// // Copyright (c) 2008-2013 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include "Precompiled.h" #include "Camera.h" #include "DebugRenderer.h" #include "Geometry.h" #include "Graphics.h" #include "GraphicsImpl.h" #include "Log.h" #include "Material.h" #include "OcclusionBuffer.h" #include "Octree.h" #include "Renderer.h" #include "RenderPath.h" #include "ResourceCache.h" #include "Profiler.h" #include "Scene.h" #include "ShaderVariation.h" #include "Skybox.h" #include "Technique.h" #include "Texture2D.h" #include "TextureCube.h" #include "VertexBuffer.h" #include "View.h" #include "WorkQueue.h" #include "DebugNew.h" namespace Urho3D { static const Vector3* directions[] = { &Vector3::RIGHT, &Vector3::LEFT, &Vector3::UP, &Vector3::DOWN, &Vector3::FORWARD, &Vector3::BACK }; static const float LIGHT_INTENSITY_THRESHOLD = 0.003f; /// %Frustum octree query for shadowcasters. class ShadowCasterOctreeQuery : public FrustumOctreeQuery { public: /// Construct with frustum and query parameters. ShadowCasterOctreeQuery(PODVector& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) : FrustumOctreeQuery(result, frustum, drawableFlags, viewMask) { } /// Intersection test for drawables. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside) { while (start != end) { Drawable* drawable = *start++; if (drawable->GetCastShadows() && (drawable->GetDrawableFlags() & drawableFlags_) && (drawable->GetViewMask() & viewMask_)) { if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox())) result_.Push(drawable); } } } }; /// %Frustum octree query for zones and occluders. class ZoneOccluderOctreeQuery : public FrustumOctreeQuery { public: /// Construct with frustum and query parameters. ZoneOccluderOctreeQuery(PODVector& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) : FrustumOctreeQuery(result, frustum, drawableFlags, viewMask) { } /// Intersection test for drawables. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside) { while (start != end) { Drawable* drawable = *start++; unsigned char flags = drawable->GetDrawableFlags(); if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && (drawable->GetViewMask() & viewMask_)) { if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox())) result_.Push(drawable); } } } }; /// %Frustum octree query with occlusion. class OccludedFrustumOctreeQuery : public FrustumOctreeQuery { public: /// Construct with frustum, occlusion buffer and query parameters. OccludedFrustumOctreeQuery(PODVector& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) : FrustumOctreeQuery(result, frustum, drawableFlags, viewMask), buffer_(buffer) { } /// Intersection test for an octant. virtual Intersection TestOctant(const BoundingBox& box, bool inside) { if (inside) return buffer_->IsVisible(box) ? INSIDE : OUTSIDE; else { Intersection result = frustum_.IsInside(box); if (result != OUTSIDE && !buffer_->IsVisible(box)) result = OUTSIDE; return result; } } /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside) { while (start != end) { Drawable* drawable = *start++; if ((drawable->GetDrawableFlags() & drawableFlags_) && (drawable->GetViewMask() & viewMask_)) { if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox())) result_.Push(drawable); } } } /// Occlusion buffer. OcclusionBuffer* buffer_; }; void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex) { View* view = reinterpret_cast(item->aux_); Drawable** start = reinterpret_cast(item->start_); Drawable** end = reinterpret_cast(item->end_); OcclusionBuffer* buffer = view->occlusionBuffer_; const Matrix3x4& viewMatrix = view->camera_->GetView(); Vector3 viewZ = Vector3(viewMatrix.m20_, viewMatrix.m21_, viewMatrix.m22_); Vector3 absViewZ = viewZ.Abs(); unsigned cameraViewMask = view->camera_->GetViewMask(); bool cameraZoneOverride = view->cameraZoneOverride_; PerThreadSceneResult& result = view->sceneResults_[threadIndex]; while (start != end) { Drawable* drawable = *start++; // If draw distance non-zero, check it float maxDistance = drawable->GetDrawDistance(); if ((maxDistance <= 0.0f || drawable->GetDistance() <= maxDistance) && (!buffer || !drawable->IsOccludee() || buffer->IsVisible(drawable->GetWorldBoundingBox()))) { drawable->UpdateBatches(view->frame_); drawable->MarkInView(view->frame_); // For geometries, find zone, clear lights and calculate view space Z range if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY) { Zone* drawableZone = drawable->GetZone(); if ((!drawableZone || (drawableZone->GetViewMask() & cameraViewMask) == 0) && !cameraZoneOverride) view->FindZone(drawable); const BoundingBox& geomBox = drawable->GetWorldBoundingBox(); Vector3 center = geomBox.Center(); float viewCenterZ = viewZ.DotProduct(center) + viewMatrix.m23_; Vector3 edge = geomBox.Size() * 0.5f; float viewEdgeZ = absViewZ.DotProduct(edge); float minZ = viewCenterZ - viewEdgeZ; float maxZ = viewCenterZ + viewEdgeZ; drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ); drawable->ClearLights(); // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble if (drawable->GetType() != Skybox::GetTypeStatic()) { result.minZ_ = Min(result.minZ_, minZ); result.maxZ_ = Max(result.maxZ_, maxZ); } result.geometries_.Push(drawable); } else if (drawable->GetDrawableFlags() & DRAWABLE_LIGHT) { Light* light = static_cast(drawable); // Skip lights which are so dim that they can not contribute to a rendertarget if (light->GetColor().SumRGB() > LIGHT_INTENSITY_THRESHOLD) result.lights_.Push(light); } } } } void ProcessLightWork(const WorkItem* item, unsigned threadIndex) { View* view = reinterpret_cast(item->aux_); LightQueryResult* query = reinterpret_cast(item->start_); view->ProcessLight(*query, threadIndex); } void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex) { const FrameInfo& frame = *(reinterpret_cast(item->aux_)); Drawable** start = reinterpret_cast(item->start_); Drawable** end = reinterpret_cast(item->end_); while (start != end) { Drawable* drawable = *start++; drawable->UpdateGeometry(frame); } } void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex) { BatchQueue* queue = reinterpret_cast(item->start_); queue->SortFrontToBack(); } void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex) { BatchQueue* queue = reinterpret_cast(item->start_); queue->SortBackToFront(); } void SortLightQueueWork(const WorkItem* item, unsigned threadIndex) { LightBatchQueue* start = reinterpret_cast(item->start_); start->litBatches_.SortFrontToBack(); } void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex) { LightBatchQueue* start = reinterpret_cast(item->start_); for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i) start->shadowSplits_[i].shadowBatches_.SortFrontToBack(); } View::View(Context* context) : Object(context), graphics_(GetSubsystem()), renderer_(GetSubsystem()), scene_(0), octree_(0), camera_(0), cameraZone_(0), farClipZone_(0), renderTarget_(0) { // Create octree query and scene results vector for each thread unsigned numThreads = GetSubsystem()->GetNumThreads() + 1; // Worker threads + main thread tempDrawables_.Resize(numThreads); sceneResults_.Resize(numThreads); frame_.camera_ = 0; } View::~View() { } bool View::Define(RenderSurface* renderTarget, Viewport* viewport) { Scene* scene = viewport->GetScene(); Camera* camera = viewport->GetCamera(); if (!scene || !camera || !camera->IsEnabledEffective()) return false; // If scene is loading asynchronously, it is incomplete and should not be rendered if (scene->IsAsyncLoading()) return false; Octree* octree = scene->GetComponent(); if (!octree) return false; // Do not accept view if camera projection is illegal // (there is a possibility of crash if occlusion is used and it can not clip properly) if (!camera->IsProjectionValid()) return false; scene_ = scene; octree_ = octree; camera_ = camera; cameraNode_ = camera->GetNode(); renderTarget_ = renderTarget; renderPath_ = viewport->GetRenderPath(); gBufferPassName_ = StringHash(); basePassName_ = PASS_BASE; alphaPassName_ = PASS_ALPHA; lightPassName_ = PASS_LIGHT; litBasePassName_ = PASS_LITBASE; litAlphaPassName_ = PASS_LITALPHA; // Make sure that all necessary batch queues exist scenePasses_.Clear(); for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i) { const RenderPathCommand& command = renderPath_->commands_[i]; if (!command.enabled_) continue; if (command.type_ == CMD_SCENEPASS) { ScenePassInfo info; info.pass_ = command.pass_; info.allowInstancing_ = command.sortMode_ != SORT_BACKTOFRONT; info.markToStencil_ = command.markToStencil_; info.useScissor_ = command.useScissor_; info.vertexLights_ = command.vertexLights_; // Check scenepass metadata for defining custom passes which interact with lighting String metadata = command.metadata_.Trimmed().ToLower(); if (!metadata.Empty()) { if (metadata == "gbuffer") gBufferPassName_ = command.pass_; else if (metadata == "base") { basePassName_ = command.pass_; litBasePassName_ = "lit" + command.pass_; } else if (metadata == "alpha") { alphaPassName_ = command.pass_; litAlphaPassName_ = "lit" + command.pass_; } } HashMap::Iterator j = batchQueues_.Find(command.pass_); if (j == batchQueues_.End()) j = batchQueues_.Insert(Pair(command.pass_, BatchQueue())); info.batchQueue_ = &j->second_; scenePasses_.Push(info); } else if (command.type_ == CMD_FORWARDLIGHTS) { if (!command.pass_.Trimmed().Empty()) lightPassName_ = command.pass_; } } // Get light volume shaders according to the renderpath, if it needs them deferred_ = false; deferredAmbient_ = false; for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i) { const RenderPathCommand& command = renderPath_->commands_[i]; if (!command.enabled_) continue; // Check if ambient pass and G-buffer rendering happens at the same time if (command.type_ == CMD_SCENEPASS && command.outputNames_.Size() > 1) { for (unsigned j = 0; j < command.outputNames_.Size(); ++j) { if (!command.outputNames_[j].Compare("viewport", false)) { deferredAmbient_ = true; break; } } } if (command.type_ == CMD_LIGHTVOLUMES) { renderer_->GetLightVolumeShaders(lightVS_, lightPS_, command.vertexShaderName_, command.pixelShaderName_); deferred_ = true; } } if (!deferred_) { lightVS_.Clear(); lightPS_.Clear(); } // Validate the rect and calculate size. If zero rect, use whole rendertarget size int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth(); int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight(); const IntRect& rect = viewport->GetRect(); if (rect != IntRect::ZERO) { viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1); viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1); viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth); viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight); } else viewRect_ = IntRect(0, 0, rtWidth, rtHeight); viewSize_ = viewRect_.Size(); rtSize_ = IntVector2(rtWidth, rtHeight); // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9 #ifdef USE_OPENGL if (renderTarget_) { viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_; viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_; } #endif drawShadows_ = renderer_->GetDrawShadows(); materialQuality_ = renderer_->GetMaterialQuality(); maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles(); minInstances_ = renderer_->GetMinInstances(); // Set possible quality overrides from the camera unsigned viewOverrideFlags = camera_->GetViewOverrideFlags(); if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY) materialQuality_ = QUALITY_LOW; if (viewOverrideFlags & VO_DISABLE_SHADOWS) drawShadows_ = false; if (viewOverrideFlags & VO_DISABLE_OCCLUSION) maxOccluderTriangles_ = 0; // Occlusion buffer has constant width. If resulting height would be too large due to aspect ratio, disable occlusion if (viewSize_.y_ > viewSize_.x_ * 4) maxOccluderTriangles_ = 0; return true; } void View::Update(const FrameInfo& frame) { if (!camera_ || !octree_) return; frame_.camera_ = camera_; frame_.timeStep_ = frame.timeStep_; frame_.frameNumber_ = frame.frameNumber_; frame_.viewSize_ = viewSize_; int maxSortedInstances = renderer_->GetMaxSortedInstances(); // Clear screen buffers, geometry, light, occluder & batch lists screenBuffers_.Clear(); renderTargets_.Clear(); geometries_.Clear(); shadowGeometries_.Clear(); lights_.Clear(); zones_.Clear(); occluders_.Clear(); vertexLightQueues_.Clear(); for (HashMap::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i) i->second_.Clear(maxSortedInstances); // Set automatic aspect ratio if required if (camera_->GetAutoAspectRatio()) camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_); GetDrawables(); GetBatches(); } void View::Render() { if (!octree_ || !camera_) return; // Actually update geometry data now UpdateGeometries(); // Allocate screen buffers as necessary AllocateScreenBuffers(); // Initialize screenbuffer indices to use for read and write (pingponging) writeBuffer_ = 0; readBuffer_ = 0; // Forget parameter sources from the previous view graphics_->ClearParameterSources(); // If stream offset is supported, write all instance transforms to a single large buffer // Else we must lock the instance buffer for each batch group if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport()) PrepareInstancingBuffer(); // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio // again to ensure correct projection will be used if (camera_->GetAutoAspectRatio()) camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_)); // Bind the face selection and indirection cube maps for point light shadows if (renderer_->GetDrawShadows()) { graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap()); graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap()); } // Set "view texture" to prevent destination texture sampling during all renderpasses if (renderTarget_) { graphics_->SetViewTexture(renderTarget_->GetParentTexture()); // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way // as a render texture produced on Direct3D9 #ifdef USE_OPENGL camera_->SetFlipVertical(true); #endif } // Render ExecuteRenderPathCommands(); #ifdef USE_OPENGL camera_->SetFlipVertical(false); #endif graphics_->SetDepthBias(0.0f, 0.0f); graphics_->SetScissorTest(false); graphics_->SetStencilTest(false); graphics_->SetViewTexture(0); graphics_->ResetStreamFrequencies(); // Run framebuffer blitting if necessary if (screenBuffers_.Size() && currentRenderTarget_ != renderTarget_) BlitFramebuffer(static_cast(currentRenderTarget_->GetParentTexture()), renderTarget_, true); // If this is a main view, draw the associated debug geometry now if (!renderTarget_) { DebugRenderer* debug = octree_->GetComponent(); if (debug) { debug->SetView(camera_); debug->Render(); } } // "Forget" the scene, camera, octree and zone after rendering scene_ = 0; camera_ = 0; octree_ = 0; cameraZone_ = 0; farClipZone_ = 0; occlusionBuffer_ = 0; frame_.camera_ = 0; } Graphics* View::GetGraphics() const { return graphics_; } Renderer* View::GetRenderer() const { return renderer_; } void View::GetDrawables() { PROFILE(GetDrawables); WorkQueue* queue = GetSubsystem(); PODVector& tempDrawables = tempDrawables_[0]; // Get zones and occluders first { ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE, camera_->GetViewMask()); octree_->GetDrawables(query); } highestZonePriority_ = M_MIN_INT; int bestPriority = M_MIN_INT; Vector3 cameraPos = cameraNode_->GetWorldPosition(); // Get default zone first in case we do not have zones defined Zone* defaultZone = renderer_->GetDefaultZone(); cameraZone_ = farClipZone_ = defaultZone; for (PODVector::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i) { Drawable* drawable = *i; unsigned char flags = drawable->GetDrawableFlags(); if (flags & DRAWABLE_ZONE) { Zone* zone = static_cast(drawable); zones_.Push(zone); int priority = zone->GetPriority(); if (priority > highestZonePriority_) highestZonePriority_ = priority; if (priority > bestPriority && zone->IsInside(cameraPos)) { cameraZone_ = zone; bestPriority = priority; } } else occluders_.Push(drawable); } // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone cameraZoneOverride_ = cameraZone_->GetOverride(); if (!cameraZoneOverride_) { Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip()); bestPriority = M_MIN_INT; for (PODVector::Iterator i = zones_.Begin(); i != zones_.End(); ++i) { int priority = (*i)->GetPriority(); if (priority > bestPriority && (*i)->IsInside(farClipPos)) { farClipZone_ = *i; bestPriority = priority; } } } if (farClipZone_ == defaultZone) farClipZone_ = cameraZone_; // If occlusion in use, get & render the occluders occlusionBuffer_ = 0; if (maxOccluderTriangles_ > 0) { UpdateOccluders(occluders_, camera_); if (occluders_.Size()) { PROFILE(DrawOcclusion); occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_); DrawOccluders(occlusionBuffer_, occluders_); } } // Get lights and geometries. Coarse occlusion for octants is used at this point if (occlusionBuffer_) { OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT, camera_->GetViewMask()); octree_->GetDrawables(query); } else { FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT, camera_->GetViewMask()); octree_->GetDrawables(query); } // Check drawable occlusion, find zones for moved drawables and collect geometries & lights in worker threads { for (unsigned i = 0; i < sceneResults_.Size(); ++i) { PerThreadSceneResult& result = sceneResults_[i]; result.geometries_.Clear(); result.lights_.Clear(); result.minZ_ = M_INFINITY; result.maxZ_ = 0.0f; } int numWorkItems = queue->GetNumThreads() + 1; // Worker threads + main thread int drawablesPerItem = tempDrawables.Size() / numWorkItems; WorkItem item; item.workFunction_ = CheckVisibilityWork; item.aux_ = this; PODVector::Iterator start = tempDrawables.Begin(); // Create a work item for each thread for (int i = 0; i < numWorkItems; ++i) { PODVector::Iterator end = tempDrawables.End(); if (i < numWorkItems - 1 && end - start > drawablesPerItem) end = start + drawablesPerItem; item.start_ = &(*start); item.end_ = &(*end); queue->AddWorkItem(item); start = end; } queue->Complete(M_MAX_UNSIGNED); } // Combine lights, geometries & scene Z range from the threads geometries_.Clear(); lights_.Clear(); minZ_ = M_INFINITY; maxZ_ = 0.0f; if (sceneResults_.Size() > 1) { for (unsigned i = 0; i < sceneResults_.Size(); ++i) { PerThreadSceneResult& result = sceneResults_[i]; geometries_.Push(result.geometries_); lights_.Push(result.lights_); minZ_ = Min(minZ_, result.minZ_); maxZ_ = Max(maxZ_, result.maxZ_); } } else { // If just 1 thread, copy the results directly PerThreadSceneResult& result = sceneResults_[0]; minZ_ = result.minZ_; maxZ_ = result.maxZ_; Swap(geometries_, result.geometries_); Swap(lights_, result.lights_); } if (minZ_ == M_INFINITY) minZ_ = 0.0f; // Sort the lights to brightest/closest first for (unsigned i = 0; i < lights_.Size(); ++i) { Light* light = lights_[i]; light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition())); light->SetLightQueue(0); } Sort(lights_.Begin(), lights_.End(), CompareDrawables); } void View::GetBatches() { WorkQueue* queue = GetSubsystem(); PODVector vertexLights; BatchQueue* alphaQueue = batchQueues_.Contains(alphaPassName_) ? &batchQueues_[alphaPassName_] : (BatchQueue*)0; // Check whether to use the lit base pass optimization bool useLitBase = true; for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i) { const RenderPathCommand& command = renderPath_->commands_[i]; if (command.type_ == CMD_FORWARDLIGHTS) useLitBase = command.useLitBase_; } // Process lit geometries and shadow casters for each light { PROFILE(ProcessLights); lightQueryResults_.Resize(lights_.Size()); WorkItem item; item.workFunction_ = ProcessLightWork; item.aux_ = this; for (unsigned i = 0; i < lightQueryResults_.Size(); ++i) { LightQueryResult& query = lightQueryResults_[i]; query.light_ = lights_[i]; item.start_ = &query; queue->AddWorkItem(item); } // Ensure all lights have been processed before proceeding queue->Complete(M_MAX_UNSIGNED); } // Build light queues and lit batches { PROFILE(GetLightBatches); // Preallocate light queues: per-pixel lights which have lit geometries unsigned numLightQueues = 0; unsigned usedLightQueues = 0; for (Vector::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i) { if (!i->light_->GetPerVertex() && i->litGeometries_.Size()) ++numLightQueues; } lightQueues_.Resize(numLightQueues); maxLightsDrawables_.Clear(); unsigned maxSortedInstances = renderer_->GetMaxSortedInstances(); for (Vector::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i) { LightQueryResult& query = *i; // If light has no affected geometries, no need to process further if (query.litGeometries_.Empty()) continue; Light* light = query.light_; // Per-pixel light if (!light->GetPerVertex()) { unsigned shadowSplits = query.numSplits_; // Initialize light queue and store it to the light so that it can be found later LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++]; light->SetLightQueue(&lightQueue); lightQueue.light_ = light; lightQueue.shadowMap_ = 0; lightQueue.litBatches_.Clear(maxSortedInstances); lightQueue.volumeBatches_.Clear(); // Allocate shadow map now if (shadowSplits > 0) { lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_); // If did not manage to get a shadow map, convert the light to unshadowed if (!lightQueue.shadowMap_) shadowSplits = 0; } // Setup shadow batch queues lightQueue.shadowSplits_.Resize(shadowSplits); for (unsigned j = 0; j < shadowSplits; ++j) { ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j]; Camera* shadowCamera = query.shadowCameras_[j]; shadowQueue.shadowCamera_ = shadowCamera; shadowQueue.nearSplit_ = query.shadowNearSplits_[j]; shadowQueue.farSplit_ = query.shadowFarSplits_[j]; shadowQueue.shadowBatches_.Clear(maxSortedInstances); // Setup the shadow split viewport and finalize shadow camera parameters shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_); FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]); // Loop through shadow casters for (PODVector::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j]; k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k) { Drawable* drawable = *k; if (!drawable->IsInView(frame_, false)) { drawable->MarkInView(frame_, false); shadowGeometries_.Push(drawable); } Zone* zone = GetZone(drawable); const Vector& batches = drawable->GetBatches(); for (unsigned l = 0; l < batches.Size(); ++l) { const SourceBatch& srcBatch = batches[l]; Technique* tech = GetTechnique(drawable, srcBatch.material_); if (!srcBatch.geometry_ || !tech) continue; Pass* pass = tech->GetPass(PASS_SHADOW); // Skip if material has no shadow pass if (!pass) continue; Batch destBatch(srcBatch); destBatch.pass_ = pass; destBatch.camera_ = shadowCamera; destBatch.zone_ = zone; destBatch.lightQueue_ = &lightQueue; AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech); } } } // Process lit geometries for (PODVector::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j) { Drawable* drawable = *j; drawable->AddLight(light); // If drawable limits maximum lights, only record the light, and check maximum count / build batches later if (!drawable->GetMaxLights()) GetLitBatches(drawable, lightQueue, alphaQueue, useLitBase); else maxLightsDrawables_.Insert(drawable); } // In deferred modes, store the light volume batch now if (deferred_) { Batch volumeBatch; volumeBatch.geometry_ = renderer_->GetLightGeometry(light); volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_); volumeBatch.numWorldTransforms_ = 1; volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL; volumeBatch.camera_ = camera_; volumeBatch.lightQueue_ = &lightQueue; volumeBatch.distance_ = light->GetDistance(); volumeBatch.material_ = 0; volumeBatch.pass_ = 0; volumeBatch.zone_ = 0; renderer_->SetLightVolumeBatchShaders(volumeBatch, lightVS_, lightPS_); lightQueue.volumeBatches_.Push(volumeBatch); } } // Per-vertex light else { // Add the vertex light to lit drawables. It will be processed later during base pass batch generation for (PODVector::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j) { Drawable* drawable = *j; drawable->AddVertexLight(light); } } } } // Process drawables with limited per-pixel light count if (maxLightsDrawables_.Size()) { PROFILE(GetMaxLightsBatches); for (HashSet::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i) { Drawable* drawable = *i; drawable->LimitLights(); const PODVector& lights = drawable->GetLights(); for (unsigned i = 0; i < lights.Size(); ++i) { Light* light = lights[i]; // Find the correct light queue again LightBatchQueue* queue = light->GetLightQueue(); if (queue) GetLitBatches(drawable, *queue, alphaQueue, useLitBase); } } } // Build base pass batches { PROFILE(GetBaseBatches); for (PODVector::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i) { Drawable* drawable = *i; Zone* zone = GetZone(drawable); const Vector& batches = drawable->GetBatches(); const PODVector& drawableVertexLights = drawable->GetVertexLights(); if (!drawableVertexLights.Empty()) drawable->LimitVertexLights(); for (unsigned j = 0; j < batches.Size(); ++j) { const SourceBatch& srcBatch = batches[j]; // Check here if the material refers to a rendertarget texture with camera(s) attached // Only check this for backbuffer views (null rendertarget) if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_) CheckMaterialForAuxView(srcBatch.material_); Technique* tech = GetTechnique(drawable, srcBatch.material_); if (!srcBatch.geometry_ || !tech) continue; Batch destBatch(srcBatch); destBatch.camera_ = camera_; destBatch.zone_ = zone; destBatch.isBase_ = true; destBatch.pass_ = 0; destBatch.lightMask_ = GetLightMask(drawable); // Check each of the scene passes for (unsigned k = 0; k < scenePasses_.Size(); ++k) { ScenePassInfo& info = scenePasses_[k]; destBatch.pass_ = tech->GetPass(info.pass_); if (!destBatch.pass_) continue; // Skip forward base pass if the corresponding litbase pass already exists if (info.pass_ == basePassName_ && j < 32 && drawable->HasBasePass(j)) continue; if (info.vertexLights_ && !drawableVertexLights.Empty()) { // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove // them to prevent double-lighting if (deferred_ && destBatch.pass_->GetBlendMode() == BLEND_REPLACE) { vertexLights.Clear(); for (unsigned i = 0; i < drawableVertexLights.Size(); ++i) { if (drawableVertexLights[i]->GetPerVertex()) vertexLights.Push(drawableVertexLights[i]); } } else vertexLights = drawableVertexLights; if (!vertexLights.Empty()) { // Find a vertex light queue. If not found, create new unsigned long long hash = GetVertexLightQueueHash(vertexLights); HashMap::Iterator i = vertexLightQueues_.Find(hash); if (i == vertexLightQueues_.End()) { i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue())); i->second_.light_ = 0; i->second_.shadowMap_ = 0; i->second_.vertexLights_ = vertexLights; } destBatch.lightQueue_ = &(i->second_); } } else destBatch.lightQueue_ = 0; bool allowInstancing = info.allowInstancing_; if (allowInstancing && info.markToStencil_ && destBatch.lightMask_ != (zone->GetLightMask() & 0xff)) allowInstancing = false; AddBatchToQueue(*info.batchQueue_, destBatch, tech, allowInstancing); } } } } } void View::UpdateGeometries() { PROFILE(SortAndUpdateGeometry); WorkQueue* queue = GetSubsystem(); // Sort batches { WorkItem item; for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i) { const RenderPathCommand& command = renderPath_->commands_[i]; if (!command.enabled_) continue; if (command.type_ == CMD_SCENEPASS) { item.workFunction_ = command.sortMode_ == SORT_FRONTTOBACK ? SortBatchQueueFrontToBackWork : SortBatchQueueBackToFrontWork; item.start_ = &batchQueues_[command.pass_]; queue->AddWorkItem(item); } } for (Vector::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { item.workFunction_ = SortLightQueueWork; item.start_ = &(*i); queue->AddWorkItem(item); if (i->shadowSplits_.Size()) { item.workFunction_ = SortShadowQueueWork; queue->AddWorkItem(item); } } } // Update geometries. Split into threaded and non-threaded updates. { nonThreadedGeometries_.Clear(); threadedGeometries_.Clear(); for (PODVector::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i) { UpdateGeometryType type = (*i)->GetUpdateGeometryType(); if (type == UPDATE_MAIN_THREAD) nonThreadedGeometries_.Push(*i); else if (type == UPDATE_WORKER_THREAD) threadedGeometries_.Push(*i); } for (PODVector::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i) { UpdateGeometryType type = (*i)->GetUpdateGeometryType(); if (type == UPDATE_MAIN_THREAD) nonThreadedGeometries_.Push(*i); else if (type == UPDATE_WORKER_THREAD) threadedGeometries_.Push(*i); } if (threadedGeometries_.Size()) { int numWorkItems = queue->GetNumThreads() + 1; // Worker threads + main thread int drawablesPerItem = threadedGeometries_.Size() / numWorkItems; WorkItem item; item.workFunction_ = UpdateDrawableGeometriesWork; item.aux_ = const_cast(&frame_); PODVector::Iterator start = threadedGeometries_.Begin(); for (int i = 0; i < numWorkItems; ++i) { PODVector::Iterator end = threadedGeometries_.End(); if (i < numWorkItems - 1 && end - start > drawablesPerItem) end = start + drawablesPerItem; item.start_ = &(*start); item.end_ = &(*end); queue->AddWorkItem(item); start = end; } } // While the work queue is processed, update non-threaded geometries for (PODVector::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i) (*i)->UpdateGeometry(frame_); } // Finally ensure all threaded work has completed queue->Complete(M_MAX_UNSIGNED); } void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue, BatchQueue* alphaQueue, bool useLitBase) { Light* light = lightQueue.light_; Zone* zone = GetZone(drawable); const Vector& batches = drawable->GetBatches(); bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor(); // Shadows on transparencies can only be rendered if shadow maps are not reused bool allowTransparentShadows = !renderer_->GetReuseShadowMaps(); bool allowLitBase = useLitBase && light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient; for (unsigned i = 0; i < batches.Size(); ++i) { const SourceBatch& srcBatch = batches[i]; Technique* tech = GetTechnique(drawable, srcBatch.material_); if (!srcBatch.geometry_ || !tech) continue; // Do not create pixel lit forward passes for materials that render into the G-buffer if (gBufferPassName_.Value() && tech->HasPass(gBufferPassName_)) continue; Batch destBatch(srcBatch); bool isLitAlpha = false; // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases if (i < 32 && allowLitBase) { destBatch.pass_ = tech->GetPass(litBasePassName_); if (destBatch.pass_) { destBatch.isBase_ = true; drawable->SetBasePass(i); } else destBatch.pass_ = tech->GetPass(lightPassName_); } else destBatch.pass_ = tech->GetPass(lightPassName_); // If no lit pass, check for lit alpha if (!destBatch.pass_) { destBatch.pass_ = tech->GetPass(litAlphaPassName_); isLitAlpha = true; } // Skip if material does not receive light at all if (!destBatch.pass_) continue; destBatch.camera_ = camera_; destBatch.lightQueue_ = &lightQueue; destBatch.zone_ = zone; if (!isLitAlpha) AddBatchToQueue(lightQueue.litBatches_, destBatch, tech); else if (alphaQueue) { // Transparent batches can not be instanced AddBatchToQueue(*alphaQueue, destBatch, tech, false, allowTransparentShadows); } } } void View::ExecuteRenderPathCommands() { // If not reusing shadowmaps, render all of them first if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty()) { PROFILE(RenderShadowMaps); for (Vector::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { if (i->shadowMap_) RenderShadowMap(*i); } } // Check if forward rendering needs to resolve the multisampled backbuffer to a texture bool needResolve = !deferred_ && !renderTarget_ && graphics_->GetMultiSample() > 1 && screenBuffers_.Size(); { PROFILE(ExecuteRenderPath); unsigned lastCommandIndex = 0; for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i) { if (!renderPath_->commands_[i].enabled_) continue; lastCommandIndex = i; } for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i) { RenderPathCommand& command = renderPath_->commands_[i]; if (!command.enabled_) continue; // If command writes and reads the target at same time, pingpong automatically if (CheckViewportRead(command)) { readBuffer_ = writeBuffer_; if (!command.outputNames_[0].Compare("viewport", false)) { ++writeBuffer_; if (writeBuffer_ >= screenBuffers_.Size()) writeBuffer_ = 0; // If this is a scene render pass, must copy the previous viewport contents now if (command.type_ == CMD_SCENEPASS && !needResolve) BlitFramebuffer(screenBuffers_[readBuffer_], screenBuffers_[writeBuffer_]->GetRenderSurface(), false); } // Resolve multisampled framebuffer now if necessary /// \todo Does not copy the depth buffer if (needResolve) { graphics_->ResolveToTexture(screenBuffers_[readBuffer_], viewRect_); needResolve = false; } } // Check which rendertarget will be used on this pass if (screenBuffers_.Size() && !needResolve) currentRenderTarget_ = screenBuffers_[writeBuffer_]->GetRenderSurface(); else currentRenderTarget_ = renderTarget_; // Optimization: if the last command is a quad with output to the viewport, do not use the screenbuffers, // but the viewport directly. This saves the extra copy if (screenBuffers_.Size() && i == lastCommandIndex && command.type_ == CMD_QUAD && command.outputNames_.Size() == 1 && !command.outputNames_[0].Compare("viewport", false)) currentRenderTarget_ = renderTarget_; switch (command.type_) { case CMD_CLEAR: { PROFILE(ClearRenderTarget); Color clearColor = command.clearColor_; if (command.useFogColor_) clearColor = farClipZone_->GetFogColor(); SetRenderTargets(command); graphics_->Clear(command.clearFlags_, clearColor, command.clearDepth_, command.clearStencil_); } break; case CMD_SCENEPASS: if (!batchQueues_[command.pass_].IsEmpty()) { PROFILE(RenderScenePass); SetRenderTargets(command); SetTextures(command); graphics_->SetFillMode(camera_->GetFillMode()); batchQueues_[command.pass_].Draw(this, command.useScissor_, command.markToStencil_); } break; case CMD_QUAD: { PROFILE(RenderQuad); SetRenderTargets(command); SetTextures(command); RenderQuad(command); } break; case CMD_FORWARDLIGHTS: // Render shadow maps + opaque objects' additive lighting if (!lightQueues_.Empty()) { PROFILE(RenderLights); SetRenderTargets(command); for (Vector::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { // If reusing shadowmaps, render each of them before the lit batches if (renderer_->GetReuseShadowMaps() && i->shadowMap_) { RenderShadowMap(*i); SetRenderTargets(command); } SetTextures(command); graphics_->SetFillMode(camera_->GetFillMode()); i->litBatches_.Draw(i->light_, this); } graphics_->SetScissorTest(false); graphics_->SetStencilTest(false); } break; case CMD_LIGHTVOLUMES: // Render shadow maps + light volumes if (!lightQueues_.Empty()) { PROFILE(RenderLightVolumes); SetRenderTargets(command); for (Vector::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { // If reusing shadowmaps, render each of them before the lit batches if (renderer_->GetReuseShadowMaps() && i->shadowMap_) { RenderShadowMap(*i); SetRenderTargets(command); } SetTextures(command); for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j) { SetupLightVolumeBatch(i->volumeBatches_[j]); i->volumeBatches_[j].Draw(this); } } graphics_->SetScissorTest(false); graphics_->SetStencilTest(false); } break; default: break; } } } // After executing all commands, reset rendertarget for debug geometry rendering graphics_->SetRenderTarget(0, renderTarget_); for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i) graphics_->SetRenderTarget(i, (RenderSurface*)0); graphics_->SetDepthStencil(GetDepthStencil(renderTarget_)); graphics_->SetViewport(viewRect_); graphics_->SetFillMode(FILL_SOLID); } void View::SetRenderTargets(RenderPathCommand& command) { unsigned index = 0; IntRect viewPort = viewRect_; while (index < command.outputNames_.Size()) { if (!command.outputNames_[index].Compare("viewport", false)) graphics_->SetRenderTarget(index, currentRenderTarget_); else { StringHash nameHash(command.outputNames_[index]); if (renderTargets_.Contains(nameHash)) { Texture2D* texture = renderTargets_[nameHash]; graphics_->SetRenderTarget(index, texture); if (!index) { // Determine viewport size from rendertarget info for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i) { const RenderTargetInfo& info = renderPath_->renderTargets_[i]; if (!info.name_.Compare(command.outputNames_[index], false)) { switch (info.sizeMode_) { // If absolute or a divided viewport size, use the full texture case SIZE_ABSOLUTE: case SIZE_VIEWPORTDIVISOR: viewPort = IntRect(0, 0, texture->GetWidth(), texture->GetHeight()); break; // If a divided rendertarget size, retain the same viewport, but scaled case SIZE_RENDERTARGETDIVISOR: if (info.size_.x_ && info.size_.y_) { viewPort = IntRect(viewRect_.left_ / info.size_.x_, viewRect_.top_ / info.size_.y_, viewRect_.right_ / info.size_.x_, viewRect_.bottom_ / info.size_.y_); } break; } break; } } } } else graphics_->SetRenderTarget(0, (RenderSurface*)0); } ++index; } while (index < MAX_RENDERTARGETS) { graphics_->SetRenderTarget(index, (RenderSurface*)0); ++index; } graphics_->SetDepthStencil(GetDepthStencil(graphics_->GetRenderTarget(0))); graphics_->SetViewport(viewPort); graphics_->SetColorWrite(true); } void View::SetTextures(RenderPathCommand& command) { ResourceCache* cache = GetSubsystem(); for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) { if (command.textureNames_[i].Empty()) continue; // Bind the rendered output if (!command.textureNames_[i].Compare("viewport", false)) { graphics_->SetTexture(i, screenBuffers_[readBuffer_]); continue; } // Bind a rendertarget HashMap::ConstIterator j = renderTargets_.Find(command.textureNames_[i]); if (j != renderTargets_.End()) { graphics_->SetTexture(i, j->second_); continue; } // Bind a texture from the resource system Texture2D* texture = cache->GetResource(command.textureNames_[i]); if (texture) graphics_->SetTexture(i, texture); else { // If requesting a texture fails, clear the texture name to prevent redundant attempts command.textureNames_[i] = String::EMPTY; } } } void View::RenderQuad(RenderPathCommand& command) { // If shader can not be found, clear it from the command to prevent redundant attempts ShaderVariation* vs = renderer_->GetVertexShader(command.vertexShaderName_); if (!vs) command.vertexShaderName_ = String::EMPTY; ShaderVariation* ps = renderer_->GetPixelShader(command.pixelShaderName_); if (!ps) command.pixelShaderName_ = String::EMPTY; // Set shaders & shader parameters and textures graphics_->SetShaders(vs, ps); const HashMap& parameters = command.shaderParameters_; for (HashMap::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k) graphics_->SetShaderParameter(k->first_, k->second_); float rtWidth = (float)rtSize_.x_; float rtHeight = (float)rtSize_.y_; float widthRange = 0.5f * viewSize_.x_ / rtWidth; float heightRange = 0.5f * viewSize_.y_ / rtHeight; #ifdef USE_OPENGL Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange, 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange); #else Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange, (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange); #endif graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset); graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f)); // Set per-rendertarget inverse size / offset shader parameters as necessary for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i) { const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i]; if (!rtInfo.enabled_) continue; StringHash nameHash(rtInfo.name_); if (!renderTargets_.Contains(nameHash)) continue; String invSizeName = rtInfo.name_ + "InvSize"; String offsetsName = rtInfo.name_ + "Offsets"; float width = (float)renderTargets_[nameHash]->GetWidth(); float height = (float)renderTargets_[nameHash]->GetHeight(); graphics_->SetShaderParameter(invSizeName, Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f)); #ifdef USE_OPENGL graphics_->SetShaderParameter(offsetsName, Vector4::ZERO); #else graphics_->SetShaderParameter(offsetsName, Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f)); #endif } graphics_->SetBlendMode(BLEND_REPLACE); graphics_->SetDepthTest(CMP_ALWAYS); graphics_->SetDepthWrite(false); graphics_->SetFillMode(FILL_SOLID); graphics_->SetScissorTest(false); graphics_->SetStencilTest(false); DrawFullscreenQuad(false); } bool View::CheckViewportRead(const RenderPathCommand& command) { for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) { if (!command.textureNames_[i].Empty() && !command.textureNames_[i].Compare("viewport", false)) return true; } return false; } void View::AllocateScreenBuffers() { unsigned neededBuffers = 0; #ifdef USE_OPENGL // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer // Also, if rendering to a texture with full deferred rendering, it must be RGBA to comply with the rest of the buffers. if ((deferred_ && !renderTarget_) || (deferredAmbient_ && renderTarget_ && renderTarget_->GetParentTexture()->GetFormat() != Graphics::GetRGBAFormat())) neededBuffers = 1; #endif // If backbuffer is antialiased when using deferred rendering, need to reserve a buffer if (deferred_ && !renderTarget_ && graphics_->GetMultiSample() > 1) neededBuffers = 1; // Follow final rendertarget format, or use RGB to match the backbuffer format unsigned format = renderTarget_ ? renderTarget_->GetParentTexture()->GetFormat() : Graphics::GetRGBFormat(); #ifdef USE_OPENGL if (deferred_) format = Graphics::GetRGBAFormat(); #endif // Check for commands which read the rendered scene and allocate a buffer for each, up to 2 maximum for pingpong /// \todo If the last copy is optimized away, this allocates an extra buffer unnecessarily bool hasViewportRead = false; bool hasViewportReadWrite = false; for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i) { const RenderPathCommand& command = renderPath_->commands_[i]; if (!command.enabled_) continue; if (CheckViewportRead(command)) { hasViewportRead = true; if (!command.outputNames_[0].Compare("viewport", false)) hasViewportReadWrite = true; } } if (hasViewportRead && !neededBuffers) neededBuffers = 1; if (hasViewportReadWrite) neededBuffers = 2; // Allocate screen buffers with filtering active in case the quad commands need that // Follow the sRGB mode of the destination rendertarget bool sRGB = renderTarget_ ? renderTarget_->GetParentTexture()->GetSRGB() : graphics_->GetSRGB(); for (unsigned i = 0; i < neededBuffers; ++i) screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true, sRGB)); // Allocate extra render targets defined by the rendering path for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i) { const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i]; if (!rtInfo.enabled_) continue; unsigned width = rtInfo.size_.x_; unsigned height = rtInfo.size_.y_; if (rtInfo.sizeMode_ == SIZE_VIEWPORTDIVISOR) { width = viewSize_.x_ / (width ? width : 1); height = viewSize_.y_ / (height ? height : 1); } if (rtInfo.sizeMode_ == SIZE_RENDERTARGETDIVISOR) { width = rtSize_.x_ / (width ? width : 1); height = rtSize_.y_ / (height ? height : 1); } renderTargets_[rtInfo.name_] = renderer_->GetScreenBuffer(width, height, rtInfo.format_, rtInfo.filtered_, rtInfo.sRGB_); } } void View::BlitFramebuffer(Texture2D* source, RenderSurface* destination, bool depthWrite) { PROFILE(BlitFramebuffer); graphics_->SetBlendMode(BLEND_REPLACE); graphics_->SetDepthTest(CMP_ALWAYS); graphics_->SetDepthWrite(true); graphics_->SetFillMode(FILL_SOLID); graphics_->SetScissorTest(false); graphics_->SetStencilTest(false); graphics_->SetRenderTarget(0, destination); for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i) graphics_->SetRenderTarget(i, (RenderSurface*)0); graphics_->SetDepthStencil(GetDepthStencil(destination)); graphics_->SetViewport(viewRect_); String shaderName = "CopyFramebuffer"; graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName)); float rtWidth = (float)rtSize_.x_; float rtHeight = (float)rtSize_.y_; float widthRange = 0.5f * viewSize_.x_ / rtWidth; float heightRange = 0.5f * viewSize_.y_ / rtHeight; #ifdef USE_OPENGL Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange, 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange); #else Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange, (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange); #endif graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset); graphics_->SetTexture(TU_DIFFUSE, source); DrawFullscreenQuad(false); } void View::DrawFullscreenQuad(bool nearQuad) { Light* quadDirLight = renderer_->GetQuadDirLight(); Geometry* geometry = renderer_->GetLightGeometry(quadDirLight); Matrix3x4 model = Matrix3x4::IDENTITY; Matrix4 projection = Matrix4::IDENTITY; #ifdef USE_OPENGL if (camera_->GetFlipVertical()) projection.m11_ = -1.0f; model.m23_ = nearQuad ? -1.0f : 1.0f; #else model.m23_ = nearQuad ? 0.0f : 1.0f; #endif graphics_->SetCullMode(CULL_NONE); graphics_->SetShaderParameter(VSP_MODEL, model); graphics_->SetShaderParameter(VSP_VIEWPROJ, projection); graphics_->ClearTransformSources(); geometry->Draw(graphics_); } void View::UpdateOccluders(PODVector& occluders, Camera* camera) { float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold(); float halfViewSize = camera->GetHalfViewSize(); float invOrthoSize = 1.0f / camera->GetOrthoSize(); for (PODVector::Iterator i = occluders.Begin(); i != occluders.End();) { Drawable* occluder = *i; bool erase = false; if (!occluder->IsInView(frame_, false)) occluder->UpdateBatches(frame_); // Check occluder's draw distance (in main camera view) float maxDistance = occluder->GetDrawDistance(); if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance) { // Check that occluder is big enough on the screen const BoundingBox& box = occluder->GetWorldBoundingBox(); float diagonal = box.Size().Length(); float compare; if (!camera->IsOrthographic()) compare = diagonal * halfViewSize / occluder->GetDistance(); else compare = diagonal * invOrthoSize; if (compare < occluderSizeThreshold_) erase = true; else { // Store amount of triangles divided by screen size as a sorting key // (best occluders are big and have few triangles) occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare); } } else erase = true; if (erase) i = occluders.Erase(i); else ++i; } // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn if (occluders.Size()) Sort(occluders.Begin(), occluders.End(), CompareDrawables); } void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector& occluders) { buffer->SetMaxTriangles(maxOccluderTriangles_); buffer->Clear(); for (unsigned i = 0; i < occluders.Size(); ++i) { Drawable* occluder = occluders[i]; if (i > 0) { // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary if (!buffer->IsVisible(occluder->GetWorldBoundingBox())) continue; } // Check for running out of triangles if (!occluder->DrawOcclusion(buffer)) break; } buffer->BuildDepthHierarchy(); } void View::ProcessLight(LightQueryResult& query, unsigned threadIndex) { Light* light = query.light_; LightType type = light->GetLightType(); const Frustum& frustum = camera_->GetFrustum(); // Check if light should be shadowed bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f; // If shadow distance non-zero, check it if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance()) isShadowed = false; // OpenGL ES can not support point light shadows #ifdef GL_ES_VERSION_2_0 if (isShadowed && type == LIGHT_POINT) isShadowed = false; #endif // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered PODVector& tempDrawables = tempDrawables_[threadIndex]; query.litGeometries_.Clear(); switch (type) { case LIGHT_DIRECTIONAL: for (unsigned i = 0; i < geometries_.Size(); ++i) { if (GetLightMask(geometries_[i]) & light->GetLightMask()) query.litGeometries_.Push(geometries_[i]); } break; case LIGHT_SPOT: { FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask()); octree_->GetDrawables(octreeQuery); for (unsigned i = 0; i < tempDrawables.Size(); ++i) { if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask())) query.litGeometries_.Push(tempDrawables[i]); } } break; case LIGHT_POINT: { SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()), DRAWABLE_GEOMETRY, camera_->GetViewMask()); octree_->GetDrawables(octreeQuery); for (unsigned i = 0; i < tempDrawables.Size(); ++i) { if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask())) query.litGeometries_.Push(tempDrawables[i]); } } break; } // If no lit geometries or not shadowed, no need to process shadow cameras if (query.litGeometries_.Empty() || !isShadowed) { query.numSplits_ = 0; return; } // Determine number of shadow cameras and setup their initial positions SetupShadowCameras(query); // Process each split for shadow casters query.shadowCasters_.Clear(); for (unsigned i = 0; i < query.numSplits_; ++i) { Camera* shadowCamera = query.shadowCameras_[i]; const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum(); query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size(); // For point light check that the face is visible: if not, can skip the split if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE) continue; // For directional light check that the split is inside the visible scene: if not, can skip the split if (type == LIGHT_DIRECTIONAL) { if (minZ_ > query.shadowFarSplits_[i]) continue; if (maxZ_ < query.shadowNearSplits_[i]) continue; // Reuse lit geometry query for all except directional lights ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY, camera_->GetViewMask()); octree_->GetDrawables(query); } // Check which shadow casters actually contribute to the shadowing ProcessShadowCasters(query, tempDrawables, i); } // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the // only cost has been the shadow camera setup & queries if (query.shadowCasters_.Empty()) query.numSplits_ = 0; } void View::ProcessShadowCasters(LightQueryResult& query, const PODVector& drawables, unsigned splitIndex) { Light* light = query.light_; Camera* shadowCamera = query.shadowCameras_[splitIndex]; const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum(); const Matrix3x4& lightView = shadowCamera->GetView(); const Matrix4& lightProj = shadowCamera->GetProjection(); LightType type = light->GetLightType(); query.shadowCasterBox_[splitIndex].defined_ = false; // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights, // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split // frustum, so that shadow casters do not get rendered into unnecessary splits Frustum lightViewFrustum; if (type != LIGHT_DIRECTIONAL) lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView); else lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]), Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView); BoundingBox lightViewFrustumBox(lightViewFrustum); // Check for degenerate split frustum: in that case there is no need to get shadow casters if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4]) return; BoundingBox lightViewBox; BoundingBox lightProjBox; for (PODVector::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i) { Drawable* drawable = *i; // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included. // Check for that first if (!drawable->GetCastShadows()) continue; // Check shadow mask if (!(GetShadowMask(drawable) & light->GetLightMask())) continue; // For point light, check that this drawable is inside the split shadow camera frustum if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE) continue; // Check shadow distance float maxShadowDistance = drawable->GetShadowDistance(); float drawDistance = drawable->GetDrawDistance(); if (drawDistance > 0.0f && (maxShadowDistance <= 0.0f || drawDistance < maxShadowDistance)) maxShadowDistance = drawDistance; if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance) continue; // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several // times. However, this should not cause problems as no scene modification happens at this point. if (!drawable->IsInView(frame_, false)) drawable->UpdateBatches(frame_); // Project shadow caster bounding box to light view space for visibility check lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView); if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox)) { // Merge to shadow caster bounding box and add to the list if (type == LIGHT_DIRECTIONAL) query.shadowCasterBox_[splitIndex].Merge(lightViewBox); else { lightProjBox = lightViewBox.Projected(lightProj); query.shadowCasterBox_[splitIndex].Merge(lightProjBox); } query.shadowCasters_.Push(drawable); } } query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size(); } bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView, const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox) { if (shadowCamera->IsOrthographic()) { // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_); return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE; } else { // If light is not directional, can do a simple check: if object is visible, its shadow is too if (drawable->IsInView(frame_)) return true; // For perspective lights, extrusion direction depends on the position of the shadow caster Vector3 center = lightViewBox.Center(); Ray extrusionRay(center, center); float extrusionDistance = shadowCamera->GetFarClip(); float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance); // Because of the perspective, the bounding box must also grow when it is extruded to the distance float sizeFactor = extrusionDistance / originalDistance; // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger // than necessary, so the test will be conservative Vector3 newCenter = extrusionDistance * extrusionRay.direction_; Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f; BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize); lightViewBox.Merge(extrudedBox); return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE; } } IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap) { unsigned width = shadowMap->GetWidth(); unsigned height = shadowMap->GetHeight(); int maxCascades = renderer_->GetMaxShadowCascades(); switch (light->GetLightType()) { case LIGHT_DIRECTIONAL: if (maxCascades == 1) return IntRect(0, 0, width, height); else if (maxCascades == 2) return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height); else return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2, (splitIndex / 2 + 1) * height / 2); case LIGHT_SPOT: return IntRect(0, 0, width, height); case LIGHT_POINT: return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2, (splitIndex / 2 + 1) * height / 3); } return IntRect(); } void View::SetupShadowCameras(LightQueryResult& query) { Light* light = query.light_; int splits = 0; switch (light->GetLightType()) { case LIGHT_DIRECTIONAL: { const CascadeParameters& cascade = light->GetShadowCascade(); float nearSplit = camera_->GetNearClip(); float farSplit; while (splits < renderer_->GetMaxShadowCascades()) { // If split is completely beyond camera far clip, we are done if (nearSplit > camera_->GetFarClip()) break; farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]); if (farSplit <= nearSplit) break; // Setup the shadow camera for the split Camera* shadowCamera = renderer_->GetShadowCamera(); query.shadowCameras_[splits] = shadowCamera; query.shadowNearSplits_[splits] = nearSplit; query.shadowFarSplits_[splits] = farSplit; SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit); nearSplit = farSplit; ++splits; } } break; case LIGHT_SPOT: { Camera* shadowCamera = renderer_->GetShadowCamera(); query.shadowCameras_[0] = shadowCamera; Node* cameraNode = shadowCamera->GetNode(); Node* lightNode = light->GetNode(); cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation()); shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange()); shadowCamera->SetFarClip(light->GetRange()); shadowCamera->SetFov(light->GetFov()); shadowCamera->SetAspectRatio(light->GetAspectRatio()); splits = 1; } break; case LIGHT_POINT: { for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i) { Camera* shadowCamera = renderer_->GetShadowCamera(); query.shadowCameras_[i] = shadowCamera; Node* cameraNode = shadowCamera->GetNode(); // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation cameraNode->SetPosition(light->GetNode()->GetWorldPosition()); cameraNode->SetDirection(*directions[i]); shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange()); shadowCamera->SetFarClip(light->GetRange()); shadowCamera->SetFov(90.0f); shadowCamera->SetAspectRatio(1.0f); } splits = MAX_CUBEMAP_FACES; } break; } query.numSplits_ = splits; } void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit) { Node* shadowCameraNode = shadowCamera->GetNode(); Node* lightNode = light->GetNode(); float extrusionDistance = camera_->GetFarClip(); const FocusParameters& parameters = light->GetShadowFocus(); // Calculate initial position & rotation Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightNode->GetWorldDirection(); shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation()); // Calculate main camera shadowed frustum in light's view space farSplit = Min(farSplit, camera_->GetFarClip()); // Use the scene Z bounds to limit frustum size if applicable if (parameters.focus_) { nearSplit = Max(minZ_, nearSplit); farSplit = Min(maxZ_, farSplit); } Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit); Polyhedron frustumVolume; frustumVolume.Define(splitFrustum); // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum if (parameters.focus_) { BoundingBox litGeometriesBox; for (unsigned i = 0; i < geometries_.Size(); ++i) { Drawable* drawable = geometries_[i]; // Skip skyboxes as they have undefinedly large bounding box size if (drawable->GetType() == Skybox::GetTypeStatic()) continue; if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit && (GetLightMask(drawable) & light->GetLightMask())) litGeometriesBox.Merge(drawable->GetWorldBoundingBox()); } if (litGeometriesBox.defined_) { frustumVolume.Clip(litGeometriesBox); // If volume became empty, restore it to avoid zero size if (frustumVolume.Empty()) frustumVolume.Define(splitFrustum); } } // Transform frustum volume to light space const Matrix3x4& lightView = shadowCamera->GetView(); frustumVolume.Transform(lightView); // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead BoundingBox shadowBox; if (!parameters.nonUniform_) shadowBox.Define(Sphere(frustumVolume)); else shadowBox.Define(frustumVolume); shadowCamera->SetOrthographic(true); shadowCamera->SetAspectRatio(1.0f); shadowCamera->SetNearClip(0.0f); shadowCamera->SetFarClip(shadowBox.max_.z_); // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox); } void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport, const BoundingBox& shadowCasterBox) { const FocusParameters& parameters = light->GetShadowFocus(); float shadowMapWidth = (float)(shadowViewport.Width()); LightType type = light->GetLightType(); if (type == LIGHT_DIRECTIONAL) { BoundingBox shadowBox; shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f; shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_; shadowBox.min_.y_ = -shadowBox.max_.y_; shadowBox.min_.x_ = -shadowBox.max_.x_; // Requantize and snap to shadow map texels QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox); } if (type == LIGHT_SPOT) { if (parameters.focus_) { float viewSizeX = Max(Abs(shadowCasterBox.min_.x_), Abs(shadowCasterBox.max_.x_)); float viewSizeY = Max(Abs(shadowCasterBox.min_.y_), Abs(shadowCasterBox.max_.y_)); float viewSize = Max(viewSizeX, viewSizeY); // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0) float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize(); float quantize = parameters.quantize_ * invOrthoSize; float minView = parameters.minView_ * invOrthoSize; viewSize = Max(ceilf(viewSize / quantize) * quantize, minView); if (viewSize < 1.0f) shadowCamera->SetZoom(1.0f / viewSize); } } // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF) if (shadowCamera->GetZoom() >= 1.0f) { if (light->GetLightType() != LIGHT_POINT) shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth)); else { #ifdef USE_OPENGL shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth)); #else shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth)); #endif } } } void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport, const BoundingBox& viewBox) { Node* shadowCameraNode = shadowCamera->GetNode(); const FocusParameters& parameters = light->GetShadowFocus(); float shadowMapWidth = (float)(shadowViewport.Width()); float minX = viewBox.min_.x_; float minY = viewBox.min_.y_; float maxX = viewBox.max_.x_; float maxY = viewBox.max_.y_; Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f); Vector2 viewSize(maxX - minX, maxY - minY); // Quantize size to reduce swimming // Note: if size is uniform and there is no focusing, quantization is unnecessary if (parameters.nonUniform_) { viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_)); viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_)); viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_); viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_); } else if (parameters.focus_) { viewSize.x_ = Max(viewSize.x_, viewSize.y_); viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_)); viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_); viewSize.y_ = viewSize.x_; } shadowCamera->SetOrthoSize(viewSize); // Center shadow camera to the view space bounding box Quaternion rot(shadowCameraNode->GetWorldRotation()); Vector3 adjust(center.x_, center.y_, 0.0f); shadowCameraNode->Translate(rot * adjust); // If the shadow map viewport is known, snap to whole texels if (shadowMapWidth > 0.0f) { Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition()); // Take into account that shadow map border will not be used float invActualSize = 1.0f / (shadowMapWidth - 2.0f); Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize); Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f); shadowCameraNode->Translate(rot * snap); } } void View::FindZone(Drawable* drawable) { Vector3 center = drawable->GetWorldBoundingBox().Center(); int bestPriority = M_MIN_INT; Zone* newZone = 0; // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary // (possibly incorrect) and must be re-evaluated on the next frame bool temporary = !camera_->GetFrustum().IsInside(center); // First check if the last zone remains a conclusive result Zone* lastZone = drawable->GetLastZone(); if (lastZone && (lastZone->GetViewMask() & camera_->GetViewMask()) && lastZone->GetPriority() >= highestZonePriority_ && (drawable->GetZoneMask() & lastZone->GetZoneMask()) && lastZone->IsInside(center)) newZone = lastZone; else { for (PODVector::Iterator i = zones_.Begin(); i != zones_.End(); ++i) { Zone* zone = *i; int priority = zone->GetPriority(); if (priority > bestPriority && (drawable->GetZoneMask() & zone->GetZoneMask()) && zone->IsInside(center)) { newZone = zone; bestPriority = priority; } } } drawable->SetZone(newZone, temporary); } Technique* View::GetTechnique(Drawable* drawable, Material* material) { if (!material) { const Vector& techniques = renderer_->GetDefaultMaterial()->GetTechniques(); return techniques.Size() ? techniques[0].technique_ : (Technique*)0; } const Vector& techniques = material->GetTechniques(); // If only one technique, no choice if (techniques.Size() == 1) return techniques[0].technique_; else { float lodDistance = drawable->GetLodDistance(); // Check for suitable technique. Techniques should be ordered like this: // Most distant & highest quality // Most distant & lowest quality // Second most distant & highest quality // ... for (unsigned i = 0; i < techniques.Size(); ++i) { const TechniqueEntry& entry = techniques[i]; Technique* tech = entry.technique_; if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_) continue; if (lodDistance >= entry.lodDistance_) return tech; } // If no suitable technique found, fallback to the last return techniques.Size() ? techniques.Back().technique_ : (Technique*)0; } } void View::CheckMaterialForAuxView(Material* material) { const SharedPtr* textures = material->GetTextures(); for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i) { Texture* texture = textures[i]; if (texture && texture->GetUsage() == TEXTURE_RENDERTARGET) { // Have to check cube & 2D textures separately if (texture->GetType() == Texture2D::GetTypeStatic()) { Texture2D* tex2D = static_cast(texture); RenderSurface* target = tex2D->GetRenderSurface(); if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE) target->QueueUpdate(); } else if (texture->GetType() == TextureCube::GetTypeStatic()) { TextureCube* texCube = static_cast(texture); for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j) { RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j); if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE) target->QueueUpdate(); } } } } // Flag as processed so we can early-out next time we come across this material on the same frame material->MarkForAuxView(frame_.frameNumber_); } void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows) { if (!batch.material_) batch.material_ = renderer_->GetDefaultMaterial(); // Convert to instanced if possible if (allowInstancing && batch.geometryType_ == GEOM_STATIC && batch.geometry_->GetIndexBuffer() && !batch.overrideView_) batch.geometryType_ = GEOM_INSTANCED; if (batch.geometryType_ == GEOM_INSTANCED) { HashMap* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_; BatchGroupKey key(batch); HashMap::Iterator i = groups->Find(key); if (i == groups->End()) { // Create a new group based on the batch // In case the group remains below the instancing limit, do not enable instancing shaders yet BatchGroup newGroup(batch); newGroup.geometryType_ = GEOM_STATIC; renderer_->SetBatchShaders(newGroup, tech, allowShadows); newGroup.CalculateSortKey(); i = groups->Insert(MakePair(key, newGroup)); } int oldSize = i->second_.instances_.Size(); i->second_.AddTransforms(batch); // Convert to using instancing shaders when the instancing limit is reached if (oldSize < minInstances_ && (int)i->second_.instances_.Size() >= minInstances_) { i->second_.geometryType_ = GEOM_INSTANCED; renderer_->SetBatchShaders(i->second_, tech, allowShadows); i->second_.CalculateSortKey(); } } else { renderer_->SetBatchShaders(batch, tech, allowShadows); batch.CalculateSortKey(); batchQueue.batches_.Push(batch); } } void View::PrepareInstancingBuffer() { PROFILE(PrepareInstancingBuffer); unsigned totalInstances = 0; for (HashMap::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i) totalInstances += i->second_.GetNumInstances(); for (Vector::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j) totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(); totalInstances += i->litBatches_.GetNumInstances(); } // If fail to set buffer size, fall back to per-group locking if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances)) { VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer(); unsigned freeIndex = 0; void* dest = instancingBuffer->Lock(0, totalInstances, true); if (!dest) return; for (HashMap::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i) i->second_.SetTransforms(dest, freeIndex); for (Vector::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j) i->shadowSplits_[j].shadowBatches_.SetTransforms(dest, freeIndex); i->litBatches_.SetTransforms(dest, freeIndex); } instancingBuffer->Unlock(); } } void View::SetupLightVolumeBatch(Batch& batch) { Light* light = batch.lightQueue_->light_; LightType type = light->GetLightType(); Vector3 cameraPos = cameraNode_->GetWorldPosition(); float lightDist; graphics_->SetBlendMode(BLEND_ADD); graphics_->SetDepthBias(0.0f, 0.0f); graphics_->SetDepthWrite(false); graphics_->SetFillMode(FILL_SOLID); if (type != LIGHT_DIRECTIONAL) { if (type == LIGHT_POINT) lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos); else lightDist = light->GetFrustum().Distance(cameraPos); // Draw front faces if not inside light volume if (lightDist < camera_->GetNearClip() * 2.0f) { renderer_->SetCullMode(CULL_CW, camera_); graphics_->SetDepthTest(CMP_GREATER); } else { renderer_->SetCullMode(CULL_CCW, camera_); graphics_->SetDepthTest(CMP_LESSEQUAL); } } else { // In case the same camera is used for multiple views with differing aspect ratios (not recommended) // refresh the directional light's model transform before rendering light->GetVolumeTransform(camera_); graphics_->SetCullMode(CULL_NONE); graphics_->SetDepthTest(CMP_ALWAYS); } graphics_->SetScissorTest(false); graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask()); } void View::RenderShadowMap(const LightBatchQueue& queue) { PROFILE(RenderShadowMap); Texture2D* shadowMap = queue.shadowMap_; graphics_->SetTexture(TU_SHADOWMAP, 0); graphics_->SetColorWrite(false); graphics_->SetFillMode(FILL_SOLID); graphics_->SetStencilTest(false); graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget()); graphics_->SetDepthStencil(shadowMap); graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight())); graphics_->Clear(CLEAR_DEPTH); // Set shadow depth bias const BiasParameters& parameters = queue.light_->GetShadowBias(); // Render each of the splits for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i) { float multiplier = 1.0f; // For directional light cascade splits, adjust depth bias according to the far clip ratio of the splits if (i > 0 && queue.light_->GetLightType() == LIGHT_DIRECTIONAL) { multiplier = Max(queue.shadowSplits_[i].shadowCamera_->GetFarClip() / queue.shadowSplits_[0].shadowCamera_->GetFarClip(), 1.0f); multiplier = 1.0f + (multiplier - 1.0f) * queue.light_->GetShadowCascade().biasAutoAdjust_; } graphics_->SetDepthBias(multiplier * parameters.constantBias_, multiplier * parameters.slopeScaledBias_); const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i]; if (!shadowQueue.shadowBatches_.IsEmpty()) { graphics_->SetViewport(shadowQueue.shadowViewport_); shadowQueue.shadowBatches_.Draw(this); } } graphics_->SetColorWrite(true); graphics_->SetDepthBias(0.0f, 0.0f); } RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget) { // If using the backbuffer, return the backbuffer depth-stencil if (!renderTarget) return 0; // Then check for linked depth-stencil RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil(); // Finally get one from Renderer if (!depthStencil) depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight()); return depthStencil; } }