// // Copyright (c) 2008-2014 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #pragma once #include "Matrix3.h" namespace Urho3D { /// Rotation represented as a four-dimensional normalized vector. class URHO3D_API Quaternion { public: /// Construct an identity quaternion. Quaternion() : w_(1.0f), x_(0.0f), y_(0.0f), z_(0.0f) { } /// Copy-construct from another quaternion. Quaternion(const Quaternion& quat) : w_(quat.w_), x_(quat.x_), y_(quat.y_), z_(quat.z_) { } /// Construct from values. Quaternion(float w, float x, float y, float z) : w_(w), x_(x), y_(y), z_(z) { } /// Construct from a float array. Quaternion(const float* data) : w_(data[0]), x_(data[1]), y_(data[2]), z_(data[3]) { } /// Construct from an angle (in degrees) and axis. Quaternion(float angle, const Vector3& axis) { FromAngleAxis(angle, axis); } /// Construct from an angle (in degrees, for Urho2D). Quaternion(float angle) { FromAngleAxis(angle, Vector3::FORWARD); } /// Construct from Euler angles (in degrees.) Quaternion(float x, float y, float z) { FromEulerAngles(x, y, z); } /// Construct from the rotation difference between two direction vectors. Quaternion(const Vector3& start, const Vector3& end) { FromRotationTo(start, end); } /// Construct from orthonormal axes. Quaternion(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis) { FromAxes(xAxis, yAxis, zAxis); } /// Construct from a rotation matrix. Quaternion(const Matrix3& matrix) { FromRotationMatrix(matrix); } /// Assign from another quaternion. Quaternion& operator = (const Quaternion& rhs) { w_ = rhs.w_; x_ = rhs.x_; y_ = rhs.y_; z_ = rhs.z_; return *this; } /// Add-assign a quaternion. Quaternion& operator += (const Quaternion& rhs) { w_ += rhs.w_; x_ += rhs.x_; y_ += rhs.y_; z_ += rhs.z_; return *this; } /// Multiply-assign a scalar. Quaternion& operator *= (float rhs) { w_ *= rhs; x_ *= rhs; y_ *= rhs; z_ *= rhs; return *this; } /// Test for equality with another quaternion without epsilon. bool operator == (const Quaternion& rhs) const { return w_ == rhs.w_ && x_ == rhs.x_ && y_ == rhs.y_ && z_ == rhs.z_; } /// Test for inequality with another quaternion without epsilon. bool operator != (const Quaternion& rhs) const { return w_ != rhs.w_ || x_ != rhs.x_ || y_ != rhs.y_ || z_ != rhs.z_; } /// Multiply with a scalar. Quaternion operator * (float rhs) const { return Quaternion(w_ * rhs, x_ * rhs, y_ * rhs, z_ * rhs); } /// Return negation. Quaternion operator - () const { return Quaternion(-w_, -x_, -y_, -z_); } /// Add a quaternion. Quaternion operator + (const Quaternion& rhs) const { return Quaternion(w_ + rhs.w_, x_ + rhs.x_, y_ + rhs.y_, z_ + rhs.z_); } /// Subtract a quaternion. Quaternion operator - (const Quaternion& rhs) const { return Quaternion(w_ - rhs.w_, x_ - rhs.x_, y_ - rhs.y_, z_ - rhs.z_); } /// Multiply a quaternion. Quaternion operator * (const Quaternion& rhs) const { return Quaternion( w_ * rhs.w_ - x_ * rhs.x_ - y_ * rhs.y_ - z_ * rhs.z_, w_ * rhs.x_ + x_ * rhs.w_ + y_ * rhs.z_ - z_ * rhs.y_, w_ * rhs.y_ + y_ * rhs.w_ + z_ * rhs.x_ - x_ * rhs.z_, w_ * rhs.z_ + z_ * rhs.w_ + x_ * rhs.y_ - y_ * rhs.x_ ); } /// Multiply a Vector3. Vector3 operator * (const Vector3& rhs) const { Vector3 qVec(x_,y_,z_); Vector3 cross1(qVec.CrossProduct(rhs)); Vector3 cross2(qVec.CrossProduct(cross1)); return rhs + 2.0f * (cross1 * w_ + cross2); } /// Define from an angle (in degrees) and axis. void FromAngleAxis(float angle, const Vector3& axis); /// Define from Euler angles (in degrees.) void FromEulerAngles(float x, float y, float z); /// Define from the rotation difference between two direction vectors. void FromRotationTo(const Vector3& start, const Vector3& end); /// Define from orthonormal axes. void FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis); /// Define from a rotation matrix. void FromRotationMatrix(const Matrix3& matrix); /// Define from a direction to look in and an up direction. Return true if successful, or false if would result in a NaN, in which case the current value remains. bool FromLookRotation(const Vector3& direction, const Vector3& up = Vector3::UP); /// Normalize to unit length. void Normalize() { float lenSquared = LengthSquared(); if (!Urho3D::Equals(lenSquared, 1.0f) && lenSquared > 0.0f) { float invLen = 1.0f / sqrtf(lenSquared); w_ *= invLen; x_ *= invLen; y_ *= invLen; z_ *= invLen; } } /// Return normalized to unit length. Quaternion Normalized() const { float lenSquared = LengthSquared(); if (!Urho3D::Equals(lenSquared, 1.0f) && lenSquared > 0.0f) { float invLen = 1.0f / sqrtf(lenSquared); return *this * invLen; } else return *this; } /// Return inverse. Quaternion Inverse() const { float lenSquared = LengthSquared(); if (lenSquared == 1.0f) return Conjugate(); else if (lenSquared >= M_EPSILON) return Conjugate() * (1.0f / lenSquared); else return IDENTITY; } /// Return squared length. float LengthSquared() const { return w_ * w_ + x_ * x_ + y_ * y_ + z_ * z_; } /// Calculate dot product. float DotProduct(const Quaternion& rhs) const { return w_ * rhs.w_ + x_ * rhs.x_ + y_ * rhs.y_ + z_ * rhs.z_; } /// Test for equality with another quaternion with epsilon. bool Equals(const Quaternion& rhs) const { return Urho3D::Equals(w_, rhs.w_) && Urho3D::Equals(x_, rhs.x_) && Urho3D::Equals(y_, rhs.y_) && Urho3D::Equals(z_, rhs.z_); } /// Return whether is NaN. bool IsNaN() const { return Urho3D::IsNaN(w_) || Urho3D::IsNaN(x_) || Urho3D::IsNaN(y_) || Urho3D::IsNaN(z_); } /// Return conjugate. Quaternion Conjugate() const { return Quaternion(w_, -x_, -y_, -z_); } /// Return Euler angles in degrees. Vector3 EulerAngles() const; /// Return yaw angle in degrees. float YawAngle() const; /// Return pitch angle in degrees. float PitchAngle() const; /// Return roll angle in degrees. float RollAngle() const; /// Return the rotation matrix that corresponds to this quaternion. Matrix3 RotationMatrix() const; /// Spherical interpolation with another quaternion. Quaternion Slerp(Quaternion rhs, float t) const; /// Normalized linear interpolation with another quaternion. Quaternion Nlerp(Quaternion rhs, float t, bool shortestPath = false) const; /// Return float data. const float* Data() const { return &w_; } /// Return as string. String ToString() const; /// W coordinate. float w_; /// X coordinate. float x_; /// Y coordinate. float y_; /// Z coordinate. float z_; /// Identity quaternion. static const Quaternion IDENTITY; }; }