// Copyright (c) 2008-2023 the Urho3D project // License: MIT #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "StaticScene.h" #include URHO3D_DEFINE_APPLICATION_MAIN(StaticScene) StaticScene::StaticScene(Context* context) : Sample(context) { } void StaticScene::Start() { // Execute base class startup Sample::Start(); // Create the scene content CreateScene(); // Create the UI content CreateInstructions(); // Setup the viewport for displaying the scene SetupViewport(); // Hook up to the frame update events SubscribeToEvents(); // Set the mouse mode to use in the sample Sample::InitMouseMode(MM_RELATIVE); } void StaticScene::CreateScene() { auto* cache = GetSubsystem(); scene_ = new Scene(context_); // Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will // show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it // is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically // optimizing manner scene_->CreateComponent(); // Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple // plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger // (100 x 100 world units) Node* planeNode = scene_->CreateChild("Plane"); planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f)); auto* planeObject = planeNode->CreateComponent(); planeObject->SetModel(cache->GetResource("Models/Plane.mdl")); planeObject->SetMaterial(cache->GetResource("Materials/StoneTiled.xml")); // Create a directional light to the world so that we can see something. The light scene node's orientation controls the // light direction; we will use the SetDirection() function which calculates the orientation from a forward direction vector. // The light will use default settings (white light, no shadows) Node* lightNode = scene_->CreateChild("DirectionalLight"); lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f)); // The direction vector does not need to be normalized auto* light = lightNode->CreateComponent(); light->SetLightType(LIGHT_DIRECTIONAL); // Create more StaticModel objects to the scene, randomly positioned, rotated and scaled. For rotation, we construct a // quaternion from Euler angles where the Y angle (rotation about the Y axis) is randomized. The mushroom model contains // LOD levels, so the StaticModel component will automatically select the LOD level according to the view distance (you'll // see the model get simpler as it moves further away). Finally, rendering a large number of the same object with the // same material allows instancing to be used, if the GPU supports it. This reduces the amount of CPU work in rendering the // scene. const unsigned NUM_OBJECTS = 200; for (unsigned i = 0; i < NUM_OBJECTS; ++i) { Node* mushroomNode = scene_->CreateChild("Mushroom"); mushroomNode->SetPosition(Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f)); mushroomNode->SetRotation(Quaternion(0.0f, Random(360.0f), 0.0f)); mushroomNode->SetScale(0.5f + Random(2.0f)); auto* mushroomObject = mushroomNode->CreateComponent(); mushroomObject->SetModel(cache->GetResource("Models/Mushroom.mdl")); mushroomObject->SetMaterial(cache->GetResource("Materials/Mushroom.xml")); } // Create a scene node for the camera, which we will move around // The camera will use default settings (1000 far clip distance, 45 degrees FOV, set aspect ratio automatically) cameraNode_ = scene_->CreateChild("Camera"); cameraNode_->CreateComponent(); // Set an initial position for the camera scene node above the plane cameraNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f)); } void StaticScene::CreateInstructions() { auto* cache = GetSubsystem(); auto* ui = GetSubsystem(); // Construct new Text object, set string to display and font to use auto* instructionText = ui->GetRoot()->CreateChild(); instructionText->SetText("Use WASD keys and mouse/touch to move"); instructionText->SetFont(cache->GetResource("Fonts/Anonymous Pro.ttf"), 15); // Position the text relative to the screen center instructionText->SetHorizontalAlignment(HA_CENTER); instructionText->SetVerticalAlignment(VA_CENTER); instructionText->SetPosition(0, ui->GetRoot()->GetHeight() / 4); } void StaticScene::SetupViewport() { auto* renderer = GetSubsystem(); // Set up a viewport to the Renderer subsystem so that the 3D scene can be seen. We need to define the scene and the camera // at minimum. Additionally we could configure the viewport screen size and the rendering path (eg. forward / deferred) to // use, but now we just use full screen and default render path configured in the engine command line options SharedPtr viewport(new Viewport(context_, scene_, cameraNode_->GetComponent())); renderer->SetViewport(0, viewport); } void StaticScene::MoveCamera(float timeStep) { // Do not move if the UI has a focused element (the console) if (GetSubsystem()->GetFocusElement()) return; auto* input = GetSubsystem(); // Movement speed as world units per second const float MOVE_SPEED = 20.0f; // Mouse sensitivity as degrees per pixel const float MOUSE_SENSITIVITY = 0.1f; // Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees IntVector2 mouseMove = input->GetMouseMove(); yaw_ += MOUSE_SENSITIVITY * mouseMove.x_; pitch_ += MOUSE_SENSITIVITY * mouseMove.y_; pitch_ = Clamp(pitch_, -90.0f, 90.0f); // Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero cameraNode_->SetRotation(Quaternion(pitch_, yaw_, 0.0f)); // Read WASD keys and move the camera scene node to the corresponding direction if they are pressed // Use the Translate() function (default local space) to move relative to the node's orientation. if (input->GetKeyDown(KEY_W)) cameraNode_->Translate(Vector3::FORWARD * MOVE_SPEED * timeStep); if (input->GetKeyDown(KEY_S)) cameraNode_->Translate(Vector3::BACK * MOVE_SPEED * timeStep); if (input->GetKeyDown(KEY_A)) cameraNode_->Translate(Vector3::LEFT * MOVE_SPEED * timeStep); if (input->GetKeyDown(KEY_D)) cameraNode_->Translate(Vector3::RIGHT * MOVE_SPEED * timeStep); } void StaticScene::SubscribeToEvents() { // Subscribe HandleUpdate() function for processing update events SubscribeToEvent(E_UPDATE, URHO3D_HANDLER(StaticScene, HandleUpdate)); } void StaticScene::HandleUpdate(StringHash eventType, VariantMap& eventData) { using namespace Update; // Take the frame time step, which is stored as a float float timeStep = eventData[P_TIMESTEP].GetFloat(); // Move the camera, scale movement with time step MoveCamera(timeStep); }