// Light animation example. // This sample is base on StaticScene, and it demonstrates: // - Usage of attribute animation for light color animation #include "Scripts/Utilities/Sample.as" void Start() { // Execute the common startup for samples SampleStart(); // Create the scene content CreateScene(); // Create the UI content CreateInstructions(); // Setup the viewport for displaying the scene SetupViewport(); // Hook up to the frame update events SubscribeToEvents(); } void CreateScene() { scene_ = Scene(); // Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will // show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it // is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically // optimizing manner scene_.CreateComponent("Octree"); // Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple // plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger // (100 x 100 world units) Node@ planeNode = scene_.CreateChild("Plane"); planeNode.scale = Vector3(100.0f, 1.0f, 100.0f); StaticModel@ planeObject = planeNode.CreateComponent("StaticModel"); planeObject.model = cache.GetResource("Model", "Models/Plane.mdl"); planeObject.material = cache.GetResource("Material", "Materials/StoneTiled.xml"); // Create a point light to the world so that we can see something. Node@ lightNode = scene_.CreateChild("DirectionalLight"); Light@ light = lightNode.CreateComponent("Light"); light.lightType = LIGHT_POINT; light.range = 10.0f; // Create light color animation ValueAnimation@ colorAnimation = ValueAnimation(); colorAnimation.SetKeyFrame(0.0f, Variant(WHITE)); colorAnimation.SetKeyFrame(1.0f, Variant(RED)); colorAnimation.SetKeyFrame(2.0f, Variant(YELLOW)); colorAnimation.SetKeyFrame(3.0f, Variant(GREEN)); colorAnimation.SetKeyFrame(4.0f, Variant(WHITE)); light.SetAttributeAnimation("Color", colorAnimation); // Create light position animation ValueAnimation@ positionAnimation = ValueAnimation(); // Use spline interpolation method positionAnimation.interpolationMethod = IM_SPLINE; // Set spline tension positionAnimation.splineTension = 0.7f; positionAnimation.SetKeyFrame(0.0f, Variant(Vector3(-30.0f, 5.0f, -30.0f))); positionAnimation.SetKeyFrame(1.0f, Variant(Vector3( 30.0f, 5.0f, -30.0f))); positionAnimation.SetKeyFrame(2.0f, Variant(Vector3( 30.0f, 5.0f, 30.0f))); positionAnimation.SetKeyFrame(3.0f, Variant(Vector3(-30.0f, 5.0f, 30.0f))); positionAnimation.SetKeyFrame(4.0f, Variant(Vector3(-30.0f, 5.0f, -30.0f))); lightNode.SetAttributeAnimation("Position", positionAnimation); // Create more StaticModel objects to the scene, randomly positioned, rotated and scaled. For rotation, we construct a // quaternion from Euler angles where the Y angle (rotation about the Y axis) is randomized. The mushroom model contains // LOD levels, so the StaticModel component will automatically select the LOD level according to the view distance (you'll // see the model get simpler as it moves further away). Finally, rendering a large number of the same object with the // same material allows instancing to be used, if the GPU supports it. This reduces the amount of CPU work in rendering the // scene. const uint NUM_OBJECTS = 200; for (uint i = 0; i < NUM_OBJECTS; ++i) { Node@ mushroomNode = scene_.CreateChild("Mushroom"); mushroomNode.position = Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f); mushroomNode.rotation = Quaternion(0.0f, Random(360.0f), 0.0f); mushroomNode.SetScale(0.5f + Random(2.0f)); StaticModel@ mushroomObject = mushroomNode.CreateComponent("StaticModel"); mushroomObject.model = cache.GetResource("Model", "Models/Mushroom.mdl"); mushroomObject.material = cache.GetResource("Material", "Materials/Mushroom.xml"); } // Create a scene node for the camera, which we will move around // The camera will use default settings (1000 far clip distance, 45 degrees FOV, set aspect ratio automatically) cameraNode = scene_.CreateChild("Camera"); cameraNode.CreateComponent("Camera"); // Set an initial position for the camera scene node above the plane cameraNode.position = Vector3(0.0f, 5.0f, 0.0f); } void CreateInstructions() { // Construct new Text object, set string to display and font to use Text@ instructionText = ui.root.CreateChild("Text"); instructionText.text = "Use WASD keys and mouse to move"; instructionText.SetFont(cache.GetResource("Font", "Fonts/Anonymous Pro.ttf"), 15); // Position the text relative to the screen center instructionText.horizontalAlignment = HA_CENTER; instructionText.verticalAlignment = VA_CENTER; instructionText.SetPosition(0, ui.root.height / 4); } void SetupViewport() { // Set up a viewport to the Renderer subsystem so that the 3D scene can be seen. We need to define the scene and the camera // at minimum. Additionally we could configure the viewport screen size and the rendering path (eg. forward / deferred) to // use, but now we just use full screen and default render path configured in the engine command line options Viewport@ viewport = Viewport(scene_, cameraNode.GetComponent("Camera")); renderer.viewports[0] = viewport; } void MoveCamera(float timeStep) { // Do not move if the UI has a focused element (the console) if (ui.focusElement !is null) return; // Movement speed as world units per second const float MOVE_SPEED = 20.0f; // Mouse sensitivity as degrees per pixel const float MOUSE_SENSITIVITY = 0.1f; // Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees IntVector2 mouseMove = input.mouseMove; yaw += MOUSE_SENSITIVITY * mouseMove.x; pitch += MOUSE_SENSITIVITY * mouseMove.y; pitch = Clamp(pitch, -90.0f, 90.0f); // Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero cameraNode.rotation = Quaternion(pitch, yaw, 0.0f); // Read WASD keys and move the camera scene node to the corresponding direction if they are pressed // Use the Translate() function (default local space) to move relative to the node's orientation. if (input.keyDown['W']) cameraNode.Translate(Vector3(0.0f, 0.0f, 1.0f) * MOVE_SPEED * timeStep); if (input.keyDown['S']) cameraNode.Translate(Vector3(0.0f, 0.0f, -1.0f) * MOVE_SPEED * timeStep); if (input.keyDown['A']) cameraNode.Translate(Vector3(-1.0f, 0.0f, 0.0f) * MOVE_SPEED * timeStep); if (input.keyDown['D']) cameraNode.Translate(Vector3(1.0f, 0.0f, 0.0f) * MOVE_SPEED * timeStep); } void SubscribeToEvents() { // Subscribe HandleUpdate() function for processing update events SubscribeToEvent("Update", "HandleUpdate"); } void HandleUpdate(StringHash eventType, VariantMap& eventData) { // Take the frame time step, which is stored as a float float timeStep = eventData["TimeStep"].GetFloat(); // Move the camera, scale movement with time step MoveCamera(timeStep); } // Create XML patch instructions for screen joystick layout specific to this sample app String patchInstructions = "";