINISHED; } if( doAbort ) { doAbort = false; status = asEXECUTION_ABORTED; return asEXECUTION_ABORTED; } if( status == asEXECUTION_SUSPENDED ) return asEXECUTION_SUSPENDED; if( status == asEXECUTION_EXCEPTION ) return asEXECUTION_EXCEPTION; return asERROR; } void asCContext::PushCallState() { callStack.SetLength(callStack.GetLength() + CALLSTACK_FRAME_SIZE); // Separating the loads and stores limits data cache trash, and with a smart compiler // could turn into SIMD style loading/storing if available. // The compiler can't do this itself due to potential pointer aliasing between the pointers, // ie writing to tmp could overwrite the data contained in registers.stackFramePointer for example // for all the compiler knows. So introducing the local variable s, which is never referred to by // its address we avoid this issue. size_t s[5]; s[0] = (size_t)regs.stackFramePointer; s[1] = (size_t)currentFunction; s[2] = (size_t)regs.programPointer; s[3] = (size_t)regs.stackPointer; s[4] = stackIndex; size_t *tmp = callStack.AddressOf() + callStack.GetLength() - CALLSTACK_FRAME_SIZE; tmp[0] = s[0]; tmp[1] = s[1]; tmp[2] = s[2]; tmp[3] = s[3]; tmp[4] = s[4]; } void asCContext::PopCallState() { // See comments in PushCallState about pointer aliasing and data cache trashing size_t *tmp = callStack.AddressOf() + callStack.GetLength() - CALLSTACK_FRAME_SIZE; size_t s[5]; s[0] = tmp[0]; s[1] = tmp[1]; s[2] = tmp[2]; s[3] = tmp[3]; s[4] = tmp[4]; regs.stackFramePointer = (asDWORD*)s[0]; currentFunction = (asCScriptFunction*)s[1]; regs.programPointer = (asDWORD*)s[2]; regs.stackPointer = (asDWORD*)s[3]; stackIndex = (int)s[4]; callStack.SetLength(callStack.GetLength() - CALLSTACK_FRAME_SIZE); } // interface asUINT asCContext::GetCallstackSize() { if( currentFunction == 0 ) return 0; // The current function is accessed at stackLevel 0 return asUINT(1 + callStack.GetLength() / CALLSTACK_FRAME_SIZE); } // interface asIScriptFunction *asCContext::GetFunction(asUINT stackLevel) { if( stackLevel >= GetCallstackSize() ) return 0; if( stackLevel == 0 ) return currentFunction; size_t *s = callStack.AddressOf() + (GetCallstackSize() - stackLevel - 1)*CALLSTACK_FRAME_SIZE; asCScriptFunction *func = (asCScriptFunction*)s[1]; return func; } // interface int asCContext::GetLineNumber(asUINT stackLevel, int *column, const char **sectionName) { if( stackLevel >= GetCallstackSize() ) return asINVALID_ARG; asCScriptFunction *func; asDWORD *bytePos; if( stackLevel == 0 ) { func = currentFunction; bytePos = regs.programPointer; } else { size_t *s = callStack.AddressOf() + (GetCallstackSize()-stackLevel-1)*CALLSTACK_FRAME_SIZE; func = (asCScriptFunction*)s[1]; bytePos = (asDWORD*)s[2]; } asDWORD line = func->GetLineNumber(int(bytePos - func->byteCode.AddressOf())); if( column ) *column = (line >> 20); if( sectionName ) *sectionName = func->GetScriptSectionName(); return (line & 0xFFFFF); } void asCContext::CallScriptFunction(asCScriptFunction *func) { // Push the framepointer, function id and programCounter on the stack PushCallState(); currentFunction = func; regs.programPointer = currentFunction->byteCode.AddressOf(); // Verify if there is enough room in the stack block. Allocate new block if not if( regs.stackPointer - (func->stackNeeded + RESERVE_STACK) < stackBlocks[stackIndex] ) { asDWORD *oldStackPointer = regs.stackPointer; // The size of each stack block is determined by the following formula: // size = stackBlockSize << index while( regs.stackPointer - (func->stackNeeded + RESERVE_STACK) < stackBlocks[stackIndex] ) { // Make sure we don't allocate more space than allowed if( engine->ep.maximumContextStackSize ) { // This test will only stop growth once it has already crossed the limit if( stackBlockSize * ((1 << (stackIndex+1)) - 1) > engine->ep.maximumContextStackSize ) { isStackMemoryNotAllocated = true; // Set the stackFramePointer, even though the stackPointer wasn't updated regs.stackFramePointer = regs.stackPointer; // TODO: Make sure the exception handler doesn't try to free objects that have not been initialized SetInternalException(TXT_STACK_OVERFLOW); return; } } stackIndex++; if( (int)stackBlocks.GetLength() == stackIndex ) { asDWORD *stack = asNEWARRAY(asDWORD,(stackBlockSize << stackIndex)); stackBlocks.PushLast(stack); } regs.stackPointer = stackBlocks[stackIndex] + (stackBlockSize<GetSpaceNeededForArguments() - (func->objectType ? AS_PTR_SIZE : 0); } // Copy the function arguments to the new stack space int numDwords = func->GetSpaceNeededForArguments() + (func->objectType ? AS_PTR_SIZE : 0); memcpy(regs.stackPointer, oldStackPointer, sizeof(asDWORD)*numDwords); } // Update framepointer and programCounter regs.stackFramePointer = regs.stackPointer; // TODO: optimize: This can be avoided handling this as is done for value types in the exception handler // Set all object variables to 0 for( asUINT n = 0; n < currentFunction->objVariablePos.GetLength(); n++ ) { if( !currentFunction->objVariableIsOnHeap[n] ) continue; int pos = currentFunction->objVariablePos[n]; *(size_t*)®s.stackFramePointer[-pos] = 0; } } void asCContext::CallInterfaceMethod(asCScriptFunction *func) { // Resolve the interface method using the current script type asCScriptObject *obj = *(asCScriptObject**)(size_t*)regs.stackPointer; if( obj == 0 ) { SetInternalException(TXT_NULL_POINTER_ACCESS); return; } asCObjectType *objType = obj->objType; // TODO: optimize: The object type should have a list of only those methods that // implement interface methods. This list should be ordered by // the signatureId so that a binary search can be made, instead // of a linear search. // // When this is done, we must also make sure the signatureId of a // function never changes, e.g. when if the signature functions are // released. // Search the object type for a function that matches the interface function asCScriptFunction *realFunc = 0; if( func->funcType == asFUNC_INTERFACE ) { for( asUINT n = 0; n < objType->methods.GetLength(); n++ ) { asCScriptFunction *f2 = engine->scriptFunctions[objType->methods[n]]; if( f2->signatureId == func->signatureId ) { if( f2->funcType == asFUNC_VIRTUAL ) realFunc = objType->virtualFunctionTable[f2->vfTableIdx]; else realFunc = f2; break; } } if( realFunc == 0 ) { SetInternalException(TXT_NULL_POINTER_ACCESS); return; } } else // if( func->funcType == asFUNC_VIRTUAL ) { realFunc = objType->virtualFunctionTable[func->vfTableIdx]; } // Then call the true script function CallScriptFunction(realFunc); } void asCContext::ExecuteNext() { asDWORD *l_bc = regs.programPointer; asDWORD *l_sp = regs.stackPointer; asDWORD *l_fp = regs.stackFramePointer; for(;;) { #ifdef AS_DEBUG ++stats.instrCount[*(asBYTE*)l_bc]; ++instrCount[*(asBYTE*)l_bc]; ++instrCount2[lastBC][*(asBYTE*)l_bc]; lastBC = *(asBYTE*)l_bc; // Used to verify that the size of the instructions are correct asDWORD *old = l_bc; #endif // Remember to keep the cases in order and without // gaps, because that will make the switch faster. // It will be faster since only one lookup will be // made to find the correct jump destination. If not // in order, the switch will make two lookups. switch( *(asBYTE*)l_bc ) { //-------------- // memory access functions // Decrease the stack pointer with n dwords (stack grows downward) case asBC_POP: l_sp += asBC_WORDARG0(l_bc); l_bc++; break; // Increase the stack pointer with n dwords case asBC_PUSH: l_sp -= asBC_WORDARG0(l_bc); l_bc++; break; // Push a dword value on the stack case asBC_PshC4: --l_sp; *l_sp = asBC_DWORDARG(l_bc); l_bc += 2; break; // Push the dword value of a variable on the stack case asBC_PshV4: --l_sp; *l_sp = *(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; // Push the address of a variable on the stack case asBC_PSF: l_sp -= AS_PTR_SIZE; *(asPTRWORD*)l_sp = (asPTRWORD)size_t(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; // Swap the top 2 dwords on the stack case asBC_SWAP4: { asDWORD d = (asDWORD)*l_sp; *l_sp = *(l_sp+1); *(asDWORD*)(l_sp+1) = d; l_bc++; } break; // Do a boolean not operation, modifying the value of the variable case asBC_NOT: #if AS_SIZEOF_BOOL == 1 { // Set the value to true if it is equal to 0 // We need to use volatile here to tell the compiler it cannot // change the order of read and write operations on the pointer. volatile asBYTE *ptr = (asBYTE*)(l_fp - asBC_SWORDARG0(l_bc)); asBYTE val = (ptr[0] == 0) ? VALUE_OF_BOOLEAN_TRUE : 0; ptr[0] = val; // The result is stored in the lower byte ptr[1] = 0; // Make sure the rest of the DWORD is 0 ptr[2] = 0; ptr[3] = 0; } #else *(l_fp - asBC_SWORDARG0(l_bc)) = (*(l_fp - asBC_SWORDARG0(l_bc)) == 0 ? VALUE_OF_BOOLEAN_TRUE : 0); #endif l_bc++; break; // Push the dword value of a global variable on the stack case asBC_PshG4: --l_sp; *l_sp = *(asDWORD*)(size_t)asBC_PTRARG(l_bc); l_bc += 1 + AS_PTR_SIZE; break; // Load the address of a global variable in the register, then // copy the value of the global variable into a local variable case asBC_LdGRdR4: *(void**)®s.valueRegister = (void*)(size_t)asBC_PTRARG(l_bc); *(l_fp - asBC_SWORDARG0(l_bc)) = **(asDWORD**)®s.valueRegister; l_bc += 1+AS_PTR_SIZE; break; //---------------- // path control instructions // Begin execution of a script function case asBC_CALL: { int i = asBC_INTARG(l_bc); l_bc += 2; asASSERT( i >= 0 ); asASSERT( (i & FUNC_IMPORTED) == 0 ); // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; CallScriptFunction(engine->scriptFunctions[i]); // Extract the values from the context again l_bc = regs.programPointer; l_sp = regs.stackPointer; l_fp = regs.stackFramePointer; // If status isn't active anymore then we must stop if( status != asEXECUTION_ACTIVE ) return; } break; // Return to the caller, and remove the arguments from the stack case asBC_RET: { if( callStack.GetLength() == 0 ) { status = asEXECUTION_FINISHED; return; } asWORD w = asBC_WORDARG0(l_bc); // Read the old framepointer, functionid, and programCounter from the call stack PopCallState(); // Extract the values from the context again l_bc = regs.programPointer; l_sp = regs.stackPointer; l_fp = regs.stackFramePointer; // Pop arguments from stack l_sp += w; } break; // Jump to a relative position case asBC_JMP: l_bc += 2 + asBC_INTARG(l_bc); break; //---------------- // Conditional jumps // Jump to a relative position if the value in the register is 0 case asBC_JZ: if( *(int*)®s.valueRegister == 0 ) l_bc += asBC_INTARG(l_bc) + 2; else l_bc += 2; break; // Jump to a relative position if the value in the register is not 0 case asBC_JNZ: if( *(int*)®s.valueRegister != 0 ) l_bc += asBC_INTARG(l_bc) + 2; else l_bc += 2; break; // Jump to a relative position if the value in the register is negative case asBC_JS: if( *(int*)®s.valueRegister < 0 ) l_bc += asBC_INTARG(l_bc) + 2; else l_bc += 2; break; // Jump to a relative position if the value in the register it not negative case asBC_JNS: if( *(int*)®s.valueRegister >= 0 ) l_bc += asBC_INTARG(l_bc) + 2; else l_bc += 2; break; // Jump to a relative position if the value in the register is greater than 0 case asBC_JP: if( *(int*)®s.valueRegister > 0 ) l_bc += asBC_INTARG(l_bc) + 2; else l_bc += 2; break; // Jump to a relative position if the value in the register is not greater than 0 case asBC_JNP: if( *(int*)®s.valueRegister <= 0 ) l_bc += asBC_INTARG(l_bc) + 2; else l_bc += 2; break; //-------------------- // test instructions // If the value in the register is 0, then set the register to 1, else to 0 case asBC_TZ: #if AS_SIZEOF_BOOL == 1 { // Set the value to true if it is equal to 0 // We need to use volatile here to tell the compiler it cannot // change the order of read and write operations on valueRegister. volatile int *regPtr = (int*)®s.valueRegister; volatile asBYTE *regBptr = (asBYTE*)®s.valueRegister; asBYTE val = (regPtr[0] == 0) ? VALUE_OF_BOOLEAN_TRUE : 0; regBptr[0] = val; // The result is stored in the lower byte regBptr[1] = 0; // Make sure the rest of the register is 0 regBptr[2] = 0; regBptr[3] = 0; regBptr[4] = 0; regBptr[5] = 0; regBptr[6] = 0; regBptr[7] = 0; } #else *(int*)®s.valueRegister = (*(int*)®s.valueRegister == 0 ? VALUE_OF_BOOLEAN_TRUE : 0); #endif l_bc++; break; // If the value in the register is not 0, then set the register to 1, else to 0 case asBC_TNZ: #if AS_SIZEOF_BOOL == 1 { // Set the value to true if it is not equal to 0 // We need to use volatile here to tell the compiler it cannot // change the order of read and write operations on valueRegister. volatile int *regPtr = (int*)®s.valueRegister; volatile asBYTE *regBptr = (asBYTE*)®s.valueRegister; asBYTE val = (regPtr[0] == 0) ? 0 : VALUE_OF_BOOLEAN_TRUE; regBptr[0] = val; // The result is stored in the lower byte regBptr[1] = 0; // Make sure the rest of the register is 0 regBptr[2] = 0; regBptr[3] = 0; regBptr[4] = 0; regBptr[5] = 0; regBptr[6] = 0; regBptr[7] = 0; } #else *(int*)®s.valueRegister = (*(int*)®s.valueRegister == 0 ? 0 : VALUE_OF_BOOLEAN_TRUE); #endif l_bc++; break; // If the value in the register is negative, then set the register to 1, else to 0 case asBC_TS: #if AS_SIZEOF_BOOL == 1 { // Set the value to true if it is less than 0 // We need to use volatile here to tell the compiler it cannot // change the order of read and write operations on valueRegister. volatile int *regPtr = (int*)®s.valueRegister; volatile asBYTE *regBptr = (asBYTE*)®s.valueRegister; asBYTE val = (regPtr[0] < 0) ? VALUE_OF_BOOLEAN_TRUE : 0; regBptr[0] = val; // The result is stored in the lower byte regBptr[1] = 0; // Make sure the rest of the register is 0 regBptr[2] = 0; regBptr[3] = 0; regBptr[4] = 0; regBptr[5] = 0; regBptr[6] = 0; regBptr[7] = 0; } #else *(int*)®s.valueRegister = (*(int*)®s.valueRegister < 0 ? VALUE_OF_BOOLEAN_TRUE : 0); #endif l_bc++; break; // If the value in the register is not negative, then set the register to 1, else to 0 case asBC_TNS: #if AS_SIZEOF_BOOL == 1 { // Set the value to true if it is not less than 0 // We need to use volatile here to tell the compiler it cannot // change the order of read and write operations on valueRegister. volatile int *regPtr = (int*)®s.valueRegister; volatile asBYTE *regBptr = (asBYTE*)®s.valueRegister; asBYTE val = (regPtr[0] >= 0) ? VALUE_OF_BOOLEAN_TRUE : 0; regBptr[0] = val; // The result is stored in the lower byte regBptr[1] = 0; // Make sure the rest of the register is 0 regBptr[2] = 0; regBptr[3] = 0; regBptr[4] = 0; regBptr[5] = 0; regBptr[6] = 0; regBptr[7] = 0; } #else *(int*)®s.valueRegister = (*(int*)®s.valueRegister < 0 ? 0 : VALUE_OF_BOOLEAN_TRUE); #endif l_bc++; break; // If the value in the register is greater than 0, then set the register to 1, else to 0 case asBC_TP: #if AS_SIZEOF_BOOL == 1 { // Set the value to true if it is greater than 0 // We need to use volatile here to tell the compiler it cannot // change the order of read and write operations on valueRegister. volatile int *regPtr = (int*)®s.valueRegister; volatile asBYTE *regBptr = (asBYTE*)®s.valueRegister; asBYTE val = (regPtr[0] > 0) ? VALUE_OF_BOOLEAN_TRUE : 0; regBptr[0] = val; // The result is stored in the lower byte regBptr[1] = 0; // Make sure the rest of the register is 0 regBptr[2] = 0; regBptr[3] = 0; regBptr[4] = 0; regBptr[5] = 0; regBptr[6] = 0; regBptr[7] = 0; } #else *(int*)®s.valueRegister = (*(int*)®s.valueRegister > 0 ? VALUE_OF_BOOLEAN_TRUE : 0); #endif l_bc++; break; // If the value in the register is not greater than 0, then set the register to 1, else to 0 case asBC_TNP: #if AS_SIZEOF_BOOL == 1 { // Set the value to true if it is not greater than 0 // We need to use volatile here to tell the compiler it cannot // change the order of read and write operations on valueRegister. volatile int *regPtr = (int*)®s.valueRegister; volatile asBYTE *regBptr = (asBYTE*)®s.valueRegister; asBYTE val = (regPtr[0] <= 0) ? VALUE_OF_BOOLEAN_TRUE : 0; regBptr[0] = val; // The result is stored in the lower byte regBptr[1] = 0; // Make sure the rest of the register is 0 regBptr[2] = 0; regBptr[3] = 0; regBptr[4] = 0; regBptr[5] = 0; regBptr[6] = 0; regBptr[7] = 0; } #else *(int*)®s.valueRegister = (*(int*)®s.valueRegister > 0 ? 0 : VALUE_OF_BOOLEAN_TRUE); #endif l_bc++; break; //-------------------- // negate value // Negate the integer value in the variable case asBC_NEGi: *(l_fp - asBC_SWORDARG0(l_bc)) = asDWORD(-int(*(l_fp - asBC_SWORDARG0(l_bc)))); l_bc++; break; // Negate the float value in the variable case asBC_NEGf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = -*(float*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; // Negate the double value in the variable case asBC_NEGd: *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = -*(double*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; //------------------------- // Increment value pointed to by address in register // Increment the short value pointed to by the register case asBC_INCi16: (**(short**)®s.valueRegister)++; l_bc++; break; // Increment the byte value pointed to by the register case asBC_INCi8: (**(char**)®s.valueRegister)++; l_bc++; break; // Decrement the short value pointed to by the register case asBC_DECi16: (**(short**)®s.valueRegister)--; l_bc++; break; // Decrement the byte value pointed to by the register case asBC_DECi8: (**(char**)®s.valueRegister)--; l_bc++; break; // Increment the integer value pointed to by the register case asBC_INCi: ++(**(int**)®s.valueRegister); l_bc++; break; // Decrement the integer value pointed to by the register case asBC_DECi: --(**(int**)®s.valueRegister); l_bc++; break; // Increment the float value pointed to by the register case asBC_INCf: ++(**(float**)®s.valueRegister); l_bc++; break; // Decrement the float value pointed to by the register case asBC_DECf: --(**(float**)®s.valueRegister); l_bc++; break; // Increment the double value pointed to by the register case asBC_INCd: ++(**(double**)®s.valueRegister); l_bc++; break; // Decrement the double value pointed to by the register case asBC_DECd: --(**(double**)®s.valueRegister); l_bc++; break; // Increment the local integer variable case asBC_IncVi: (*(int*)(l_fp - asBC_SWORDARG0(l_bc)))++; l_bc++; break; // Decrement the local integer variable case asBC_DecVi: (*(int*)(l_fp - asBC_SWORDARG0(l_bc)))--; l_bc++; break; //-------------------- // bits instructions // Do a bitwise not on the value in the variable case asBC_BNOT: *(l_fp - asBC_SWORDARG0(l_bc)) = ~*(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; // Do a bitwise and of two variables and store the result in a third variable case asBC_BAND: *(l_fp - asBC_SWORDARG0(l_bc)) = *(l_fp - asBC_SWORDARG1(l_bc)) & *(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; // Do a bitwise or of two variables and store the result in a third variable case asBC_BOR: *(l_fp - asBC_SWORDARG0(l_bc)) = *(l_fp - asBC_SWORDARG1(l_bc)) | *(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; // Do a bitwise xor of two variables and store the result in a third variable case asBC_BXOR: *(l_fp - asBC_SWORDARG0(l_bc)) = *(l_fp - asBC_SWORDARG1(l_bc)) ^ *(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; // Do a logical shift left of two variables and store the result in a third variable case asBC_BSLL: *(l_fp - asBC_SWORDARG0(l_bc)) = *(l_fp - asBC_SWORDARG1(l_bc)) << *(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; // Do a logical shift right of two variables and store the result in a third variable case asBC_BSRL: *(l_fp - asBC_SWORDARG0(l_bc)) = *(l_fp - asBC_SWORDARG1(l_bc)) >> *(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; // Do an arithmetic shift right of two variables and store the result in a third variable case asBC_BSRA: *(l_fp - asBC_SWORDARG0(l_bc)) = int(*(l_fp - asBC_SWORDARG1(l_bc))) >> *(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_COPY: { void *d = (void*)*(size_t*)l_sp; l_sp += AS_PTR_SIZE; void *s = (void*)*(size_t*)l_sp; if( s == 0 || d == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_NULL_POINTER_ACCESS); return; } memcpy(d, s, asBC_WORDARG0(l_bc)*4); // replace the pointer on the stack with the lvalue *(size_t**)l_sp = (size_t*)d; } l_bc += 2; break; case asBC_PshC8: l_sp -= 2; *(asQWORD*)l_sp = asBC_QWORDARG(l_bc); l_bc += 3; break; case asBC_RDS8: #ifndef AS_64BIT_PTR *(asQWORD*)(l_sp-1) = *(asQWORD*)*(size_t*)l_sp; --l_sp; #else *(asQWORD*)l_sp = *(asQWORD*)*(size_t*)l_sp; #endif l_bc++; break; case asBC_SWAP8: { asQWORD q = *(asQWORD*)l_sp; *(asQWORD*)l_sp = *(asQWORD*)(l_sp+2); *(asQWORD*)(l_sp+2) = q; l_bc++; } break; //---------------------------- // Comparisons case asBC_CMPd: { double dbl = *(double*)(l_fp - asBC_SWORDARG0(l_bc)) - *(double*)(l_fp - asBC_SWORDARG1(l_bc)); if( dbl == 0 ) *(int*)®s.valueRegister = 0; else if( dbl < 0 ) *(int*)®s.valueRegister = -1; else *(int*)®s.valueRegister = 1; l_bc += 2; } break; case asBC_CMPu: { asDWORD d = *(asDWORD*)(l_fp - asBC_SWORDARG0(l_bc)); asDWORD d2 = *(asDWORD*)(l_fp - asBC_SWORDARG1(l_bc)); if( d == d2 ) *(int*)®s.valueRegister = 0; else if( d < d2 ) *(int*)®s.valueRegister = -1; else *(int*)®s.valueRegister = 1; l_bc += 2; } break; case asBC_CMPf: { float f = *(float*)(l_fp - asBC_SWORDARG0(l_bc)) - *(float*)(l_fp - asBC_SWORDARG1(l_bc)); if( f == 0 ) *(int*)®s.valueRegister = 0; else if( f < 0 ) *(int*)®s.valueRegister = -1; else *(int*)®s.valueRegister = 1; l_bc += 2; } break; case asBC_CMPi: { int i = *(int*)(l_fp - asBC_SWORDARG0(l_bc)) - *(int*)(l_fp - asBC_SWORDARG1(l_bc)); if( i == 0 ) *(int*)®s.valueRegister = 0; else if( i < 0 ) *(int*)®s.valueRegister = -1; else *(int*)®s.valueRegister = 1; l_bc += 2; } break; //---------------------------- // Comparisons with constant value case asBC_CMPIi: { int i = *(int*)(l_fp - asBC_SWORDARG0(l_bc)) - asBC_INTARG(l_bc); if( i == 0 ) *(int*)®s.valueRegister = 0; else if( i < 0 ) *(int*)®s.valueRegister = -1; else *(int*)®s.valueRegister = 1; l_bc += 2; } break; case asBC_CMPIf: { float f = *(float*)(l_fp - asBC_SWORDARG0(l_bc)) - asBC_FLOATARG(l_bc); if( f == 0 ) *(int*)®s.valueRegister = 0; else if( f < 0 ) *(int*)®s.valueRegister = -1; else *(int*)®s.valueRegister = 1; l_bc += 2; } break; case asBC_CMPIu: { asDWORD d1 = *(asDWORD*)(l_fp - asBC_SWORDARG0(l_bc)); asDWORD d2 = asBC_DWORDARG(l_bc); if( d1 == d2 ) *(int*)®s.valueRegister = 0; else if( d1 < d2 ) *(int*)®s.valueRegister = -1; else *(int*)®s.valueRegister = 1; l_bc += 2; } break; case asBC_JMPP: l_bc += 1 + (*(int*)(l_fp - asBC_SWORDARG0(l_bc)))*2; break; case asBC_PopRPtr: *(asPTRWORD*)®s.valueRegister = *(asPTRWORD*)l_sp; l_sp += AS_PTR_SIZE; l_bc++; break; case asBC_PshRPtr: l_sp -= AS_PTR_SIZE; *(asPTRWORD*)l_sp = *(asPTRWORD*)®s.valueRegister; l_bc++; break; case asBC_STR: { // Get the string id from the argument asWORD w = asBC_WORDARG0(l_bc); // Push the string pointer on the stack const asCString &b = engine->GetConstantString(w); l_sp -= AS_PTR_SIZE; *(asPTRWORD*)l_sp = (asPTRWORD)(size_t)b.AddressOf(); // Push the string length on the stack --l_sp; *l_sp = (asDWORD)b.GetLength(); l_bc++; } break; case asBC_CALLSYS: { // Get function ID from the argument int i = asBC_INTARG(l_bc); // Need to move the values back to the context as the called functions // may use the debug interface to inspect the registers regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; l_sp += CallSystemFunction(i, this, 0); // Update the program position after the call so that line number is correct l_bc += 2; if( regs.doProcessSuspend ) { // Should the execution be suspended? if( doSuspend ) { regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; status = asEXECUTION_SUSPENDED; return; } // An exception might have been raised if( status != asEXECUTION_ACTIVE ) { regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; return; } } } break; case asBC_CALLBND: { // Get the function ID from the stack int i = asBC_INTARG(l_bc); l_bc += 2; asASSERT( i >= 0 ); asASSERT( i & FUNC_IMPORTED ); // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; int funcID = engine->importedFunctions[i&0xFFFF]->boundFunctionId; if( funcID == -1 ) { SetInternalException(TXT_UNBOUND_FUNCTION); return; } else { asCScriptFunction *func = engine->GetScriptFunction(funcID); CallScriptFunction(func); } // Extract the values from the context again l_bc = regs.programPointer; l_sp = regs.stackPointer; l_fp = regs.stackFramePointer; // If status isn't active anymore then we must stop if( status != asEXECUTION_ACTIVE ) return; } break; case asBC_SUSPEND: if( regs.doProcessSuspend ) { if( lineCallback ) { regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; CallLineCallback(); } if( doSuspend ) { l_bc++; // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; status = asEXECUTION_SUSPENDED; return; } } l_bc++; break; case asBC_ALLOC: { asCObjectType *objType = (asCObjectType*)(size_t)asBC_PTRARG(l_bc); int func = asBC_INTARG(l_bc+AS_PTR_SIZE); if( objType->flags & asOBJ_SCRIPT_OBJECT ) { // Pre-allocate the memory asDWORD *mem = (asDWORD*)engine->CallAlloc(objType); // Pre-initialize the memory by calling the constructor for asCScriptObject ScriptObject_Construct(objType, (asCScriptObject*)mem); // Call the constructor to initalize the memory asCScriptFunction *f = engine->scriptFunctions[func]; asDWORD **a = (asDWORD**)*(size_t*)(l_sp + f->GetSpaceNeededForArguments()); if( a ) *a = mem; // Push the object pointer on the stack l_sp -= AS_PTR_SIZE; *(size_t*)l_sp = (size_t)mem; l_bc += 2+AS_PTR_SIZE; // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; CallScriptFunction(f); // Extract the values from the context again l_bc = regs.programPointer; l_sp = regs.stackPointer; l_fp = regs.stackFramePointer; // If status isn't active anymore then we must stop if( status != asEXECUTION_ACTIVE ) return; } else { // Pre-allocate the memory asDWORD *mem = (asDWORD*)engine->CallAlloc(objType); if( func ) { // Need to move the values back to the context as the called functions // may use the debug interface to inspect the registers regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; l_sp += CallSystemFunction(func, this, mem); } // Pop the variable address from the stack asDWORD **a = (asDWORD**)*(size_t*)l_sp; l_sp += AS_PTR_SIZE; if( a ) *a = mem; l_bc += 2+AS_PTR_SIZE; if( regs.doProcessSuspend ) { // Should the execution be suspended? if( doSuspend ) { regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; status = asEXECUTION_SUSPENDED; return; } // An exception might have been raised if( status != asEXECUTION_ACTIVE ) { regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; engine->CallFree(mem); *a = 0; return; } } } } break; case asBC_FREE: { // Get the variable that holds the object handle/reference asPTRWORD *a = (asPTRWORD*)size_t(l_fp - asBC_SWORDARG0(l_bc)); if( *a ) { asCObjectType *objType = (asCObjectType*)(size_t)asBC_PTRARG(l_bc); asSTypeBehaviour *beh = &objType->beh; // Need to move the values back to the context as the called functions // may use the debug interface to inspect the registers regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; if( beh->release ) { engine->CallObjectMethod((void*)(size_t)*a, beh->release); } else { if( beh->destruct ) { engine->CallObjectMethod((void*)(size_t)*a, beh->destruct); } engine->CallFree((void*)(size_t)*a); } // Clear the variable *a = 0; } } l_bc += 1+AS_PTR_SIZE; break; case asBC_LOADOBJ: { // Move the object pointer from the object variable into the object register void **a = (void**)(l_fp - asBC_SWORDARG0(l_bc)); regs.objectType = 0; regs.objectRegister = *a; *a = 0; } l_bc++; break; case asBC_STOREOBJ: // Move the object pointer from the object register to the object variable *(size_t*)(l_fp - asBC_SWORDARG0(l_bc)) = size_t(regs.objectRegister); regs.objectRegister = 0; l_bc++; break; case asBC_GETOBJ: { // Read variable index from location on stack size_t *a = (size_t*)(l_sp + asBC_WORDARG0(l_bc)); asDWORD offset = *(asDWORD*)a; // Move pointer from variable to the same location on the stack size_t *v = (size_t*)(l_fp - offset); *a = *v; // Clear variable *v = 0; } l_bc++; break; case asBC_REFCPY: { asCObjectType *objType = (asCObjectType*)(size_t)asBC_PTRARG(l_bc); asSTypeBehaviour *beh = &objType->beh; // Pop address of destination pointer from the stack void **d = (void**)*(size_t*)l_sp; l_sp += AS_PTR_SIZE; // Read wanted pointer from the stack void *s = (void*)*(size_t*)l_sp; // Need to move the values back to the context as the called functions // may use the debug interface to inspect the registers regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Release previous object held by destination pointer if( *d != 0 ) engine->CallObjectMethod(*d, beh->release); // Increase ref counter of wanted object if( s != 0 ) engine->CallObjectMethod(s, beh->addref); // Set the new object in the destination *d = s; } l_bc += 1+AS_PTR_SIZE; break; case asBC_CHKREF: { // Verify if the pointer on the stack is null // This is used when validating a pointer that an operator will work on size_t a = *(size_t*)l_sp; if( a == 0 ) { regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; SetInternalException(TXT_NULL_POINTER_ACCESS); return; } } l_bc++; break; case asBC_GETOBJREF: { // Get the location on the stack where the reference will be placed size_t *a = (size_t*)(l_sp + asBC_WORDARG0(l_bc)); // Replace the variable index with the object handle held in the variable *(size_t**)a = *(size_t**)(l_fp - *a); } l_bc++; break; case asBC_GETREF: { // Get the location on the stack where the reference will be placed size_t *a = (size_t*)(l_sp + asBC_WORDARG0(l_bc)); // Replace the variable index with the address of the variable *(size_t**)a = (size_t*)(l_fp - (int)*a); } l_bc++; break; case asBC_SWAP48: { asDWORD d = *(asDWORD*)l_sp; asQWORD q = *(asQWORD*)(l_sp+1); *(asQWORD*)l_sp = q; *(asDWORD*)(l_sp+2) = d; l_bc++; } break; case asBC_SWAP84: { asQWORD q = *(asQWORD*)l_sp; asDWORD d = *(asDWORD*)(l_sp+2); *(asDWORD*)l_sp = d; *(asQWORD*)(l_sp+1) = q; l_bc++; } break; case asBC_OBJTYPE: // Push the object type on the stack l_sp -= AS_PTR_SIZE; *(asPTRWORD*)l_sp = asBC_PTRARG(l_bc); l_bc += 1+AS_PTR_SIZE; break; case asBC_TYPEID: // Equivalent to PshC4, but kept as separate instruction for bytecode serialization --l_sp; *l_sp = asBC_DWORDARG(l_bc); l_bc += 2; break; case asBC_SetV4: *(l_fp - asBC_SWORDARG0(l_bc)) = asBC_DWORDARG(l_bc); l_bc += 2; break; case asBC_SetV8: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = asBC_QWORDARG(l_bc); l_bc += 3; break; case asBC_ADDSi: *(size_t*)l_sp = size_t(asPTRWORD(*(size_t*)l_sp) + asBC_SWORDARG0(l_bc)); l_bc += 2; break; case asBC_CpyVtoV4: *(l_fp - asBC_SWORDARG0(l_bc)) = *(l_fp - asBC_SWORDARG1(l_bc)); l_bc += 2; break; case asBC_CpyVtoV8: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)); l_bc += 2; break; case asBC_CpyVtoR4: *(asDWORD*)®s.valueRegister = *(asDWORD*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_CpyVtoR8: *(asQWORD*)®s.valueRegister = *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_CpyVtoG4: *(asDWORD*)(size_t)asBC_PTRARG(l_bc) = *(asDWORD*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc += 1 + AS_PTR_SIZE; break; case asBC_CpyRtoV4: *(asDWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asDWORD*)®s.valueRegister; l_bc++; break; case asBC_CpyRtoV8: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = regs.valueRegister; l_bc++; break; case asBC_CpyGtoV4: *(asDWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asDWORD*)(size_t)asBC_PTRARG(l_bc); l_bc += 1 + AS_PTR_SIZE; break; case asBC_WRTV1: // The pointer in the register points to a byte, and *(l_fp - offset) too **(asBYTE**)®s.valueRegister = *(asBYTE*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_WRTV2: // The pointer in the register points to a word, and *(l_fp - offset) too **(asWORD**)®s.valueRegister = *(asWORD*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_WRTV4: **(asDWORD**)®s.valueRegister = *(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_WRTV8: **(asQWORD**)®s.valueRegister = *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_RDR1: { // The pointer in the register points to a byte, and *(l_fp - offset) will also point to a byte asBYTE *bPtr = (asBYTE*)(l_fp - asBC_SWORDARG0(l_bc)); bPtr[0] = **(asBYTE**)®s.valueRegister; // read the byte bPtr[1] = 0; // 0 the rest of the DWORD bPtr[2] = 0; bPtr[3] = 0; } l_bc++; break; case asBC_RDR2: { // The pointer in the register points to a word, and *(l_fp - offset) will also point to a word asWORD *wPtr = (asWORD*)(l_fp - asBC_SWORDARG0(l_bc)); wPtr[0] = **(asWORD**)®s.valueRegister; // read the word wPtr[1] = 0; // 0 the rest of the DWORD } l_bc++; break; case asBC_RDR4: *(asDWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = **(asDWORD**)®s.valueRegister; l_bc++; break; case asBC_RDR8: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = **(asQWORD**)®s.valueRegister; l_bc++; break; case asBC_LDG: *(asPTRWORD*)®s.valueRegister = asBC_PTRARG(l_bc); l_bc += 1+AS_PTR_SIZE; break; case asBC_LDV: *(asDWORD**)®s.valueRegister = (l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_PGA: l_sp -= AS_PTR_SIZE; *(asPTRWORD*)l_sp = asBC_PTRARG(l_bc); l_bc += 1+AS_PTR_SIZE; break; case asBC_RDS4: #ifndef AS_64BIT_PTR *l_sp = *(asDWORD*)*(size_t*)l_sp; #else { asDWORD d = *(asDWORD*)*(size_t*)l_sp; l_sp++; *l_sp = d; } #endif l_bc++; break; case asBC_VAR: l_sp -= AS_PTR_SIZE; *(size_t*)l_sp = (size_t)asBC_SWORDARG0(l_bc); l_bc++; break; //---------------------------- // Type conversions case asBC_iTOf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = float(*(int*)(l_fp - asBC_SWORDARG0(l_bc))); l_bc++; break; case asBC_fTOi: *(l_fp - asBC_SWORDARG0(l_bc)) = int(*(float*)(l_fp - asBC_SWORDARG0(l_bc))); l_bc++; break; case asBC_uTOf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = float(*(l_fp - asBC_SWORDARG0(l_bc))); l_bc++; break; case asBC_fTOu: // We must cast to int first, because on some compilers the cast of a negative float value to uint result in 0 *(l_fp - asBC_SWORDARG0(l_bc)) = asUINT(int(*(float*)(l_fp - asBC_SWORDARG0(l_bc)))); l_bc++; break; case asBC_sbTOi: // *(l_fp - offset) points to a char, and will point to an int afterwards *(l_fp - asBC_SWORDARG0(l_bc)) = *(signed char*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_swTOi: // *(l_fp - offset) points to a short, and will point to an int afterwards *(l_fp - asBC_SWORDARG0(l_bc)) = *(short*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_ubTOi: // (l_fp - offset) points to a byte, and will point to an int afterwards *(l_fp - asBC_SWORDARG0(l_bc)) = *(asBYTE*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_uwTOi: // *(l_fp - offset) points to a word, and will point to an int afterwards *(l_fp - asBC_SWORDARG0(l_bc)) = *(asWORD*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_dTOi: *(l_fp - asBC_SWORDARG0(l_bc)) = int(*(double*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; case asBC_dTOu: // We must cast to int first, because on some compilers the cast of a negative float value to uint result in 0 *(l_fp - asBC_SWORDARG0(l_bc)) = asUINT(int(*(double*)(l_fp - asBC_SWORDARG1(l_bc)))); l_bc += 2; break; case asBC_dTOf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = float(*(double*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; case asBC_iTOd: *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = double(*(int*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; case asBC_uTOd: *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = double(*(asUINT*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; case asBC_fTOd: *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = double(*(float*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; //------------------------------ // Math operations case asBC_ADDi: *(int*)(l_fp - asBC_SWORDARG0(l_bc)) = *(int*)(l_fp - asBC_SWORDARG1(l_bc)) + *(int*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_SUBi: *(int*)(l_fp - asBC_SWORDARG0(l_bc)) = *(int*)(l_fp - asBC_SWORDARG1(l_bc)) - *(int*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_MULi: *(int*)(l_fp - asBC_SWORDARG0(l_bc)) = *(int*)(l_fp - asBC_SWORDARG1(l_bc)) * *(int*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_DIVi: { int divider = *(int*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(int*)(l_fp - asBC_SWORDARG0(l_bc)) = *(int*)(l_fp - asBC_SWORDARG1(l_bc)) / divider; } l_bc += 2; break; case asBC_MODi: { int divider = *(int*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(int*)(l_fp - asBC_SWORDARG0(l_bc)) = *(int*)(l_fp - asBC_SWORDARG1(l_bc)) % divider; } l_bc += 2; break; case asBC_ADDf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = *(float*)(l_fp - asBC_SWORDARG1(l_bc)) + *(float*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_SUBf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = *(float*)(l_fp - asBC_SWORDARG1(l_bc)) - *(float*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_MULf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = *(float*)(l_fp - asBC_SWORDARG1(l_bc)) * *(float*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_DIVf: { float divider = *(float*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = *(float*)(l_fp - asBC_SWORDARG1(l_bc)) / divider; } l_bc += 2; break; case asBC_MODf: { float divider = *(float*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = fmodf(*(float*)(l_fp - asBC_SWORDARG1(l_bc)), divider); } l_bc += 2; break; case asBC_ADDd: *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = *(double*)(l_fp - asBC_SWORDARG1(l_bc)) + *(double*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_SUBd: *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = *(double*)(l_fp - asBC_SWORDARG1(l_bc)) - *(double*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_MULd: *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = *(double*)(l_fp - asBC_SWORDARG1(l_bc)) * *(double*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_DIVd: { double divider = *(double*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = *(double*)(l_fp - asBC_SWORDARG1(l_bc)) / divider; l_bc += 2; } break; case asBC_MODd: { double divider = *(double*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = fmod(*(double*)(l_fp - asBC_SWORDARG1(l_bc)), divider); l_bc += 2; } break; //------------------------------ // Math operations with constant value case asBC_ADDIi: *(int*)(l_fp - asBC_SWORDARG0(l_bc)) = *(int*)(l_fp - asBC_SWORDARG1(l_bc)) + asBC_INTARG(l_bc+1); l_bc += 3; break; case asBC_SUBIi: *(int*)(l_fp - asBC_SWORDARG0(l_bc)) = *(int*)(l_fp - asBC_SWORDARG1(l_bc)) - asBC_INTARG(l_bc+1); l_bc += 3; break; case asBC_MULIi: *(int*)(l_fp - asBC_SWORDARG0(l_bc)) = *(int*)(l_fp - asBC_SWORDARG1(l_bc)) * asBC_INTARG(l_bc+1); l_bc += 3; break; case asBC_ADDIf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = *(float*)(l_fp - asBC_SWORDARG1(l_bc)) + asBC_FLOATARG(l_bc+1); l_bc += 3; break; case asBC_SUBIf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = *(float*)(l_fp - asBC_SWORDARG1(l_bc)) - asBC_FLOATARG(l_bc+1); l_bc += 3; break; case asBC_MULIf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = *(float*)(l_fp - asBC_SWORDARG1(l_bc)) * asBC_FLOATARG(l_bc+1); l_bc += 3; break; //----------------------------------- case asBC_SetG4: *(asDWORD*)(size_t)asBC_PTRARG(l_bc) = asBC_DWORDARG(l_bc+AS_PTR_SIZE); l_bc += 2 + AS_PTR_SIZE; break; case asBC_ChkRefS: { // Verify if the pointer on the stack refers to a non-null value // This is used to validate a reference to a handle asDWORD *a = (asDWORD*)*(size_t*)l_sp; if( *a == 0 ) { regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; SetInternalException(TXT_NULL_POINTER_ACCESS); return; } } l_bc++; break; case asBC_ChkNullV: { // Verify if variable (on the stack) is not null asDWORD *a = *(asDWORD**)(l_fp - asBC_SWORDARG0(l_bc)); if( a == 0 ) { regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; SetInternalException(TXT_NULL_POINTER_ACCESS); return; } } l_bc++; break; case asBC_CALLINTF: { int i = asBC_INTARG(l_bc); l_bc += 2; asASSERT( i >= 0 ); asASSERT( (i & FUNC_IMPORTED) == 0 ); // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; CallInterfaceMethod(engine->GetScriptFunction(i)); // Extract the values from the context again l_bc = regs.programPointer; l_sp = regs.stackPointer; l_fp = regs.stackFramePointer; // If status isn't active anymore then we must stop if( status != asEXECUTION_ACTIVE ) return; } break; case asBC_iTOb: { // *(l_fp - offset) points to an int, and will point to a byte afterwards // We need to use volatile here to tell the compiler not to rearrange // read and write operations during optimizations. volatile asDWORD val = *(l_fp - asBC_SWORDARG0(l_bc)); volatile asBYTE *bPtr = (asBYTE*)(l_fp - asBC_SWORDARG0(l_bc)); bPtr[0] = (asBYTE)val; // write the byte bPtr[1] = 0; // 0 the rest of the DWORD bPtr[2] = 0; bPtr[3] = 0; } l_bc++; break; case asBC_iTOw: { // *(l_fp - offset) points to an int, and will point to word afterwards // We need to use volatile here to tell the compiler not to rearrange // read and write operations during optimizations. volatile asDWORD val = *(l_fp - asBC_SWORDARG0(l_bc)); volatile asWORD *wPtr = (asWORD*)(l_fp - asBC_SWORDARG0(l_bc)); wPtr[0] = (asWORD)val; // write the word wPtr[1] = 0; // 0 the rest of the DWORD } l_bc++; break; case asBC_SetV1: // TODO: This is exactly the same as SetV4. This is a left over from the time // when the bytecode instructions were more tightly packed. It can now // be removed. When removing it, make sure the value is correctly converted // on big-endian CPUs. // The byte is already stored correctly in the argument *(l_fp - asBC_SWORDARG0(l_bc)) = asBC_DWORDARG(l_bc); l_bc += 2; break; case asBC_SetV2: // TODO: This is exactly the same as SetV4. This is a left over from the time // when the bytecode instructions were more tightly packed. It can now // be removed. When removing it, make sure the value is correctly converted // on big-endian CPUs. // The word is already stored correctly in the argument *(l_fp - asBC_SWORDARG0(l_bc)) = asBC_DWORDARG(l_bc); l_bc += 2; break; case asBC_Cast: // Cast the handle at the top of the stack to the type in the argument { asDWORD **a = (asDWORD**)*(size_t*)l_sp; if( a && *a ) { asDWORD typeId = asBC_DWORDARG(l_bc); asCScriptObject *obj = (asCScriptObject *)* a; asCObjectType *objType = obj->objType; asCObjectType *to = engine->GetObjectTypeFromTypeId(typeId); // This instruction can only be used with script classes and interfaces asASSERT( objType->flags & asOBJ_SCRIPT_OBJECT ); asASSERT( to->flags & asOBJ_SCRIPT_OBJECT ); if( objType->Implements(to) || objType->DerivesFrom(to) ) { regs.objectType = 0; regs.objectRegister = obj; obj->AddRef(); } else { // The object register should already be null, so there // is no need to clear it if the cast is unsuccessful asASSERT( regs.objectRegister == 0 ); } } l_sp += AS_PTR_SIZE; } l_bc += 2; break; case asBC_i64TOi: *(l_fp - asBC_SWORDARG0(l_bc)) = int(*(asINT64*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; case asBC_uTOi64: *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)) = asINT64(*(asUINT*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; case asBC_iTOi64: *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)) = asINT64(*(int*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; case asBC_fTOi64: *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)) = asINT64(*(float*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; case asBC_dTOi64: *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)) = asINT64(*(double*)(l_fp - asBC_SWORDARG0(l_bc))); l_bc++; break; case asBC_fTOu64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = asQWORD(asINT64(*(float*)(l_fp - asBC_SWORDARG1(l_bc)))); l_bc += 2; break; case asBC_dTOu64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = asQWORD(asINT64(*(double*)(l_fp - asBC_SWORDARG0(l_bc)))); l_bc++; break; case asBC_i64TOf: *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = float(*(asINT64*)(l_fp - asBC_SWORDARG1(l_bc))); l_bc += 2; break; case asBC_u64TOf: #if _MSC_VER <= 1200 // MSVC6 { // MSVC6 doesn't permit UINT64 to double asINT64 v = *(asINT64*)(l_fp - asBC_SWORDARG1(l_bc)); if( v < 0 ) *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = 18446744073709551615.0f+float(v); else *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = float(v); } #else *(float*)(l_fp - asBC_SWORDARG0(l_bc)) = float(*(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc))); #endif l_bc += 2; break; case asBC_i64TOd: *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = double(*(asINT64*)(l_fp - asBC_SWORDARG0(l_bc))); l_bc++; break; case asBC_u64TOd: #if _MSC_VER <= 1200 // MSVC6 { // MSVC6 doesn't permit UINT64 to double asINT64 v = *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)); if( v < 0 ) *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = 18446744073709551615.0+double(v); else *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = double(v); } #else *(double*)(l_fp - asBC_SWORDARG0(l_bc)) = double(*(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc))); #endif l_bc++; break; case asBC_NEGi64: *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)) = -*(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_INCi64: ++(**(asQWORD**)®s.valueRegister); l_bc++; break; case asBC_DECi64: --(**(asQWORD**)®s.valueRegister); l_bc++; break; case asBC_BNOT64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = ~*(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_ADDi64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) + *(asQWORD*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_SUBi64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) - *(asQWORD*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_MULi64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) * *(asQWORD*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_DIVi64: { asINT64 divider = *(asINT64*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asINT64*)(l_fp - asBC_SWORDARG1(l_bc)) / divider; } l_bc += 2; break; case asBC_MODi64: { asINT64 divider = *(asINT64*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asINT64*)(l_fp - asBC_SWORDARG1(l_bc)) % divider; } l_bc += 2; break; case asBC_BAND64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) & *(asQWORD*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_BOR64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) | *(asQWORD*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_BXOR64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) ^ *(asQWORD*)(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_BSLL64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) << *(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_BSRL64: *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) >> *(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_BSRA64: *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asINT64*)(l_fp - asBC_SWORDARG1(l_bc)) >> *(l_fp - asBC_SWORDARG2(l_bc)); l_bc += 2; break; case asBC_CMPi64: { asINT64 i = *(asINT64*)(l_fp - asBC_SWORDARG0(l_bc)) - *(asINT64*)(l_fp - asBC_SWORDARG1(l_bc)); if( i == 0 ) *(int*)®s.valueRegister = 0; else if( i < 0 ) *(int*)®s.valueRegister = -1; else *(int*)®s.valueRegister = 1; l_bc += 2; } break; case asBC_CMPu64: { asQWORD d = *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)); asQWORD d2 = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)); if( d == d2 ) *(int*)®s.valueRegister = 0; else if( d < d2 ) *(int*)®s.valueRegister = -1; else *(int*)®s.valueRegister = 1; l_bc += 2; } break; case asBC_ChkNullS: { // Verify if the pointer on the stack is null // This is used for example when validating handles passed as function arguments size_t a = *(size_t*)(l_sp + asBC_WORDARG0(l_bc)); if( a == 0 ) { regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; SetInternalException(TXT_NULL_POINTER_ACCESS); return; } } l_bc++; break; case asBC_ClrHi: #if AS_SIZEOF_BOOL == 1 { // Clear the upper bytes, so that trash data don't interfere with boolean operations // We need to use volatile here to tell the compiler it cannot // change the order of read and write operations on the pointer. volatile asBYTE *ptr = (asBYTE*)®s.valueRegister; ptr[1] = 0; // The boolean value is stored in the lower byte, so we clear the rest ptr[2] = 0; ptr[3] = 0; } #else // We don't have anything to do here #endif l_bc++; break; case asBC_JitEntry: { if( currentFunction->jitFunction ) { unsigned int jitOffset = asBC_WORDARG0(l_bc); if( jitOffset ) { // Resume JIT operation regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // TODO: JIT: We should return from this function if the jitFunction tells us to (currentFunction->jitFunction)(®s, jitOffset-1); l_bc = regs.programPointer; l_sp = regs.stackPointer; l_fp = regs.stackFramePointer; break; } } // Not a JIT resume point, treat as nop l_bc++; } break; case asBC_CallPtr: { // Get the function pointer from the local variable asCScriptFunction *func = *(asCScriptFunction**)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; if( func == 0 ) { // TODO: funcdef: Should we have a different exception string? SetInternalException(TXT_UNBOUND_FUNCTION); return; } else CallScriptFunction(func); // Extract the values from the context again l_bc = regs.programPointer; l_sp = regs.stackPointer; l_fp = regs.stackFramePointer; // If status isn't active anymore then we must stop if( status != asEXECUTION_ACTIVE ) return; } break; case asBC_FuncPtr: // Push the function pointer on the stack. The pointer is in the argument l_sp -= AS_PTR_SIZE; *(asPTRWORD*)l_sp = asBC_PTRARG(l_bc); l_bc += 1+AS_PTR_SIZE; break; case asBC_LoadThisR: { // PshVPtr 0 asPTRWORD tmp = *(asPTRWORD*)l_fp; // ADDSi tmp = tmp + asBC_SWORDARG0(l_bc); // PopRPtr *(asPTRWORD*)®s.valueRegister = tmp; l_bc += 2; } break; // Push the qword value of a variable on the stack case asBC_PshV8: l_sp -= 2; *(asQWORD*)l_sp = *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)); l_bc++; break; case asBC_DIVu: { asUINT divider = *(asUINT*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(asUINT*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asUINT*)(l_fp - asBC_SWORDARG1(l_bc)) / divider; } l_bc += 2; break; case asBC_MODu: { asUINT divider = *(asUINT*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(asUINT*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asUINT*)(l_fp - asBC_SWORDARG1(l_bc)) % divider; } l_bc += 2; break; case asBC_DIVu64: { asQWORD divider = *(asQWORD*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) / divider; } l_bc += 2; break; case asBC_MODu64: { asQWORD divider = *(asQWORD*)(l_fp - asBC_SWORDARG2(l_bc)); if( divider == 0 ) { // Need to move the values back to the context regs.programPointer = l_bc; regs.stackPointer = l_sp; regs.stackFramePointer = l_fp; // Raise exception SetInternalException(TXT_DIVIDE_BY_ZERO); return; } *(asQWORD*)(l_fp - asBC_SWORDARG0(l_bc)) = *(asQWORD*)(l_fp - asBC_SWORDARG1(l_bc)) % divider; } l_bc += 2; break; case asBC_LoadRObjR: { // PshVPtr x asPTRWORD tmp = *(asPTRWORD*)(l_fp - asBC_SWORDARG0(l_bc)); // ADDSi y tmp = tmp + asBC_SWORDARG1(l_bc); // PopRPtr *(asPTRWORD*)®s.valueRegister = tmp; l_bc += 3; } break; case asBC_LoadVObjR: { // PSF x asPTRWORD tmp = (asPTRWORD)(size_t)(l_fp - asBC_SWORDARG0(l_bc)); // ADDSi y tmp = tmp + asBC_SWORDARG1(l_bc); // PopRPtr *(asPTRWORD*)®s.valueRegister = tmp; l_bc += 3; } break; // Don't let the optimizer optimize for size, // since it requires extra conditions and jumps case 186: l_bc = (asDWORD*)186; break; case 187: l_bc = (asDWORD*)187; break; case 188: l_bc = (asDWORD*)188; break; case 189: l_bc = (asDWORD*)189; break; case 190: l_bc = (asDWORD*)190; break; case 191: l_bc = (asDWORD*)191; break; case 192: l_bc = (asDWORD*)192; break; case 193: l_bc = (asDWORD*)193; break; case 194: l_bc = (asDWORD*)194; break; case 195: l_bc = (asDWORD*)195; break; case 196: l_bc = (asDWORD*)196; break; case 197: l_bc = (asDWORD*)197; break; case 198: l_bc = (asDWORD*)198; break; case 199: l_bc = (asDWORD*)199; break; case 200: l_bc = (asDWORD*)200; break; case 201: l_bc = (asDWORD*)201; break; case 202: l_bc = (asDWORD*)202; break; case 203: l_bc = (asDWORD*)203; break; case 204: l_bc = (asDWORD*)204; break; case 205: l_bc = (asDWORD*)205; break; case 206: l_bc = (asDWORD*)206; break; case 207: l_bc = (asDWORD*)207; break; case 208: l_bc = (asDWORD*)208; break; case 209: l_bc = (asDWORD*)209; break; case 210: l_bc = (asDWORD*)210; break; case 211: l_bc = (asDWORD*)211; break; case 212: l_bc = (asDWORD*)212; break; case 213: l_bc = (asDWORD*)213; break; case 214: l_bc = (asDWORD*)214; break; case 215: l_bc = (asDWORD*)215; break; case 216: l_bc = (asDWORD*)216; break; case 217: l_bc = (asDWORD*)217; break; case 218: l_bc = (asDWORD*)218; break; case 219: l_bc = (asDWORD*)219; break; case 220: l_bc = (asDWORD*)220; break; case 221: l_bc = (asDWORD*)221; break; case 222: l_bc = (asDWORD*)222; break; case 223: l_bc = (asDWORD*)223; break; case 224: l_bc = (asDWORD*)224; break; case 225: l_bc = (asDWORD*)225; break; case 226: l_bc = (asDWORD*)226; break; case 227: l_bc = (asDWORD*)227; break; case 228: l_bc = (asDWORD*)228; break; case 229: l_bc = (asDWORD*)229; break; case 230: l_bc = (asDWORD*)230; break; case 231: l_bc = (asDWORD*)231; break; case 232: l_bc = (asDWORD*)232; break; case 233: l_bc = (asDWORD*)233; break; case 234: l_bc = (asDWORD*)234; break; case 235: l_bc = (asDWORD*)235; break; case 236: l_bc = (asDWORD*)236; break; case 237: l_bc = (asDWORD*)237; break; case 238: l_bc = (asDWORD*)238; break; case 239: l_bc = (asDWORD*)239; break; case 240: l_bc = (asDWORD*)240; break; case 241: l_bc = (asDWORD*)241; break; case 242: l_bc = (asDWORD*)242; break; case 243: l_bc = (asDWORD*)243; break; case 244: l_bc = (asDWORD*)244; break; case 245: l_bc = (asDWORD*)245; break; case 246: l_bc = (asDWORD*)246; break; case 247: l_bc = (asDWORD*)247; break; case 248: l_bc = (asDWORD*)248; break; case 249: l_bc = (asDWORD*)249; break; case 250: l_bc = (asDWORD*)250; break; case 251: l_bc = (asDWORD*)251; break; case 252: l_bc = (asDWORD*)252; break; case 253: l_bc = (asDWORD*)253; break; case 254: l_bc = (asDWORD*)254; break; case 255: l_bc = (asDWORD*)255; break; #ifdef AS_DEBUG default: asASSERT(false); #endif /* default: // This Microsoft specific code allows the // compiler to optimize the switch case as // it will know that the code will never // reach this point __assume(0); */ } #ifdef AS_DEBUG asDWORD instr = *(asBYTE*)old; if( instr != asBC_JMP && instr != asBC_JMPP && (instr < asBC_JZ || instr > asBC_JNP) && instr != asBC_CALL && instr != asBC_CALLBND && instr != asBC_CALLINTF && instr != asBC_RET && instr != asBC_ALLOC && instr != asBC_CallPtr ) { asASSERT( (l_bc - old) == asBCTypeSize[asBCInfo[instr].type] ); } #endif } SetInternalException(TXT_UNRECOGNIZED_BYTE_CODE); } int asCContext::SetException(const char *descr) { // Only allow this if we're executing a CALL byte code if( !isCallingSystemFunction ) return asERROR; SetInternalException(descr); return 0; } void asCContext::SetInternalException(const char *descr) { if( inExceptionHandler ) { asASSERT(false); // Shouldn't happen return; // but if it does, at least this will not crash the application } status = asEXECUTION_EXCEPTION; regs.doProcessSuspend = true; exceptionString = descr; exceptionFunction = currentFunction->id; exceptionLine = currentFunction->GetLineNumber(int(regs.programPointer - currentFunction->byteCode.AddressOf())); exceptionColumn = exceptionLine >> 20; exceptionLine &= 0xFFFFF; if( exceptionCallback ) CallExceptionCallback(); } void asCContext::CleanReturnObject() { if( regs.objectRegister == 0 ) return; asASSERT( regs.objectType != 0 ); if( regs.objectType ) { // Call the destructor on the object asSTypeBehaviour *beh = &((asCObjectType*)regs.objectType)->beh; if( beh->release ) { engine->CallObjectMethod(regs.objectRegister, beh->release); regs.objectRegister = 0; // The release method is responsible for freeing the memory } else { if( beh->destruct ) engine->CallObjectMethod(regs.objectRegister, beh->destruct); // Free the memory engine->CallFree(regs.objectRegister); regs.objectRegister = 0; } } } void asCContext::CleanStack() { inExceptionHandler = true; // Run the clean up code for each of the functions called CleanStackFrame(); while( callStack.GetLength() > 0 ) { PopCallState(); CleanStackFrame(); } inExceptionHandler = false; } // Interface bool asCContext::IsVarInScope(asUINT varIndex, asUINT stackLevel) { asASSERT( stackLevel < GetCallstackSize() ); asCScriptFunction *func; asUINT pos; if( stackLevel == 0 ) { func = currentFunction; pos = asUINT(regs.programPointer - func->byteCode.AddressOf()); } else { size_t *s = callStack.AddressOf() + (GetCallstackSize()-stackLevel-1)*CALLSTACK_FRAME_SIZE; func = (asCScriptFunction*)s[1]; pos = asUINT((asDWORD*)s[2] - func->byteCode.AddressOf()); } // First determine if the program position is after the variable declaration if( func->variables.GetLength() <= varIndex ) return false; if( func->variables[varIndex]->declaredAtProgramPos > pos ) return false; asUINT declaredAt = func->variables[varIndex]->declaredAtProgramPos; // If the program position is after the variable declaration it is necessary // determine if the program position is still inside the statement block where // the variable was delcared. for( int n = 0; n < (int)func->objVariableInfo.GetLength(); n++ ) { if( func->objVariableInfo[n].programPos >= declaredAt ) { // If the current block ends between the declaredAt and current // program position, then we know the variable is no longer visible int level = 0; for( ; n < (int)func->objVariableInfo.GetLength(); n++ ) { if( func->objVariableInfo[n].programPos > pos ) break; if( func->objVariableInfo[n].option == asBLOCK_BEGIN ) level++; if( func->objVariableInfo[n].option == asBLOCK_END && --level < 0 ) return false; } break; } } // Variable is visible return true; } // Internal void asCContext::DetermineLiveObjects(asCArray &liveObjects, asUINT stackLevel) { asASSERT( stackLevel < GetCallstackSize() ); asCScriptFunction *func; asUINT pos; if( stackLevel == 0 ) { func = currentFunction; pos = asUINT(regs.programPointer - func->byteCode.AddressOf()); } else { size_t *s = callStack.AddressOf() + (GetCallstackSize()-stackLevel-1)*CALLSTACK_FRAME_SIZE; func = (asCScriptFunction*)s[1]; pos = asUINT((asDWORD*)s[2] - func->byteCode.AddressOf()); } // Determine which object variables that are really live ones liveObjects.SetLength(func->objVariablePos.GetLength()); memset(liveObjects.AddressOf(), 0, sizeof(int)*liveObjects.GetLength()); for( int n = 0; n < (int)func->objVariableInfo.GetLength(); n++ ) { if( func->objVariableInfo[n].programPos >= pos ) { // We've determined how far the execution ran, now determine which variables are alive for( --n; n >= 0; n-- ) { switch( func->objVariableInfo[n].option ) { case asOBJ_UNINIT: // Object was destroyed { // TODO: optimize: This should have been done by the compiler already // Which variable is this? asUINT var = 0; for( asUINT v = 0; v < func->objVariablePos.GetLength(); v++ ) if( func->objVariablePos[v] == func->objVariableInfo[n].variableOffset ) { var = v; break; } liveObjects[var] -= 1; } break; case asOBJ_INIT: // Object was created { // Which variable is this? asUINT var = 0; for( asUINT v = 0; v < func->objVariablePos.GetLength(); v++ ) if( func->objVariablePos[v] == func->objVariableInfo[n].variableOffset ) { var = v; break; } liveObjects[var] += 1; } break; case asBLOCK_BEGIN: // Start block // We should ignore start blocks, since it just means the // program was within the block when the exception ocurred break; case asBLOCK_END: // End block // We need to skip the entire block, as the objects created // and destroyed inside this block are already out of scope { int nested = 1; while( nested > 0 ) { int option = func->objVariableInfo[--n].option; if( option == 3 ) nested++; if( option == 2 ) nested--; } } break; } } // We're done with the investigation break; } } } void asCContext::CleanStackFrame() { // Clean object variables if( !isStackMemoryNotAllocated ) { // Determine which object variables that are really live ones asCArray liveObjects; DetermineLiveObjects(liveObjects, 0); for( asUINT n = 0; n < currentFunction->objVariablePos.GetLength(); n++ ) { int pos = currentFunction->objVariablePos[n]; if( currentFunction->objVariableIsOnHeap[n] ) { // Check if the pointer is initialized if( *(size_t*)®s.stackFramePointer[-pos] ) { // Call the object's destructor asSTypeBehaviour *beh = ¤tFunction->objVariableTypes[n]->beh; if( beh->release ) { engine->CallObjectMethod((void*)*(size_t*)®s.stackFramePointer[-pos], beh->release); *(size_t*)®s.stackFramePointer[-pos] = 0; } else { if( beh->destruct ) engine->CallObjectMethod((void*)*(size_t*)®s.stackFramePointer[-pos], beh->destruct); // Free the memory engine->CallFree((void*)*(size_t*)®s.stackFramePointer[-pos]); *(size_t*)®s.stackFramePointer[-pos] = 0; } } } else { asASSERT( currentFunction->objVariableTypes[n]->GetFlags() & asOBJ_VALUE ); // Only destroy the object if it is truly alive if( liveObjects[n] > 0 ) { asSTypeBehaviour *beh = ¤tFunction->objVariableTypes[n]->beh; if( beh->destruct ) engine->CallObjectMethod((void*)(size_t*)®s.stackFramePointer[-pos], beh->destruct); } } } // If the object is a script declared object, then we must release it // as the compiler adds a reference at the entry of the function. Make sure // the function has actually been entered if( currentFunction->objectType && regs.programPointer != currentFunction->byteCode.AddressOf() ) { asSTypeBehaviour *beh = ¤tFunction->objectType->beh; if( beh->release && *(size_t*)®s.stackFramePointer[0] != 0 ) { engine->CallObjectMethod((void*)*(size_t*)®s.stackFramePointer[0], beh->release); *(size_t*)®s.stackFramePointer[0] = 0; } } } else isStackMemoryNotAllocated = false; // Functions that do not own the object and parameters shouldn't do any clean up if( currentFunction->dontCleanUpOnException ) return; // Clean object and parameters int offset = 0; if( currentFunction->objectType ) { offset += AS_PTR_SIZE; } for( asUINT n = 0; n < currentFunction->parameterTypes.GetLength(); n++ ) { if( currentFunction->parameterTypes[n].IsObject() && !currentFunction->parameterTypes[n].IsReference() ) { if( *(size_t*)®s.stackFramePointer[offset] ) { // Call the object's destructor asSTypeBehaviour *beh = currentFunction->parameterTypes[n].GetBehaviour(); if( beh->release ) { engine->CallObjectMethod((void*)*(size_t*)®s.stackFramePointer[offset], beh->release); *(size_t*)®s.stackFramePointer[offset] = 0; } else { if( beh->destruct ) engine->CallObjectMethod((void*)*(size_t*)®s.stackFramePointer[offset], beh->destruct); // Free the memory engine->CallFree((void*)*(size_t*)®s.stackFramePointer[offset]); *(size_t*)®s.stackFramePointer[offset] = 0; } } } offset += currentFunction->parameterTypes[n].GetSizeOnStackDWords(); } } // interface int asCContext::GetExceptionLineNumber(int *column, const char **sectionName) { if( GetState() != asEXECUTION_EXCEPTION ) return asERROR; if( column ) *column = exceptionColumn; if( sectionName ) *sectionName = engine->scriptFunctions[exceptionFunction]->GetScriptSectionName(); return exceptionLine; } // interface int asCContext::GetExceptionFunction() { if( GetState() != asEXECUTION_EXCEPTION ) return asERROR; return exceptionFunction; } // interface const char *asCContext::GetExceptionString() { if( GetState() != asEXECUTION_EXCEPTION ) return 0; return exceptionString.AddressOf(); } // interface asEContextState asCContext::GetState() const { return status; } // interface int asCContext::SetLineCallback(asSFuncPtr callback, void *obj, int callConv) { lineCallback = true; regs.doProcessSuspend = true; lineCallbackObj = obj; bool isObj = false; if( (unsigned)callConv == asCALL_GENERIC ) { lineCallback = false; regs.doProcessSuspend = doSuspend; return asNOT_SUPPORTED; } if( (unsigned)callConv >= asCALL_THISCALL ) { isObj = true; if( obj == 0 ) { lineCallback = false; regs.doProcessSuspend = doSuspend; return asINVALID_ARG; } } int r = DetectCallingConvention(isObj, callback, callConv, &lineCallbackFunc); if( r < 0 ) lineCallback = false; regs.doProcessSuspend = doSuspend || lineCallback; return r; } void asCContext::CallLineCallback() { if( lineCallbackFunc.callConv < ICC_THISCALL ) engine->CallGlobalFunction(this, lineCallbackObj, &lineCallbackFunc, 0); else engine->CallObjectMethod(lineCallbackObj, this, &lineCallbackFunc, 0); } // interface int asCContext::SetExceptionCallback(asSFuncPtr callback, void *obj, int callConv) { exceptionCallback = true; exceptionCallbackObj = obj; bool isObj = false; if( (unsigned)callConv == asCALL_GENERIC ) return asNOT_SUPPORTED; if( (unsigned)callConv >= asCALL_THISCALL ) { isObj = true; if( obj == 0 ) { exceptionCallback = false; return asINVALID_ARG; } } int r = DetectCallingConvention(isObj, callback, callConv, &exceptionCallbackFunc); if( r < 0 ) exceptionCallback = false; return r; } void asCContext::CallExceptionCallback() { if( exceptionCallbackFunc.callConv < ICC_THISCALL ) engine->CallGlobalFunction(this, exceptionCallbackObj, &exceptionCallbackFunc, 0); else engine->CallObjectMethod(exceptionCallbackObj, this, &exceptionCallbackFunc, 0); } // interface void asCContext::ClearLineCallback() { lineCallback = false; regs.doProcessSuspend = doSuspend; } // interface void asCContext::ClearExceptionCallback() { exceptionCallback = false; } int asCContext::CallGeneric(int id, void *objectPointer) { asCScriptFunction *sysFunction = engine->scriptFunctions[id]; asSSystemFunctionInterface *sysFunc = sysFunction->sysFuncIntf; void (*func)(asIScriptGeneric*) = (void (*)(asIScriptGeneric*))sysFunc->func; int popSize = sysFunc->paramSize; asDWORD *args = regs.stackPointer; // Verify the object pointer if it is a class method void *currentObject = 0; if( sysFunc->callConv == ICC_GENERIC_METHOD ) { if( objectPointer ) { currentObject = objectPointer; // Don't increase the reference of this pointer // since it will not have been constructed yet } else { // The object pointer should be popped from the context stack popSize += AS_PTR_SIZE; // Check for null pointer currentObject = (void*)*(size_t*)(args); if( currentObject == 0 ) { SetInternalException(TXT_NULL_POINTER_ACCESS); return 0; } // Add the base offset for multiple inheritance currentObject = (void*)(size_t(currentObject) + sysFunc->baseOffset); // Skip object pointer args += AS_PTR_SIZE; } } asCGeneric gen(engine, sysFunction, currentObject, args); isCallingSystemFunction = true; func(&gen); isCallingSystemFunction = false; regs.valueRegister = gen.returnVal; regs.objectRegister = gen.objectRegister; regs.objectType = sysFunction->returnType.GetObjectType(); // Clean up function parameters int offset = 0; for( asUINT n = 0; n < sysFunction->parameterTypes.GetLength(); n++ ) { if( sysFunction->parameterTypes[n].IsObject() && !sysFunction->parameterTypes[n].IsReference() ) { void *obj = *(void**)&args[offset]; if( obj ) { // Release the object asSTypeBehaviour *beh = &sysFunction->parameterTypes[n].GetObjectType()->beh; if( beh->release ) engine->CallObjectMethod(obj, beh->release); else { // Call the destructor then free the memory if( beh->destruct ) engine->CallObjectMethod(obj, beh->destruct); engine->CallFree(obj); } } } offset += sysFunction->parameterTypes[n].GetSizeOnStackDWords(); } // Return how much should be popped from the stack return popSize; } // interface int asCContext::GetVarCount(asUINT stackLevel) { asIScriptFunction *func = GetFunction(stackLevel); if( func == 0 ) return asINVALID_ARG; return func->GetVarCount(); } // interface const char *asCContext::GetVarName(asUINT varIndex, asUINT stackLevel) { asIScriptFunction *func = GetFunction(stackLevel); if( func == 0 ) return 0; const char *name = 0; int r = func->GetVar(varIndex, &name); return r >= 0 ? name : 0; } // interface const char *asCContext::GetVarDeclaration(asUINT varIndex, asUINT stackLevel) { asIScriptFunction *func = GetFunction(stackLevel); if( func == 0 ) return 0; return func->GetVarDecl(varIndex); } // interface int asCContext::GetVarTypeId(asUINT varIndex, asUINT stackLevel) { asIScriptFunction *func = GetFunction(stackLevel); if( func == 0 ) return asINVALID_ARG; int typeId; int r = func->GetVar(varIndex, 0, &typeId); return r < 0 ? r : typeId; } // interface void *asCContext::GetAddressOfVar(asUINT varIndex, asUINT stackLevel) { if( stackLevel >= GetCallstackSize() ) return 0; asCScriptFunction *func; asDWORD *sf; if( stackLevel == 0 ) { func = currentFunction; sf = regs.stackFramePointer; } else { size_t *s = callStack.AddressOf() + (GetCallstackSize()-stackLevel-1)*CALLSTACK_FRAME_SIZE; func = (asCScriptFunction*)s[1]; sf = (asDWORD*)s[0]; } if( func == 0 ) return 0; if( varIndex >= func->variables.GetLength() ) return 0; // For object variables it's necessary to dereference the pointer to get the address of the value if( func->variables[varIndex]->type.IsObject() && !func->variables[varIndex]->type.IsObjectHandle() ) { // Determine if the object is really on the heap bool onHeap = true; if( func->variables[varIndex]->type.GetObjectType()->GetFlags() & asOBJ_VALUE ) { int pos = func->variables[varIndex]->stackOffset; for( asUINT n = 0; n < func->objVariablePos.GetLength(); n++ ) { if( func->objVariablePos[n] == pos ) { onHeap = func->objVariableIsOnHeap[n]; if( !onHeap ) { // If the object on the stack is not initialized return a null pointer instead asCArray liveObjects; DetermineLiveObjects(liveObjects, stackLevel); if( liveObjects[n] <= 0 ) return 0; } break; } } } if( onHeap ) return *(void**)(sf - func->variables[varIndex]->stackOffset); } return sf - func->variables[varIndex]->stackOffset; } // interface // returns the typeId of the 'this' object at the given call stack level (-1 for current) // returns 0 if the function call at the given stack level is not a method int asCContext::GetThisTypeId(asUINT stackLevel) { asIScriptFunction *func = GetFunction(stackLevel); if( func == 0 ) return asINVALID_ARG; if( func->GetObjectType() == 0 ) return 0; // not in a method // create a datatype asCDataType dt = asCDataType::CreateObject((asCObjectType*)func->GetObjectType(), false); // return a typeId from the data type return engine->GetTypeIdFromDataType(dt); } // interface // returns the 'this' object pointer at the given call stack level (-1 for current) // returns 0 if the function call at the given stack level is not a method void *asCContext::GetThisPointer(asUINT stackLevel) { if( stackLevel >= GetCallstackSize() ) return 0; asCScriptFunction *func; asDWORD *sf; if( stackLevel == 0 ) { func = currentFunction; sf = regs.stackFramePointer; } else { size_t *s = callStack.AddressOf() + (GetCallstackSize()-stackLevel-1)*CALLSTACK_FRAME_SIZE; func = (asCScriptFunction*)s[1]; sf = (asDWORD*)s[0]; } if( func == 0 ) return 0; if( func->objectType == 0 ) return 0; // not in a method void *thisPointer = (void*)*(size_t*)(sf); if( thisPointer == 0 ) { return 0; } // NOTE: this returns the pointer to the 'this' while the GetVarPointer functions return // a pointer to a pointer. I can't imagine someone would want to change the 'this' return thisPointer; } END_AS_NAMESPACE