// // Copyright (c) 2008-2014 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include "Precompiled.h" #include "Camera.h" #include "Context.h" #include "DebugRenderer.h" #include "Graphics.h" #include "Light.h" #include "Node.h" #include "OctreeQuery.h" #include "Profiler.h" #include "ResourceCache.h" #include "Texture2D.h" #include "TextureCube.h" #include "DebugNew.h" namespace Urho3D { extern const char* SCENE_CATEGORY; static const LightType DEFAULT_LIGHTTYPE = LIGHT_POINT; static const float DEFAULT_RANGE = 10.0f; static const float DEFAULT_LIGHT_FOV = 30.0f; static const float DEFAULT_SPECULARINTENSITY = 1.0f; static const float DEFAULT_BRIGHTNESS = 1.0f; static const float DEFAULT_CONSTANTBIAS = 0.0002f; static const float DEFAULT_SLOPESCALEDBIAS = 0.5f; static const float DEFAULT_BIASAUTOADJUST = 1.0f; static const float DEFAULT_SHADOWFADESTART = 0.8f; static const float DEFAULT_SHADOWQUANTIZE = 0.5f; static const float DEFAULT_SHADOWMINVIEW = 3.0f; static const float DEFAULT_SHADOWNEARFARRATIO = 0.002f; static const float DEFAULT_SHADOWSPLIT = 1000.0f; static const char* typeNames[] = { "Directional", "Spot", "Point", 0 }; void BiasParameters::Validate() { constantBias_ = Clamp(constantBias_, -1.0f, 1.0f); slopeScaledBias_ = Clamp(slopeScaledBias_, -16.0f, 16.0f); } void CascadeParameters::Validate() { for (unsigned i = 0; i < MAX_CASCADE_SPLITS; ++i) splits_[i] = Max(splits_[i], 0.0f); fadeStart_ = Clamp(fadeStart_, M_EPSILON, 1.0f); } void FocusParameters::Validate() { quantize_ = Max(quantize_, SHADOW_MIN_QUANTIZE); minView_ = Max(minView_, SHADOW_MIN_VIEW); } template<> LightType Variant::Get() const { return (LightType)GetInt(); } Light::Light(Context* context) : Drawable(context, DRAWABLE_LIGHT), lightType_(DEFAULT_LIGHTTYPE), shadowBias_(BiasParameters(DEFAULT_CONSTANTBIAS, DEFAULT_SLOPESCALEDBIAS)), shadowCascade_(CascadeParameters(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f, DEFAULT_SHADOWFADESTART)), shadowFocus_(FocusParameters(true, true, true, DEFAULT_SHADOWQUANTIZE, DEFAULT_SHADOWMINVIEW)), lightQueue_(0), specularIntensity_(DEFAULT_SPECULARINTENSITY), brightness_(DEFAULT_BRIGHTNESS), range_(DEFAULT_RANGE), fov_(DEFAULT_LIGHT_FOV), aspectRatio_(1.0f), fadeDistance_(0.0f), shadowFadeDistance_(0.0f), shadowIntensity_(0.0f), shadowResolution_(1.0f), shadowNearFarRatio_(DEFAULT_SHADOWNEARFARRATIO), perVertex_(false) { } Light::~Light() { } void Light::RegisterObject(Context* context) { context->RegisterFactory(SCENE_CATEGORY); ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT); ENUM_ACCESSOR_ATTRIBUTE("Light Type", GetLightType, SetLightType, LightType, typeNames, DEFAULT_LIGHTTYPE, AM_DEFAULT); REF_ACCESSOR_ATTRIBUTE("Color", GetColor, SetColor, Color, Color::WHITE, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Specular Intensity", GetSpecularIntensity, SetSpecularIntensity, float, DEFAULT_SPECULARINTENSITY, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Brightness Multiplier", GetBrightness, SetBrightness, float, DEFAULT_BRIGHTNESS, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Range", GetRange, SetRange, float, DEFAULT_RANGE, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Spot FOV", GetFov, SetFov, float, DEFAULT_LIGHT_FOV, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Spot Aspect Ratio", GetAspectRatio, SetAspectRatio, float, 1.0f, AM_DEFAULT); MIXED_ACCESSOR_ATTRIBUTE("Attenuation Texture", GetRampTextureAttr, SetRampTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT); MIXED_ACCESSOR_ATTRIBUTE("Light Shape Texture", GetShapeTextureAttr, SetShapeTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT); ACCESSOR_ATTRIBUTE("Can Be Occluded", IsOccludee, SetOccludee, bool, true, AM_DEFAULT); ATTRIBUTE(VAR_BOOL, "Cast Shadows", castShadows_, false, AM_DEFAULT); ATTRIBUTE(VAR_BOOL, "Per Vertex", perVertex_, false, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Draw Distance", GetDrawDistance, SetDrawDistance, float, 0.0f, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Fade Distance", GetFadeDistance, SetFadeDistance, float, 0.0f, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Shadow Distance", GetShadowDistance, SetShadowDistance, float, 0.0f, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Shadow Fade Distance", GetShadowFadeDistance, SetShadowFadeDistance, float, 0.0f, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Shadow Intensity", GetShadowIntensity, SetShadowIntensity, float, 0.0f, AM_DEFAULT); ACCESSOR_ATTRIBUTE("Shadow Resolution", GetShadowResolution, SetShadowResolution, float, 1.0f, AM_DEFAULT); ATTRIBUTE(VAR_BOOL, "Focus To Scene", shadowFocus_.focus_, true, AM_DEFAULT); ATTRIBUTE(VAR_BOOL, "Non-uniform View", shadowFocus_.nonUniform_, true, AM_DEFAULT); ATTRIBUTE(VAR_BOOL, "Auto-Reduce Size", shadowFocus_.autoSize_, true, AM_DEFAULT); ATTRIBUTE(VAR_VECTOR4, "CSM Splits", shadowCascade_.splits_, Vector4(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f), AM_DEFAULT); ATTRIBUTE(VAR_FLOAT, "CSM Fade Start", shadowCascade_.fadeStart_, DEFAULT_SHADOWFADESTART, AM_DEFAULT); ATTRIBUTE(VAR_FLOAT, "CSM Bias Auto Adjust", shadowCascade_.biasAutoAdjust_, DEFAULT_BIASAUTOADJUST, AM_DEFAULT); ATTRIBUTE(VAR_FLOAT, "View Size Quantize", shadowFocus_.quantize_, DEFAULT_SHADOWQUANTIZE, AM_DEFAULT); ATTRIBUTE(VAR_FLOAT, "View Size Minimum", shadowFocus_.minView_, DEFAULT_SHADOWMINVIEW, AM_DEFAULT); ATTRIBUTE(VAR_FLOAT, "Depth Constant Bias", shadowBias_.constantBias_, DEFAULT_CONSTANTBIAS, AM_DEFAULT); ATTRIBUTE(VAR_FLOAT, "Depth Slope Bias", shadowBias_.slopeScaledBias_, DEFAULT_SLOPESCALEDBIAS, AM_DEFAULT); ATTRIBUTE(VAR_FLOAT, "Near/Farclip Ratio", shadowNearFarRatio_, DEFAULT_SHADOWNEARFARRATIO, AM_DEFAULT); ATTRIBUTE(VAR_INT, "View Mask", viewMask_, DEFAULT_VIEWMASK, AM_DEFAULT); ATTRIBUTE(VAR_INT, "Light Mask", lightMask_, DEFAULT_LIGHTMASK, AM_DEFAULT); } void Light::OnSetAttribute(const AttributeInfo& attr, const Variant& src) { Serializable::OnSetAttribute(attr, src); // Validate the bias, cascade & focus parameters if (attr.offset_ >= offsetof(Light, shadowBias_) && attr.offset_ < (offsetof(Light, shadowBias_) + sizeof(BiasParameters))) shadowBias_.Validate(); else if (attr.offset_ >= offsetof(Light, shadowCascade_) && attr.offset_ < (offsetof(Light, shadowCascade_) + sizeof(CascadeParameters))) shadowCascade_.Validate(); else if (attr.offset_ >= offsetof(Light, shadowFocus_) && attr.offset_ < (offsetof(Light, shadowFocus_) + sizeof(FocusParameters))) shadowFocus_.Validate(); } void Light::ProcessRayQuery(const RayOctreeQuery& query, PODVector& results) { // Do not record a raycast result for a directional light, as it would block all other results if (lightType_ == LIGHT_DIRECTIONAL) return; float distance; switch (query.level_) { case RAY_AABB: Drawable::ProcessRayQuery(query, results); return; case RAY_OBB: { Matrix3x4 inverse(node_->GetWorldTransform().Inverse()); Ray localRay = query.ray_.Transformed(inverse); distance = localRay.HitDistance(GetWorldBoundingBox().Transformed(inverse)); if (distance >= query.maxDistance_) return; } break; case RAY_TRIANGLE: if (lightType_ == LIGHT_SPOT) { distance = query.ray_.HitDistance(GetFrustum()); if (distance >= query.maxDistance_) return; } else { distance = query.ray_.HitDistance(Sphere(node_->GetWorldPosition(), range_)); if (distance >= query.maxDistance_) return; } break; } // If the code reaches here then we have a hit RayQueryResult result; result.position_ = query.ray_.origin_ + distance * query.ray_.direction_; result.normal_ = -query.ray_.direction_; result.distance_ = distance; result.drawable_ = this; result.node_ = node_; result.subObject_ = M_MAX_UNSIGNED; results.Push(result); } void Light::UpdateBatches(const FrameInfo& frame) { switch (lightType_) { case LIGHT_DIRECTIONAL: // Directional light affects the whole scene, so it is always "closest" distance_ = 0.0f; break; default: distance_ = frame.camera_->GetDistance(node_->GetWorldPosition()); break; } } void Light::DrawDebugGeometry(DebugRenderer* debug, bool depthTest) { Color color = GetEffectiveColor(); if (debug && IsEnabledEffective()) { switch (lightType_) { case LIGHT_DIRECTIONAL: { Vector3 start = node_->GetWorldPosition(); Vector3 end = start + node_->GetWorldDirection() * 10.f; for (int i = -1; i < 2; ++i) { for (int j = -1; j < 2; ++j) { Vector3 offset = Vector3::UP * (5.f * i) + Vector3::RIGHT * (5.f * j); debug->AddSphere(Sphere(start + offset, 0.1f), color, depthTest); debug->AddLine(start + offset, end + offset, color, depthTest); } } } break; case LIGHT_SPOT: debug->AddFrustum(GetFrustum(), color, depthTest); break; case LIGHT_POINT: debug->AddSphere(Sphere(node_->GetWorldPosition(), range_), color, depthTest); break; } } } void Light::SetLightType(LightType type) { lightType_ = type; OnMarkedDirty(node_); MarkNetworkUpdate(); } void Light::SetPerVertex(bool enable) { perVertex_ = enable; MarkNetworkUpdate(); } void Light::SetColor(const Color& color) { color_ = Color(color.r_, color.g_, color.b_, 1.0f); MarkNetworkUpdate(); } void Light::SetSpecularIntensity(float intensity) { specularIntensity_ = Max(intensity, 0.0f); MarkNetworkUpdate(); } void Light::SetBrightness(float brightness) { brightness_ = brightness; MarkNetworkUpdate(); } void Light::SetRange(float range) { range_ = Max(range, 0.0f); OnMarkedDirty(node_); MarkNetworkUpdate(); } void Light::SetFov(float fov) { fov_ = Clamp(fov, 0.0f, M_MAX_FOV); OnMarkedDirty(node_); MarkNetworkUpdate(); } void Light::SetAspectRatio(float aspectRatio) { aspectRatio_ = Max(aspectRatio, M_EPSILON); OnMarkedDirty(node_); MarkNetworkUpdate(); } void Light::SetShadowNearFarRatio(float nearFarRatio) { shadowNearFarRatio_ = Clamp(nearFarRatio, 0.0f, 0.5f); MarkNetworkUpdate(); } void Light::SetFadeDistance(float distance) { fadeDistance_ = Max(distance, 0.0f); MarkNetworkUpdate(); } void Light::SetShadowBias(const BiasParameters& parameters) { shadowBias_ = parameters; shadowBias_.Validate(); MarkNetworkUpdate(); } void Light::SetShadowCascade(const CascadeParameters& parameters) { shadowCascade_ = parameters; shadowCascade_.Validate(); MarkNetworkUpdate(); } void Light::SetShadowFocus(const FocusParameters& parameters) { shadowFocus_ = parameters; shadowFocus_.Validate(); MarkNetworkUpdate(); } void Light::SetShadowFadeDistance(float distance) { shadowFadeDistance_ = Max(distance, 0.0f); MarkNetworkUpdate(); } void Light::SetShadowIntensity(float intensity) { shadowIntensity_ = Clamp(intensity, 0.0f, 1.0f); MarkNetworkUpdate(); } void Light::SetShadowResolution(float resolution) { shadowResolution_ = Clamp(resolution, 0.125f, 1.0f); MarkNetworkUpdate(); } void Light::SetRampTexture(Texture* texture) { rampTexture_ = texture; MarkNetworkUpdate(); } void Light::SetShapeTexture(Texture* texture) { shapeTexture_ = texture; MarkNetworkUpdate(); } Frustum Light::GetFrustum() const { // Note: frustum is unaffected by node or parent scale Matrix3x4 frustumTransform(node_ ? Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), 1.0f) : Matrix3x4::IDENTITY); Frustum ret; ret.Define(fov_, aspectRatio_, 1.0f, M_MIN_NEARCLIP, range_, frustumTransform); return ret; } int Light::GetNumShadowSplits() const { int ret = 1; if (shadowCascade_.splits_[1] > shadowCascade_.splits_[0]) { ++ret; if (shadowCascade_.splits_[2] > shadowCascade_.splits_[1]) { ++ret; if (shadowCascade_.splits_[3] > shadowCascade_.splits_[2]) ++ret; } } ret = Min(ret, MAX_CASCADE_SPLITS); // Shader Model 2 can only support 3 splits max. due to pixel shader instruction count limits if (ret == 4) { Graphics* graphics = GetSubsystem(); if (graphics && !graphics->GetSM3Support()) --ret; } return ret; } Matrix3x4 Light::GetDirLightTransform(Camera* camera, bool getNearQuad) { if (!camera) return Matrix3x4::IDENTITY; Vector3 nearVector, farVector; camera->GetFrustumSize(nearVector, farVector); float nearClip = camera->GetNearClip(); float farClip = camera->GetFarClip(); float distance = getNearQuad ? nearClip : farClip; if (!camera->IsOrthographic()) farVector *= (distance / farClip); else farVector.z_ *= (distance / farClip); // Set an epsilon from clip planes due to possible inaccuracy /// \todo Rather set an identity projection matrix farVector.z_ = Clamp(farVector.z_, (1.0f + M_LARGE_EPSILON) * nearClip, (1.0f - M_LARGE_EPSILON) * farClip); return Matrix3x4(Vector3(0.0f, 0.0f, farVector.z_), Quaternion::IDENTITY, Vector3(farVector.x_, farVector.y_, 1.0f)); } const Matrix3x4& Light::GetVolumeTransform(Camera* camera) { if (!node_) return Matrix3x4::IDENTITY; switch (lightType_) { case LIGHT_DIRECTIONAL: volumeTransform_ = GetDirLightTransform(camera); break; case LIGHT_SPOT: { float yScale = tanf(fov_ * M_DEGTORAD * 0.5f) * range_; float xScale = aspectRatio_ * yScale; volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), Vector3(xScale, yScale, range_)); } break; case LIGHT_POINT: volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), Quaternion::IDENTITY, range_); break; } return volumeTransform_; } void Light::SetRampTextureAttr(const ResourceRef& value) { ResourceCache* cache = GetSubsystem(); rampTexture_ = static_cast(cache->GetResource(value.type_, value.name_)); } void Light::SetShapeTextureAttr(const ResourceRef& value) { ResourceCache* cache = GetSubsystem(); shapeTexture_ = static_cast(cache->GetResource(value.type_, value.name_)); } ResourceRef Light::GetRampTextureAttr() const { return GetResourceRef(rampTexture_, Texture2D::GetTypeStatic()); } ResourceRef Light::GetShapeTextureAttr() const { return GetResourceRef(shapeTexture_, lightType_ == LIGHT_POINT ? TextureCube::GetTypeStatic() : Texture2D::GetTypeStatic()); } void Light::OnWorldBoundingBoxUpdate() { switch (lightType_) { case LIGHT_DIRECTIONAL: // Directional light always sets humongous bounding box not affected by transform worldBoundingBox_.Define(-M_LARGE_VALUE, M_LARGE_VALUE); break; case LIGHT_SPOT: // Frustum is already transformed into world space worldBoundingBox_.Define(GetFrustum()); break; case LIGHT_POINT: { const Vector3& center = node_->GetWorldPosition(); Vector3 edge(range_, range_, range_); worldBoundingBox_.Define(center - edge, center + edge); } break; } } void Light::SetIntensitySortValue(float distance) { // When sorting lights globally, give priority to directional lights so that they will be combined into the ambient pass if (!IsNegative()) { if (lightType_ != LIGHT_DIRECTIONAL) sortValue_ = Max(distance, M_MIN_NEARCLIP) / GetIntensityDivisor(); else sortValue_ = M_EPSILON / GetIntensityDivisor(); } else { // Give extra priority to negative lights in the global sorting order so that they're handled first, right after ambient. // Positive lights are added after them if (lightType_ != LIGHT_DIRECTIONAL) sortValue_ = -Max(distance, M_MIN_NEARCLIP) * GetIntensityDivisor(); else sortValue_ = -M_LARGE_VALUE * GetIntensityDivisor(); } } void Light::SetIntensitySortValue(const BoundingBox& box) { // When sorting lights for object's maximum light cap, give priority based on attenuation and intensity switch (lightType_) { case LIGHT_DIRECTIONAL: sortValue_ = 1.0f / GetIntensityDivisor(); break; case LIGHT_SPOT: { Vector3 centerPos = box.Center(); Vector3 lightPos = node_->GetWorldPosition(); Vector3 lightDir = node_->GetWorldDirection(); Ray lightRay(lightPos, lightDir); Vector3 centerProj = lightRay.Project(centerPos); float centerDistance = (centerProj - lightPos).Length(); Ray centerRay(centerProj, centerPos - centerProj); float centerAngle = centerRay.HitDistance(box) / centerDistance; // Check if a corner of the bounding box is closer to the light ray than the center, use its angle in that case Vector3 cornerPos = centerPos + box.HalfSize() * Vector3(centerPos.x_ < centerProj.x_ ? 1.0f : -1.0f, centerPos.y_ < centerProj.y_ ? 1.0f : -1.0f, centerPos.z_ < centerProj.z_ ? 1.0f : -1.0f); Vector3 cornerProj = lightRay.Project(cornerPos); float cornerDistance = (cornerProj - lightPos).Length(); float cornerAngle = (cornerPos - cornerProj).Length() / cornerDistance; float spotAngle = Min(centerAngle, cornerAngle); float maxAngle = tanf(fov_ * M_DEGTORAD * 0.5f); float spotFactor = Min(spotAngle / maxAngle, 1.0f); // We do not know the actual range attenuation ramp, so take only spot attenuation into account float att = Max(1.0f - spotFactor * spotFactor, M_EPSILON); sortValue_ = 1.0f / GetIntensityDivisor(att); } break; case LIGHT_POINT: { Vector3 centerPos = box.Center(); Vector3 lightPos = node_->GetWorldPosition(); Vector3 lightDir = (centerPos - lightPos).Normalized(); Ray lightRay(lightPos, lightDir); float distance = lightRay.HitDistance(box); float normDistance = distance / range_; float att = Max(1.0f - normDistance * normDistance, M_EPSILON); sortValue_ = 1.0f / (Max(color_.SumRGB(), 0.0f) * att + M_EPSILON); } break; } } void Light::SetLightQueue(LightBatchQueue* queue) { lightQueue_ = queue; } }