// // Copyright (c) 2008-2014 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #pragma once #include "Vector2.h" namespace Urho3D { /// Three-dimensional vector. class URHO3D_API Vector3 { public: /// Construct a zero vector. Vector3() : x_(0.0f), y_(0.0f), z_(0.0f) { } /// Copy-construct from another vector. Vector3(const Vector3& vector) : x_(vector.x_), y_(vector.y_), z_(vector.z_) { } /// Construct from a two-dimensional vector and the Z coordinate. Vector3(const Vector2& vector, float z) : x_(vector.x_), y_(vector.y_), z_(z) { } /// Construct from a two-dimensional vector (for Urho2D). Vector3(const Vector2& vector) : x_(vector.x_), y_(vector.y_), z_(0.0f) { } /// Construct from coordinates. Vector3(float x, float y, float z) : x_(x), y_(y), z_(z) { } /// Construct from two-dimensional coordinates (for Urho2D). Vector3(float x, float y) : x_(x), y_(y), z_(0.0f) { } /// Construct from a float array. Vector3(const float* data) : x_(data[0]), y_(data[1]), z_(data[2]) { } /// Assign from another vector. Vector3& operator = (const Vector3& rhs) { x_ = rhs.x_; y_ = rhs.y_; z_ = rhs.z_; return *this; } /// Test for equality with another vector without epsilon. bool operator == (const Vector3& rhs) const { return x_ == rhs.x_ && y_ == rhs.y_ && z_ == rhs.z_; } /// Test for inequality with another vector without epsilon. bool operator != (const Vector3& rhs) const { return x_ != rhs.x_ || y_ != rhs.y_ || z_ != rhs.z_; } /// Add a vector. Vector3 operator + (const Vector3& rhs) const { return Vector3(x_ + rhs.x_, y_ + rhs.y_, z_ + rhs.z_); } /// Return negation. Vector3 operator - () const { return Vector3(-x_, -y_, -z_); } /// Subtract a vector. Vector3 operator - (const Vector3& rhs) const { return Vector3(x_ - rhs.x_, y_ - rhs.y_, z_ - rhs.z_); } /// Multiply with a scalar. Vector3 operator * (float rhs) const { return Vector3(x_ * rhs, y_ * rhs, z_ * rhs); } /// Multiply with a vector. Vector3 operator * (const Vector3& rhs) const { return Vector3(x_ * rhs.x_, y_ * rhs.y_, z_ * rhs.z_); } /// Divide by a scalar. Vector3 operator / (float rhs) const { return Vector3(x_ / rhs, y_ / rhs, z_ / rhs); } /// Divide by a vector. Vector3 operator / (const Vector3& rhs) const { return Vector3(x_ / rhs.x_, y_ / rhs.y_, z_ / rhs.z_); } /// Add-assign a vector. Vector3& operator += (const Vector3& rhs) { x_ += rhs.x_; y_ += rhs.y_; z_ += rhs.z_; return *this; } /// Subtract-assign a vector. Vector3& operator -= (const Vector3& rhs) { x_ -= rhs.x_; y_ -= rhs.y_; z_ -= rhs.z_; return *this; } /// Multiply-assign a scalar. Vector3& operator *= (float rhs) { x_ *= rhs; y_ *= rhs; z_ *= rhs; return *this; } /// Multiply-assign a vector. Vector3& operator *= (const Vector3& rhs) { x_ *= rhs.x_; y_ *= rhs.y_; z_ *= rhs.z_; return *this; } /// Divide-assign a scalar. Vector3& operator /= (float rhs) { float invRhs = 1.0f / rhs; x_ *= invRhs; y_ *= invRhs; z_ *= invRhs; return *this; } /// Divide-assign a vector. Vector3& operator /= (const Vector3& rhs) { x_ /= rhs.x_; y_ /= rhs.y_; z_ /= rhs.z_; return *this; } /// Normalize to unit length. void Normalize() { float lenSquared = LengthSquared(); if (!Urho3D::Equals(lenSquared, 1.0f) && lenSquared > 0.0f) { float invLen = 1.0f / sqrtf(lenSquared); x_ *= invLen; y_ *= invLen; z_ *= invLen; } } /// Return length. float Length() const { return sqrtf(x_ * x_ + y_ * y_ + z_ * z_); } /// Return squared length. float LengthSquared() const { return x_ * x_ + y_ * y_ + z_ * z_; } /// Calculate dot product. float DotProduct(const Vector3& rhs) const { return x_ * rhs.x_ + y_ * rhs.y_ + z_ * rhs.z_; } /// Calculate absolute dot product. float AbsDotProduct(const Vector3& rhs) const { return Urho3D::Abs(x_ * rhs.x_) + Urho3D::Abs(y_ * rhs.y_) + Urho3D::Abs(z_ * rhs.z_); } /// Calculate cross product. Vector3 CrossProduct(const Vector3& rhs) const { return Vector3( y_ * rhs.z_ - z_ * rhs.y_, z_ * rhs.x_ - x_ * rhs.z_, x_ * rhs.y_ - y_ * rhs.x_ ); } /// Return absolute vector. Vector3 Abs() const { return Vector3(Urho3D::Abs(x_), Urho3D::Abs(y_), Urho3D::Abs(z_)); } /// Linear interpolation with another vector. Vector3 Lerp(const Vector3& rhs, float t) const { return *this * (1.0f - t) + rhs * t; } /// Test for equality with another vector with epsilon. bool Equals(const Vector3& rhs) const { return Urho3D::Equals(x_, rhs.x_) && Urho3D::Equals(y_, rhs.y_) && Urho3D::Equals(z_, rhs.z_); } /// Returns the angle between this vector and another vector in degrees. float Angle(const Vector3& rhs) const { return Urho3D::Acos(DotProduct(rhs) / (Length() * rhs.Length() ) ); } /// Return whether is NaN. bool IsNaN() const { return Urho3D::IsNaN(x_) || Urho3D::IsNaN(y_) || Urho3D::IsNaN(z_); } /// Return normalized to unit length. Vector3 Normalized() const { float lenSquared = LengthSquared(); if (!Urho3D::Equals(lenSquared, 1.0f) && lenSquared > 0.0f) { float invLen = 1.0f / sqrtf(lenSquared); return *this * invLen; } else return *this; } /// Return float data. const float* Data() const { return &x_; } /// Return as string. String ToString() const; /// X coordinate. float x_; /// Y coordinate. float y_; /// Z coordinate. float z_; /// Zero vector. static const Vector3 ZERO; /// (-1,0,0) vector. static const Vector3 LEFT; /// (1,0,0) vector. static const Vector3 RIGHT; /// (0,1,0) vector. static const Vector3 UP; /// (0,-1,0) vector. static const Vector3 DOWN; /// (0,0,1) vector. static const Vector3 FORWARD; /// (0,0,-1) vector. static const Vector3 BACK; /// (1,1,1) vector. static const Vector3 ONE; }; /// Multiply Vector3 with a scalar. inline Vector3 operator * (float lhs, const Vector3& rhs) { return rhs * lhs; } }