// // Urho3D Engine // Copyright (c) 2008-2012 Lasse Öörni // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include "Precompiled.h" #include "AnimatedModel.h" #include "Animation.h" #include "AnimationController.h" #include "Camera.h" #include "Context.h" #include "DebugRenderer.h" #include "Geometry.h" #include "Graphics.h" #include "GraphicsEvents.h" #include "GraphicsImpl.h" #include "IndexBuffer.h" #include "Light.h" #include "Log.h" #include "Material.h" #include "Octree.h" #include "ParticleEmitter.h" #include "Profiler.h" #include "Shader.h" #include "ShaderVariation.h" #include "Skybox.h" #include "Technique.h" #include "Texture2D.h" #include "TextureCube.h" #include "VertexBuffer.h" #include "VertexDeclaration.h" #include "Zone.h" #include "DebugNew.h" #ifdef _MSC_VER #pragma warning(disable:4355) #endif static const D3DCMPFUNC d3dCmpFunc[] = { D3DCMP_ALWAYS, D3DCMP_EQUAL, D3DCMP_NOTEQUAL, D3DCMP_LESS, D3DCMP_LESSEQUAL, D3DCMP_GREATER, D3DCMP_GREATEREQUAL }; static const D3DTEXTUREFILTERTYPE d3dMinMagFilter[] = { D3DTEXF_POINT, D3DTEXF_LINEAR, D3DTEXF_LINEAR, D3DTEXF_ANISOTROPIC }; static const D3DTEXTUREFILTERTYPE d3dMipFilter[] = { D3DTEXF_POINT, D3DTEXF_POINT, D3DTEXF_LINEAR, D3DTEXF_ANISOTROPIC }; static const D3DTEXTUREADDRESS d3dAddressMode[] = { D3DTADDRESS_WRAP, D3DTADDRESS_MIRROR, D3DTADDRESS_CLAMP, D3DTADDRESS_BORDER }; static const DWORD d3dBlendEnable[] = { FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE }; static const D3DBLEND d3dSrcBlend[] = { D3DBLEND_ONE, D3DBLEND_ONE, D3DBLEND_DESTCOLOR, D3DBLEND_SRCALPHA, D3DBLEND_SRCALPHA, D3DBLEND_ONE, D3DBLEND_INVDESTALPHA, }; static const D3DBLEND d3dDestBlend[] = { D3DBLEND_ZERO, D3DBLEND_ONE, D3DBLEND_ZERO, D3DBLEND_INVSRCALPHA, D3DBLEND_ONE, D3DBLEND_INVSRCALPHA, D3DBLEND_DESTALPHA }; static const D3DCULL d3dCullMode[] = { D3DCULL_NONE, D3DCULL_CCW, D3DCULL_CW }; static const D3DFILLMODE d3dFillMode[] = { D3DFILL_SOLID, D3DFILL_WIREFRAME }; static const D3DSTENCILOP d3dStencilOp[] = { D3DSTENCILOP_KEEP, D3DSTENCILOP_ZERO, D3DSTENCILOP_REPLACE, D3DSTENCILOP_INCR, D3DSTENCILOP_DECR }; static const DWORD windowStyle = WS_OVERLAPPEDWINDOW & ~WS_THICKFRAME & ~WS_MAXIMIZEBOX; static LRESULT CALLBACK wndProc(HWND wnd, UINT msg, WPARAM wParam, LPARAM lParam); static unsigned GetD3DColor(const Color& color) { unsigned r = (unsigned)(Clamp(color.r_ * 255.0f, 0.0f, 255.0f)); unsigned g = (unsigned)(Clamp(color.g_ * 255.0f, 0.0f, 255.0f)); unsigned b = (unsigned)(Clamp(color.b_ * 255.0f, 0.0f, 255.0f)); unsigned a = (unsigned)(Clamp(color.a_ * 255.0f, 0.0f, 255.0f)); return (((a) & 0xff) << 24) | (((r) & 0xff) << 16) | (((g) & 0xff) << 8) | ((b) & 0xff); } static unsigned depthStencilFormat = D3DFMT_D24S8; OBJECTTYPESTATIC(Graphics); Graphics::Graphics(Context* context) : Object(context), impl_(new GraphicsImpl()), width_(0), height_(0), multiSample_(1), windowPosX_(0), windowPosY_(0), fullscreen_(false), vsync_(false), tripleBuffer_(false), deviceLost_(false), systemDepthStencil_(false), lightPrepassSupport_(false), deferredSupport_(false), hardwareDepthSupport_(false), hardwareShadowSupport_(false), hiresShadowSupport_(false), streamOffsetSupport_(false), hasSM3_(false), forceSM2_(false), numPrimitives_(0), numBatches_(0), defaultTextureFilterMode_(FILTER_BILINEAR) { ResetCachedState(); SetTextureUnitMappings(); SubscribeToEvent(E_WINDOWMESSAGE, HANDLER(Graphics, HandleWindowMessage)); } Graphics::~Graphics() { // Release all GPU objects that still exist for (Vector::Iterator i = gpuObjects_.Begin(); i != gpuObjects_.End(); ++i) (*i)->Release(); gpuObjects_.Clear(); vertexDeclarations_.Clear(); if (impl_->defaultColorSurface_) { impl_->defaultColorSurface_->Release(); impl_->defaultColorSurface_ = 0; } if (impl_->defaultDepthStencilSurface_) { if (systemDepthStencil_) impl_->defaultDepthStencilSurface_->Release(); impl_->defaultDepthStencilSurface_ = 0; } if (impl_->device_) { impl_->device_->Release(); impl_->device_ = 0; } if (impl_->interface_) { impl_->interface_->Release(); impl_->interface_ = 0; } if (impl_->window_) { DestroyWindow(impl_->window_); impl_->window_ = 0; } delete impl_; impl_ = 0; } void Graphics::SetWindowTitle(const String& windowTitle) { windowTitle_ = windowTitle; if (impl_->window_) SetWindowTextW(impl_->window_, WString(windowTitle_).CString()); } bool Graphics::SetMode(int width, int height, bool fullscreen, bool vsync, bool tripleBuffer, int multiSample) { PROFILE(SetScreenMode); // Find out the full screen mode display format (match desktop color depth) D3DFORMAT fullscreenFormat = impl_->GetDesktopFormat(); // If zero dimensions, use the desktop default if (width <= 0 || height <= 0) { if (fullscreen) { IntVector2 desktopResolution = impl_->GetDesktopResolution(); width = desktopResolution.x_; height = desktopResolution.y_; } else { width = 800; height = 600; } } multiSample = Clamp(multiSample, 1, (int)D3DMULTISAMPLE_16_SAMPLES); // If nothing changes, do not reset the device if (width == width_ && height == height_ && fullscreen == fullscreen_ && vsync == vsync_ && tripleBuffer == tripleBuffer_ && multiSample == multiSample_) return true; if (!impl_->window_) { if (!OpenWindow(width, height)) return false; } if (!impl_->interface_) { if (!CreateInterface()) return false; CheckFeatureSupport(); } // Note: GetMultiSample() will not reflect the actual hardware multisample mode, but rather what the caller wanted. multiSample_ = multiSample; // Check fullscreen mode validity. If not valid, revert to windowed if (fullscreen) { PODVector resolutions = GetResolutions(); fullscreen = false; for (unsigned i = 0; i < resolutions.Size(); ++i) { if (width == resolutions[i].x_ && height == resolutions[i].y_) { fullscreen = true; break; } } } // Fall back to non-multisampled if unsupported multisampling mode if (multiSample > 1) { if (FAILED(impl_->interface_->CheckDeviceMultiSampleType(impl_->adapter_, impl_->deviceType_, fullscreenFormat, FALSE, (D3DMULTISAMPLE_TYPE)multiSample, NULL))) multiSample = 1; } // Save window placement if currently windowed if (!fullscreen_) { WINDOWPLACEMENT wndpl; wndpl.length = sizeof wndpl; if (SUCCEEDED(GetWindowPlacement(impl_->window_, &wndpl))) { windowPosX_ = wndpl.rcNormalPosition.left; windowPosY_ = wndpl.rcNormalPosition.top; } } if (fullscreen) { impl_->presentParams_.BackBufferFormat = fullscreenFormat; impl_->presentParams_.Windowed = false; } else { impl_->presentParams_.BackBufferFormat = D3DFMT_UNKNOWN; impl_->presentParams_.Windowed = true; } // Use AutoDepthStencil normally. However, if INTZ depth is available, create a depth texture instead bool autoDepthStencil = multiSample > 1 || !hardwareDepthSupport_; impl_->presentParams_.BackBufferWidth = width; impl_->presentParams_.BackBufferHeight = height; impl_->presentParams_.BackBufferCount = tripleBuffer ? 2 : 1; impl_->presentParams_.MultiSampleType = multiSample > 1 ? (D3DMULTISAMPLE_TYPE)multiSample : D3DMULTISAMPLE_NONE; impl_->presentParams_.MultiSampleQuality = 0; impl_->presentParams_.SwapEffect = D3DSWAPEFFECT_DISCARD; impl_->presentParams_.hDeviceWindow = impl_->window_; impl_->presentParams_.EnableAutoDepthStencil = autoDepthStencil ? TRUE : FALSE; impl_->presentParams_.AutoDepthStencilFormat = D3DFMT_D24S8; impl_->presentParams_.Flags = 0; impl_->presentParams_.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT; if (vsync) impl_->presentParams_.PresentationInterval = D3DPRESENT_INTERVAL_ONE; else impl_->presentParams_.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE; width_ = width; height_ = height; fullscreen_ = fullscreen; vsync_ = vsync; tripleBuffer_ = tripleBuffer; if (!impl_->device_) { unsigned adapter = D3DADAPTER_DEFAULT; unsigned deviceType = D3DDEVTYPE_HAL; // Check for PerfHUD adapter for (unsigned i=0; i < impl_->interface_->GetAdapterCount(); ++i) { D3DADAPTER_IDENTIFIER9 identifier; impl_->interface_->GetAdapterIdentifier(i, 0, &identifier); if (strstr(identifier.Description, "PerfHUD") != 0) { adapter = i; deviceType = D3DDEVTYPE_REF; break; } } impl_->interface_->GetAdapterIdentifier(adapter, 0, &impl_->adapterIdentifier_); if (!CreateDevice(adapter, deviceType)) return false; } else ResetDevice(); AdjustWindow(width, height, fullscreen); if (multiSample > 1) LOGINFO("Set screen mode " + String(width_) + "x" + String(height_) + " " + (fullscreen_ ? "fullscreen" : "windowed") + " multisample " + String(multiSample)); else LOGINFO("Set screen mode " + String(width_) + "x" + String(height_) + " " + (fullscreen_ ? "fullscreen" : "windowed")); using namespace ScreenMode; VariantMap eventData; eventData[P_WIDTH] = width_; eventData[P_HEIGHT] = height_; eventData[P_FULLSCREEN] = fullscreen_; SendEvent(E_SCREENMODE, eventData); return true; } bool Graphics::SetMode(int width, int height) { return SetMode(width, height, fullscreen_, vsync_, tripleBuffer_, multiSample_); } bool Graphics::ToggleFullscreen() { return SetMode(width_, height_, !fullscreen_, vsync_, tripleBuffer_, multiSample_); } void Graphics::Close() { if (impl_->window_) { depthTexture_.Reset(); DestroyWindow(impl_->window_); impl_->window_ = 0; } } bool Graphics::TakeScreenShot(Image& destImage) { PROFILE(TakeScreenShot); if (!impl_->device_) return false; D3DSURFACE_DESC surfaceDesc; impl_->defaultColorSurface_->GetDesc(&surfaceDesc); // If possible, get the backbuffer data, because it is a lot faster. // However, if we are multisampled, need to use the front buffer bool useBackBuffer = true; if (impl_->presentParams_.MultiSampleType) { useBackBuffer = false; surfaceDesc.Format = D3DFMT_A8R8G8B8; } IDirect3DSurface9* surface = 0; impl_->device_->CreateOffscreenPlainSurface(width_, height_, surfaceDesc.Format, D3DPOOL_SYSTEMMEM, &surface, 0); if (!surface) return false; if (useBackBuffer) impl_->device_->GetRenderTargetData(impl_->defaultColorSurface_, surface); else impl_->device_->GetFrontBufferData(0, surface); D3DLOCKED_RECT lockedRect; lockedRect.pBits = 0; surface->LockRect(&lockedRect, 0, D3DLOCK_NOSYSLOCK | D3DLOCK_READONLY); if (!lockedRect.pBits) { surface->Release(); return false; } destImage.SetSize(width_, height_, 3); unsigned char* destData = destImage.GetData(); if (surfaceDesc.Format == D3DFMT_R5G6B5) { for (int y = 0; y < height_; ++y) { unsigned short* src = (unsigned short*)((unsigned char*)lockedRect.pBits + y * lockedRect.Pitch); unsigned char* dest = destData + y * width_ * 3; for (int x = 0; x < width_; ++x) { unsigned short rgb = *src++; int b = rgb & 31; int g = (rgb >> 5) & 63; int r = (rgb >> 11); *dest++ = (int)(r * 255.0f / 31.0f); *dest++ = (int)(g * 255.0f / 63.0f); *dest++ = (int)(b * 255.0f / 31.0f); } } } else { for (int y = 0; y < height_; ++y) { unsigned char* src = (unsigned char*)lockedRect.pBits + y * lockedRect.Pitch; unsigned char* dest = destData + y * width_ * 3; for (int x = 0; x < width_; ++x) { *dest++ = src[2]; *dest++ = src[1]; *dest++ = src[0]; src += 4; } } } surface->UnlockRect(); surface->Release(); return true; } bool Graphics::BeginFrame() { if (!IsInitialized()) return false; // Check for lost device before rendering HRESULT hr = impl_->device_->TestCooperativeLevel(); if (hr != D3D_OK) { PROFILE(DeviceLost); deviceLost_ = true; // The device can not be reset yet, sleep and try again eventually if (hr == D3DERR_DEVICELOST) { Sleep(20); return false; } // The device is lost, but ready to be reset. Reset device but do not render on this frame yet if (hr == D3DERR_DEVICENOTRESET) { ResetDevice(); return false; } } impl_->device_->BeginScene(); // Set default rendertarget and depth buffer ResetRenderTargets(); // Cleanup textures from previous frame for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) SetTexture(i, 0); // Cleanup stream frequencies from previous frame ResetStreamFrequencies(); numPrimitives_ = 0; numBatches_ = 0; SendEvent(E_BEGINRENDERING); return true; } void Graphics::EndFrame() { if (!IsInitialized()) return; PROFILE(Present); SendEvent(E_ENDRENDERING); impl_->device_->EndScene(); impl_->device_->Present(0, 0, 0, 0); } void Graphics::Clear(unsigned flags, const Color& color, float depth, unsigned stencil) { DWORD d3dFlags = 0; if (flags & CLEAR_COLOR) d3dFlags |= D3DCLEAR_TARGET; if (flags & CLEAR_DEPTH) d3dFlags |= D3DCLEAR_ZBUFFER; if (flags & CLEAR_STENCIL) d3dFlags |= D3DCLEAR_STENCIL; impl_->device_->Clear(0, 0, d3dFlags, GetD3DColor(color), depth, stencil); } bool Graphics::ResolveToTexture(Texture2D* destination, const IntRect& viewport) { if (!destination || !destination->GetRenderSurface() || destination->GetWidth() != width_ || destination->GetHeight() != height_) return false; IntRect vpCopy = viewport; if (vpCopy.right_ <= vpCopy.left_) vpCopy.right_ = vpCopy.left_ + 1; if (vpCopy.bottom_ <= vpCopy.top_) vpCopy.bottom_ = vpCopy.top_ + 1; RECT rect; rect.left = Clamp(vpCopy.left_, 0, width_); rect.top = Clamp(vpCopy.top_, 0, height_); rect.right = Clamp(vpCopy.right_, 0, width_); rect.bottom = Clamp(vpCopy.bottom_, 0, height_); return SUCCEEDED(impl_->device_->StretchRect(impl_->defaultColorSurface_, &rect, (IDirect3DSurface9*)destination->GetRenderSurface()->GetSurface(), &rect, D3DTEXF_NONE)); } void Graphics::Draw(PrimitiveType type, unsigned vertexStart, unsigned vertexCount) { if (!vertexCount) return; ResetStreamFrequencies(); unsigned primitiveCount = 0; switch (type) { case TRIANGLE_LIST: primitiveCount = vertexCount / 3; impl_->device_->DrawPrimitive(D3DPT_TRIANGLELIST, vertexStart, primitiveCount); break; case LINE_LIST: primitiveCount = vertexCount / 2; impl_->device_->DrawPrimitive(D3DPT_LINELIST, vertexStart, primitiveCount); break; } numPrimitives_ += primitiveCount; ++numBatches_; } void Graphics::Draw(PrimitiveType type, unsigned indexStart, unsigned indexCount, unsigned minVertex, unsigned vertexCount) { if (!indexCount) return; ResetStreamFrequencies(); unsigned primitiveCount = 0; switch (type) { case TRIANGLE_LIST: primitiveCount = indexCount / 3; impl_->device_->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, minVertex, vertexCount, indexStart, primitiveCount); break; case LINE_LIST: primitiveCount = indexCount / 2; impl_->device_->DrawIndexedPrimitive(D3DPT_LINELIST, 0, minVertex, vertexCount, indexStart, primitiveCount); break; } numPrimitives_ += primitiveCount; ++numBatches_; } void Graphics::DrawInstanced(PrimitiveType type, unsigned indexStart, unsigned indexCount, unsigned minVertex, unsigned vertexCount, unsigned instanceCount) { if (!indexCount || !instanceCount) return; for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { VertexBuffer* buffer = vertexBuffers_[i]; if (buffer) { if (buffer->GetElementMask() & MASK_INSTANCEMATRIX1) SetStreamFrequency(i, D3DSTREAMSOURCE_INSTANCEDATA | 1); else SetStreamFrequency(i, D3DSTREAMSOURCE_INDEXEDDATA | instanceCount); } } unsigned primitiveCount = 0; switch (type) { case TRIANGLE_LIST: primitiveCount = indexCount / 3; impl_->device_->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, minVertex, vertexCount, indexStart, primitiveCount); break; case LINE_LIST: primitiveCount = indexCount / 2; impl_->device_->DrawIndexedPrimitive(D3DPT_LINELIST, 0, minVertex, vertexCount, indexStart, primitiveCount); break; } numPrimitives_ += instanceCount * primitiveCount; ++numBatches_; } void Graphics::SetVertexBuffer(VertexBuffer* buffer) { Vector vertexBuffers(1); PODVector elementMasks(1); vertexBuffers[0] = buffer; elementMasks[0] = MASK_DEFAULT; SetVertexBuffers(vertexBuffers, elementMasks); } bool Graphics::SetVertexBuffers(const Vector& buffers, const PODVector& elementMasks, unsigned instanceOffset) { if (buffers.Size() > MAX_VERTEX_STREAMS) { LOGERROR("Too many vertex buffers"); return false; } if (buffers.Size() != elementMasks.Size()) { LOGERROR("Amount of element masks and vertex buffers does not match"); return false; } // Build vertex declaration hash code out of the buffers & masks unsigned long long hash = 0; for (unsigned i = 0; i < buffers.Size(); ++i) { if (!buffers[i]) continue; hash |= buffers[i]->GetBufferHash(i, elementMasks[i]); } if (hash) { // If no previous vertex declaration for that hash, create new if (!vertexDeclarations_.Contains(hash)) { SharedPtr newDeclaration(new VertexDeclaration(this, buffers, elementMasks)); if (!newDeclaration->GetDeclaration()) { LOGERROR("Failed to create vertex declaration"); return false; } vertexDeclarations_[hash] = newDeclaration; } VertexDeclaration* declaration = vertexDeclarations_[hash]; if (declaration != vertexDeclaration_) { impl_->device_->SetVertexDeclaration(declaration->GetDeclaration()); vertexDeclaration_ = declaration; } } for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { VertexBuffer* buffer = 0; unsigned offset = 0; if (i < buffers.Size()) { buffer = buffers[i]; if (buffer && buffer->GetElementMask() & MASK_INSTANCEMATRIX1) offset = instanceOffset * buffer->GetVertexSize(); } if (buffer != vertexBuffers_[i] || offset != streamOffsets_[i]) { if (buffer) impl_->device_->SetStreamSource(i, (IDirect3DVertexBuffer9*)buffer->GetGPUObject(), offset, buffer->GetVertexSize()); else impl_->device_->SetStreamSource(i, 0, 0, 0); vertexBuffers_[i] = buffer; streamOffsets_[i] = offset; } } return true; } bool Graphics::SetVertexBuffers(const Vector >& buffers, const PODVector& elementMasks, unsigned instanceOffset) { if (buffers.Size() > MAX_VERTEX_STREAMS) { LOGERROR("Too many vertex buffers"); return false; } if (buffers.Size() != elementMasks.Size()) { LOGERROR("Amount of element masks and vertex buffers does not match"); return false; } // Build vertex declaration hash code out of the buffers & masks unsigned long long hash = 0; for (unsigned i = 0; i < buffers.Size(); ++i) { if (!buffers[i]) continue; hash |= buffers[i]->GetBufferHash(i, elementMasks[i]); } if (hash) { // If no previous vertex declaration for that hash, create new if (!vertexDeclarations_.Contains(hash)) { SharedPtr newDeclaration(new VertexDeclaration(this, buffers, elementMasks)); if (!newDeclaration->GetDeclaration()) { LOGERROR("Failed to create vertex declaration"); return false; } vertexDeclarations_[hash] = newDeclaration; } VertexDeclaration* declaration = vertexDeclarations_[hash]; if (declaration != vertexDeclaration_) { impl_->device_->SetVertexDeclaration(declaration->GetDeclaration()); vertexDeclaration_ = declaration; } } for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { VertexBuffer* buffer = 0; unsigned offset = 0; if (i < buffers.Size()) { buffer = buffers[i]; if (buffer && buffer->GetElementMask() & MASK_INSTANCEMATRIX1) offset = instanceOffset * buffer->GetVertexSize(); } if (buffer != vertexBuffers_[i] || offset != streamOffsets_[i]) { if (buffer) impl_->device_->SetStreamSource(i, (IDirect3DVertexBuffer9*)buffer->GetGPUObject(), offset, buffer->GetVertexSize()); else impl_->device_->SetStreamSource(i, 0, 0, 0); vertexBuffers_[i] = buffer; streamOffsets_[i] = offset; } } return true; } void Graphics::SetIndexBuffer(IndexBuffer* buffer) { if (buffer != indexBuffer_) { if (buffer) impl_->device_->SetIndices((IDirect3DIndexBuffer9*)buffer->GetGPUObject()); else impl_->device_->SetIndices(0); indexBuffer_ = buffer; } } void Graphics::SetShaders(ShaderVariation* vs, ShaderVariation* ps) { if (vs != vertexShader_) { // Clear all previous vertex shader register mappings for (HashMap::Iterator i = shaderParameters_.Begin(); i != shaderParameters_.End(); ++i) { if (i->second_.type_ == VS) { i->second_.register_ = M_MAX_UNSIGNED; i->second_.lastSource_ = (void*)M_MAX_UNSIGNED; } } // Create the shader now if not yet created. If already attempted, do not retry if (vs && !vs->IsCreated()) { if (!vs->IsFailed()) { PROFILE(CreateVertexShader); bool success = vs->Create(); if (success) LOGDEBUG("Created vertex shader " + vs->GetName()); else { LOGERROR("Failed to create vertex shader " + vs->GetName()); vs = 0; } } else vs = 0; } if (vs && vs->GetShaderType() == VS) { impl_->device_->SetVertexShader((IDirect3DVertexShader9*)vs->GetGPUObject()); // Update the parameter-to-register mappings const HashMap& parameters = vs->GetParameters(); for (HashMap::ConstIterator i = parameters.Begin(); i != parameters.End(); ++i) shaderParameters_[i->first_].register_ = i->second_.register_; } else { impl_->device_->SetVertexShader(0); vs = 0; } vertexShader_ = vs; } if (ps != pixelShader_) { for (HashMap::Iterator i = shaderParameters_.Begin(); i != shaderParameters_.End(); ++i) { if (i->second_.type_ == PS) { i->second_.register_ = M_MAX_UNSIGNED; i->second_.lastSource_ = (void*)M_MAX_UNSIGNED; } } if (ps && !ps->IsCreated()) { if (!ps->IsFailed()) { PROFILE(CreatePixelShader); bool success = ps->Create(); if (success) LOGDEBUG("Created pixel shader " + ps->GetName()); else { LOGERROR("Failed to create pixel shader " + ps->GetName()); ps = 0; } } else ps = 0; } if (ps && ps->GetShaderType() == PS) { impl_->device_->SetPixelShader((IDirect3DPixelShader9*)ps->GetGPUObject()); const HashMap& parameters = ps->GetParameters(); for (HashMap::ConstIterator i = parameters.Begin(); i != parameters.End(); ++i) shaderParameters_[i->first_].register_ = i->second_.register_; } else { impl_->device_->SetPixelShader(0); ps = 0; } pixelShader_ = ps; } } void Graphics::SetShaderParameter(StringHash param, const float* data, unsigned count) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, data, count / 4); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, data, count / 4); } void Graphics::SetShaderParameter(StringHash param, float value) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; float data[4]; data[0] = value; data[1] = 0.0f; data[2] = 0.0f; data[3] = 0.0f; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, &data[0], 1); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, &data[0], 1); } void Graphics::SetShaderParameter(StringHash param, const Color& color) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, color.Data(), 1); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, color.Data(), 1); } void Graphics::SetShaderParameter(StringHash param, const Matrix3& matrix) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; float data[12]; data[0] = matrix.m00_; data[1] = matrix.m01_; data[2] = matrix.m02_; data[3] = 0.0f; data[4] = matrix.m10_; data[5] = matrix.m11_; data[6] = matrix.m12_; data[7] = 0.0f; data[8] = matrix.m20_; data[9] = matrix.m21_; data[10] = matrix.m22_; data[11] = 0.0f; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, &data[0], 3); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, &data[0], 3); } void Graphics::SetShaderParameter(StringHash param, const Vector3& vector) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; float data[4]; data[0] = vector.x_; data[1] = vector.y_; data[2] = vector.z_; data[3] = 0.0f; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, &data[0], 1); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, &data[0], 1); } void Graphics::SetShaderParameter(StringHash param, const Matrix4& matrix) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, matrix.Data(), 4); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, matrix.Data(), 4); } void Graphics::SetShaderParameter(StringHash param, const Vector4& vector) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, vector.Data(), 1); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, vector.Data(), 1); } void Graphics::SetShaderParameter(StringHash param, const Matrix3x4& matrix) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return; if (i->second_.type_ == VS) impl_->device_->SetVertexShaderConstantF(i->second_.register_, matrix.Data(), 3); else impl_->device_->SetPixelShaderConstantF(i->second_.register_, matrix.Data(), 3); } void Graphics::RegisterShaderParameter(StringHash param, const ShaderParameter& definition) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End()) { // Define new parameter i = shaderParameters_.Insert(MakePair(param, definition)); i->second_.register_ = M_MAX_UNSIGNED; // Rehash the parameters to ensure minimum load factor and fast queries shaderParameters_.Rehash(NextPowerOfTwo(shaderParameters_.Size())); } else { // Existing parameter: check that there is no conflict if (i->second_.type_ != definition.type_) LOGWARNING("Shader type mismatch on shader parameter " + String(param)); // The same parameter is possibly defined with different sizes in different shaders. Use the highest size if (i->second_.regCount_ < definition.regCount_) i->second_.regCount_ = definition.regCount_; } } bool Graphics::NeedParameterUpdate(StringHash param, const void* source) { HashMap::Iterator i = shaderParameters_.Find(param); if (i == shaderParameters_.End() || i->second_.register_ >= MAX_CONSTANT_REGISTERS) return false; if (i->second_.lastSource_ != source) { i->second_.lastSource_ = source; return true; } else return false; } bool Graphics::NeedTextureUnit(TextureUnit unit) { return pixelShader_ && pixelShader_->HasTextureUnit(unit); } void Graphics::ClearParameterSource(StringHash param) { shaderParameters_[param].lastSource_ = (const void*)M_MAX_UNSIGNED; } void Graphics::ClearParameterSources() { for (HashMap::Iterator i = shaderParameters_.Begin(); i != shaderParameters_.End(); ++i) i->second_.lastSource_ = (const void*)M_MAX_UNSIGNED; } void Graphics::ClearTransformSources() { shaderParameters_[VSP_MODEL].lastSource_ = (const void*)M_MAX_UNSIGNED; shaderParameters_[VSP_VIEWPROJ].lastSource_ = (const void*)M_MAX_UNSIGNED; } void Graphics::SetTexture(unsigned index, Texture* texture) { if (index >= MAX_TEXTURE_UNITS) return; // Check if texture is currently bound as a rendertarget. In that case, use its backup texture, or blank if not defined if (texture) { if (texture == viewTexture_ || (renderTargets_[0] && renderTargets_[0]->GetParentTexture() == texture)) texture = texture->GetBackupTexture(); } if (texture != textures_[index]) { if (texture) impl_->device_->SetTexture(index, (IDirect3DBaseTexture9*)texture->GetGPUObject()); else impl_->device_->SetTexture(index, 0); textures_[index] = texture; } if (texture) { TextureFilterMode filterMode = texture->GetFilterMode(); if (filterMode == FILTER_DEFAULT) filterMode = defaultTextureFilterMode_; D3DTEXTUREFILTERTYPE minMag, mip; minMag = d3dMinMagFilter[filterMode]; if (minMag != impl_->minMagFilters_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_MAGFILTER, minMag); impl_->device_->SetSamplerState(index, D3DSAMP_MINFILTER, minMag); impl_->minMagFilters_[index] = minMag; } mip = d3dMipFilter[filterMode]; if (mip != impl_->mipFilters_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_MIPFILTER, mip); impl_->mipFilters_[index] = mip; } D3DTEXTUREADDRESS u, v; u = d3dAddressMode[texture->GetAddressMode(COORD_U)]; if (u != impl_->uAddressModes_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_ADDRESSU, u); impl_->uAddressModes_[index] = u; } v = d3dAddressMode[texture->GetAddressMode(COORD_V)]; if (v != impl_->vAddressModes_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_ADDRESSV, v); impl_->vAddressModes_[index] = v; } if (texture->GetType() == TextureCube::GetTypeStatic()) { D3DTEXTUREADDRESS w = d3dAddressMode[texture->GetAddressMode(COORD_W)]; if (w != impl_->wAddressModes_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_ADDRESSW, w); impl_->wAddressModes_[index] = w; } } if (u == D3DTADDRESS_BORDER || v == D3DTADDRESS_BORDER) { const Color& borderColor = texture->GetBorderColor(); if (borderColor != impl_->borderColors_[index]) { impl_->device_->SetSamplerState(index, D3DSAMP_BORDERCOLOR, GetD3DColor(borderColor)); impl_->borderColors_[index] = borderColor; } } } } void Graphics::SetDefaultTextureFilterMode(TextureFilterMode mode) { defaultTextureFilterMode_ = mode; } void Graphics::ResetRenderTargets() { for (unsigned i = 0; i < MAX_RENDERTARGETS; ++i) SetRenderTarget(i, (RenderSurface*)0); SetDepthStencil((RenderSurface*)0); SetViewport(IntRect(0, 0, width_, height_)); } void Graphics::ResetRenderTarget(unsigned index) { SetRenderTarget(index, (RenderSurface*)0); } void Graphics::ResetDepthStencil() { SetDepthStencil((RenderSurface*)0); } void Graphics::SetRenderTarget(unsigned index, RenderSurface* renderTarget) { if (index >= MAX_RENDERTARGETS) return; IDirect3DSurface9* newColorSurface = 0; if (renderTarget) { if (renderTarget->GetUsage() != TEXTURE_RENDERTARGET) return; newColorSurface = (IDirect3DSurface9*)renderTarget->GetSurface(); } else { if (!index) newColorSurface = impl_->defaultColorSurface_; } renderTargets_[index] = renderTarget; if (newColorSurface != impl_->colorSurfaces_[index]) { impl_->device_->SetRenderTarget(index, newColorSurface); impl_->colorSurfaces_[index] = newColorSurface; // Setting the first rendertarget causes viewport to be reset if (!index) { IntVector2 rtSize = GetRenderTargetDimensions(); viewport_ = IntRect(0, 0, rtSize.x_, rtSize.y_); } } // If the rendertarget is also bound as a texture, replace with backup texture or null if (renderTarget) { Texture* parentTexture = renderTarget->GetParentTexture(); for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) { if (textures_[i] == parentTexture) SetTexture(i, textures_[i]->GetBackupTexture()); } } } void Graphics::SetRenderTarget(unsigned index, Texture2D* texture) { RenderSurface* renderTarget = 0; if (texture) renderTarget = texture->GetRenderSurface(); SetRenderTarget(index, renderTarget); } void Graphics::SetDepthStencil(RenderSurface* depthStencil) { IDirect3DSurface9* newDepthStencilSurface = 0; if (depthStencil && depthStencil->GetUsage() == TEXTURE_DEPTHSTENCIL) { newDepthStencilSurface = (IDirect3DSurface9*)depthStencil->GetSurface(); depthStencil_ = depthStencil; } if (!newDepthStencilSurface) { newDepthStencilSurface = impl_->defaultDepthStencilSurface_; depthStencil_ = 0; } if (newDepthStencilSurface != impl_->depthStencilSurface_) { impl_->device_->SetDepthStencilSurface(newDepthStencilSurface); impl_->depthStencilSurface_ = newDepthStencilSurface; } } void Graphics::SetDepthStencil(Texture2D* texture) { RenderSurface* depthStencil = 0; if (texture) depthStencil = texture->GetRenderSurface(); SetDepthStencil(depthStencil); } void Graphics::SetViewTexture(Texture* texture) { viewTexture_ = texture; if (viewTexture_) { for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) { if (textures_[i] == viewTexture_) SetTexture(i, textures_[i]->GetBackupTexture()); } } } void Graphics::SetViewport(const IntRect& rect) { IntVector2 size = GetRenderTargetDimensions(); IntRect rectCopy = rect; if (rectCopy.right_ <= rectCopy.left_) rectCopy.right_ = rectCopy.left_ + 1; if (rectCopy.bottom_ <= rectCopy.top_) rectCopy.bottom_ = rectCopy.top_ + 1; rectCopy.left_ = Clamp(rectCopy.left_, 0, size.x_); rectCopy.top_ = Clamp(rectCopy.top_, 0, size.y_); rectCopy.right_ = Clamp(rectCopy.right_, 0, size.x_); rectCopy.bottom_ = Clamp(rectCopy.bottom_, 0, size.y_); D3DVIEWPORT9 vp; vp.MinZ = 0.0f; vp.MaxZ = 1.0f; vp.X = rectCopy.left_; vp.Y = rectCopy.top_; vp.Width = rectCopy.right_ - rectCopy.left_; vp.Height = rectCopy.bottom_ - rectCopy.top_; impl_->device_->SetViewport(&vp); viewport_ = rectCopy; // Disable scissor test, needs to be re-enabled by the user SetScissorTest(false); } void Graphics::SetAlphaTest(bool enable, CompareMode mode, float alphaRef) { if (enable != alphaTest_) { impl_->device_->SetRenderState(D3DRS_ALPHATESTENABLE, enable ? TRUE : FALSE); alphaTest_ = enable; } if (enable) { if (mode != alphaTestMode_) { impl_->device_->SetRenderState(D3DRS_ALPHAFUNC, d3dCmpFunc[mode]); alphaTestMode_ = mode; } alphaRef = Clamp(alphaRef, 0.0f, 1.0f); if (alphaRef != alphaRef_) { impl_->device_->SetRenderState(D3DRS_ALPHAREF, (DWORD)(alphaRef * 255.0f)); alphaRef_ = alphaRef; } } } void Graphics::SetTextureAnisotropy(unsigned level) { if (level < 1) level = 1; if (level != textureAnisotropy_) { for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) impl_->device_->SetSamplerState(i, D3DSAMP_MAXANISOTROPY, level); textureAnisotropy_ = level; } } void Graphics::SetBlendMode(BlendMode mode) { if (mode != blendMode_) { if (d3dBlendEnable[mode] != impl_->blendEnable_) { impl_->device_->SetRenderState(D3DRS_ALPHABLENDENABLE, d3dBlendEnable[mode]); impl_->blendEnable_ = d3dBlendEnable[mode]; } if (impl_->blendEnable_) { if (d3dSrcBlend[mode] != impl_->srcBlend_) { impl_->device_->SetRenderState(D3DRS_SRCBLEND, d3dSrcBlend[mode]); impl_->srcBlend_ = d3dSrcBlend[mode]; } if (d3dDestBlend[mode] != impl_->destBlend_) { impl_->device_->SetRenderState(D3DRS_DESTBLEND, d3dDestBlend[mode]); impl_->destBlend_ = d3dDestBlend[mode]; } } blendMode_ = mode; } } void Graphics::SetColorWrite(bool enable) { if (enable != colorWrite_) { impl_->device_->SetRenderState(D3DRS_COLORWRITEENABLE, enable ? D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_ALPHA : 0); colorWrite_ = enable; } } void Graphics::SetCullMode(CullMode mode) { if (mode != cullMode_) { impl_->device_->SetRenderState(D3DRS_CULLMODE, d3dCullMode[mode]); cullMode_ = mode; } } void Graphics::SetDepthBias(float constantBias, float slopeScaledBias) { if (constantBias != constantDepthBias_) { impl_->device_->SetRenderState(D3DRS_DEPTHBIAS, *((DWORD*)&constantBias)); constantDepthBias_ = constantBias; } if (slopeScaledBias != slopeScaledDepthBias_) { impl_->device_->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, *((DWORD*)&slopeScaledBias)); slopeScaledDepthBias_ = slopeScaledBias; } } void Graphics::SetDepthTest(CompareMode mode) { if (mode != depthTestMode_) { impl_->device_->SetRenderState(D3DRS_ZFUNC, d3dCmpFunc[mode]); depthTestMode_ = mode; } } void Graphics::SetDepthWrite(bool enable) { if (enable != depthWrite_) { impl_->device_->SetRenderState(D3DRS_ZWRITEENABLE, enable ? TRUE : FALSE); depthWrite_ = enable; } } void Graphics::SetFillMode(FillMode mode) { if (mode != fillMode_) { impl_->device_->SetRenderState(D3DRS_FILLMODE, d3dFillMode[mode]); fillMode_ = mode; } } void Graphics::SetScissorTest(bool enable, const Rect& rect, bool borderInclusive) { // During some light rendering loops, a full rect is toggled on/off repeatedly. // Disable scissor in that case to reduce state changes if (rect.min_.x_ <= 0.0f && rect.min_.y_ <= 0.0f && rect.max_.x_ >= 1.0f && rect.max_.y_ >= 1.0f) enable = false; if (enable) { IntVector2 rtSize(GetRenderTargetDimensions()); IntVector2 viewSize(viewport_.right_ - viewport_.left_, viewport_.bottom_ - viewport_.top_); IntVector2 viewPos(viewport_.left_, viewport_.top_); IntRect intRect; int expand = borderInclusive ? 1 : 0; intRect.left_ = Clamp((int)((rect.min_.x_ + 1.0f) * 0.5f * viewSize.x_) + viewPos.x_, 0, rtSize.x_ - 1); intRect.top_ = Clamp((int)((-rect.max_.y_ + 1.0f) * 0.5f * viewSize.y_) + viewPos.y_, 0, rtSize.y_ - 1); intRect.right_ = Clamp((int)((rect.max_.x_ + 1.0f) * 0.5f * viewSize.x_) + viewPos.x_ + expand, 0, rtSize.x_); intRect.bottom_ = Clamp((int)((-rect.min_.y_ + 1.0f) * 0.5f * viewSize.y_) + viewPos.y_ + expand, 0, rtSize.y_); if (intRect.right_ == intRect.left_) intRect.right_++; if (intRect.bottom_ == intRect.top_) intRect.bottom_++; if (intRect.right_ < intRect.left_ || intRect.bottom_ < intRect.top_) enable = false; if (enable && scissorRect_ != intRect) { RECT d3dRect; d3dRect.left = intRect.left_; d3dRect.top = intRect.top_; d3dRect.right = intRect.right_; d3dRect.bottom = intRect.bottom_; impl_->device_->SetScissorRect(&d3dRect); scissorRect_ = intRect; } } else scissorRect_ = IntRect::ZERO; if (enable != scissorTest_) { impl_->device_->SetRenderState(D3DRS_SCISSORTESTENABLE, enable ? TRUE : FALSE); scissorTest_ = enable; } } void Graphics::SetScissorTest(bool enable, const IntRect& rect) { IntVector2 rtSize(GetRenderTargetDimensions()); IntVector2 viewSize(viewport_.right_ - viewport_.left_, viewport_.bottom_ - viewport_.top_); IntVector2 viewPos(viewport_.left_, viewport_.top_); if (enable) { IntRect intRect; intRect.left_ = Clamp(rect.left_ + viewPos.x_, 0, rtSize.x_ - 1); intRect.top_ = Clamp(rect.top_ + viewPos.y_, 0, rtSize.y_ - 1); intRect.right_ = Clamp(rect.right_ + viewPos.x_, 0, rtSize.x_); intRect.bottom_ = Clamp(rect.bottom_ + viewPos.y_, 0, rtSize.y_); if (intRect.right_ == intRect.left_) intRect.right_++; if (intRect.bottom_ == intRect.top_) intRect.bottom_++; if (intRect.right_ < intRect.left_ || intRect.bottom_ < intRect.top_) enable = false; if (enable && scissorRect_ != intRect) { RECT d3dRect; d3dRect.left = intRect.left_; d3dRect.top = intRect.top_; d3dRect.right = intRect.right_; d3dRect.bottom = intRect.bottom_; impl_->device_->SetScissorRect(&d3dRect); scissorRect_ = intRect; } } else scissorRect_ = IntRect::ZERO; if (enable != scissorTest_) { impl_->device_->SetRenderState(D3DRS_SCISSORTESTENABLE, enable ? TRUE : FALSE); scissorTest_ = enable; } } void Graphics::SetStencilTest(bool enable, CompareMode mode, StencilOp pass, StencilOp fail, StencilOp zFail, unsigned stencilRef, unsigned compareMask, unsigned writeMask) { if (enable != stencilTest_) { impl_->device_->SetRenderState(D3DRS_STENCILENABLE, enable ? TRUE : FALSE); stencilTest_ = enable; } if (enable) { if (mode != stencilTestMode_) { impl_->device_->SetRenderState(D3DRS_STENCILFUNC, d3dCmpFunc[mode]); stencilTestMode_ = mode; } if (pass != stencilPass_) { impl_->device_->SetRenderState(D3DRS_STENCILPASS, d3dStencilOp[pass]); stencilPass_ = pass; } if (fail != stencilFail_) { impl_->device_->SetRenderState(D3DRS_STENCILFAIL, d3dStencilOp[fail]); stencilFail_ = fail; } if (zFail != stencilZFail_) { impl_->device_->SetRenderState(D3DRS_STENCILZFAIL, d3dStencilOp[zFail]); stencilZFail_ = zFail; } if (stencilRef != stencilRef_) { impl_->device_->SetRenderState(D3DRS_STENCILREF, stencilRef); stencilRef_ = stencilRef; } if (compareMask != stencilCompareMask_) { impl_->device_->SetRenderState(D3DRS_STENCILMASK, compareMask); stencilCompareMask_ = compareMask; } if (writeMask != stencilWriteMask_) { impl_->device_->SetRenderState(D3DRS_STENCILWRITEMASK, writeMask); stencilWriteMask_ = writeMask; } } } void Graphics::SetStreamFrequency(unsigned index, unsigned frequency) { if (index < MAX_VERTEX_STREAMS && streamFrequencies_[index] != frequency) { impl_->device_->SetStreamSourceFreq(index, frequency); streamFrequencies_[index] = frequency; } } void Graphics::ResetStreamFrequencies() { for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { if (streamFrequencies_[i] != 1) { impl_->device_->SetStreamSourceFreq(i, 1); streamFrequencies_[i] = 1; } } } void Graphics::SetForceSM2(bool enable) { forceSM2_ = enable; // If screen mode has been set, recheck features if (IsInitialized()) CheckFeatureSupport(); } bool Graphics::IsInitialized() const { return impl_->window_ != 0 && impl_->GetDevice() != 0; } unsigned Graphics::GetWindowHandle() const { return (unsigned)impl_->window_; } PODVector Graphics::GetResolutions() const { PODVector ret; if (!impl_->interface_) return ret; D3DFORMAT fullscreenFormat = impl_->GetDesktopFormat(); unsigned numModes = impl_->interface_->GetAdapterModeCount(impl_->adapter_, fullscreenFormat); D3DDISPLAYMODE displayMode; for (unsigned i = 0; i < numModes; ++i) { if (FAILED(impl_->interface_->EnumAdapterModes(impl_->adapter_, fullscreenFormat, i, &displayMode))) continue; if (displayMode.Format != fullscreenFormat) continue; IntVector2 newMode(displayMode.Width, displayMode.Height); // Check for duplicate before storing bool unique = true; for (unsigned j = 0; j < ret.Size(); ++j) { if (ret[j] == newMode) { unique = false; break; } } if (unique) ret.Push(newMode); } return ret; } PODVector Graphics::GetMultiSampleLevels() const { PODVector ret; // No multisampling always supported ret.Push(1); if (!impl_->interface_) return ret; D3DFORMAT fullscreenFormat = impl_->GetDesktopFormat(); for (unsigned i = (int)D3DMULTISAMPLE_2_SAMPLES; i < (int)D3DMULTISAMPLE_16_SAMPLES; ++i) { if (SUCCEEDED(impl_->interface_->CheckDeviceMultiSampleType(impl_->adapter_, impl_->deviceType_, fullscreenFormat, FALSE, (D3DMULTISAMPLE_TYPE)i, NULL))) ret.Push(i); } return ret; } VertexBuffer* Graphics::GetVertexBuffer(unsigned index) const { return index < MAX_VERTEX_STREAMS ? vertexBuffers_[index] : 0; } TextureUnit Graphics::GetTextureUnit(const String& name) { HashMap::Iterator i = textureUnits_.Find(name); if (i != textureUnits_.End()) return i->second_; else return MAX_TEXTURE_UNITS; } Texture* Graphics::GetTexture(unsigned index) const { return index < MAX_TEXTURE_UNITS ? textures_[index] : 0; } RenderSurface* Graphics::GetRenderTarget(unsigned index) const { return index < MAX_RENDERTARGETS ? renderTargets_[index] : 0; } Texture2D* Graphics::GetDepthTexture() const { return depthTexture_; } unsigned Graphics::GetStreamFrequency(unsigned index) const { return index < MAX_VERTEX_STREAMS ? streamFrequencies_[index] : 0; } IntVector2 Graphics::GetRenderTargetDimensions() const { int width, height; if (renderTargets_[0]) { width = renderTargets_[0]->GetWidth(); height = renderTargets_[0]->GetHeight(); } else { width = width_; height = height_; } return IntVector2(width, height); } void Graphics::AddGPUObject(GPUObject* object) { gpuObjects_.Push(object); } void Graphics::RemoveGPUObject(GPUObject* object) { Vector::Iterator i = gpuObjects_.Find(object); if (i != gpuObjects_.End()) gpuObjects_.Erase(i); } unsigned Graphics::GetAlphaFormat() { return D3DFMT_A8; } unsigned Graphics::GetLuminanceFormat() { return D3DFMT_L8; } unsigned Graphics::GetLuminanceAlphaFormat() { return D3DFMT_A8L8; } unsigned Graphics::GetRGBFormat() { return D3DFMT_X8R8G8B8; } unsigned Graphics::GetRGBAFormat() { return D3DFMT_A8R8G8B8; } unsigned Graphics::GetFloatFormat() { return D3DFMT_R32F; } unsigned Graphics::GetLinearDepthFormat() { return D3DFMT_R32F; } unsigned Graphics::GetDepthStencilFormat() { return depthStencilFormat; } bool Graphics::OpenWindow(int width, int height) { WNDCLASSW wc; wc.style = CS_HREDRAW | CS_VREDRAW; wc.lpfnWndProc = wndProc; wc.cbClsExtra = 0; wc.cbWndExtra = 0; wc.hInstance = impl_->instance_; wc.hIcon = LoadIconW(0, MAKEINTRESOURCEW(32512)); wc.hCursor = LoadCursorW(0, MAKEINTRESOURCEW(32512)); wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH); wc.lpszMenuName = 0; wc.lpszClassName = L"D3DWindow"; RegisterClassW(&wc); RECT rect = {0, 0, width, height}; AdjustWindowRect(&rect, windowStyle, false); impl_->window_ = CreateWindowW(L"D3DWindow", WString(windowTitle_).CString(), windowStyle, CW_USEDEFAULT, CW_USEDEFAULT, rect.right, rect.bottom, 0, 0, impl_->instance_, 0); if (!impl_->window_) { LOGERROR("Could not create window"); return false; } SetWindowLongPtrW(impl_->window_, GWLP_USERDATA, reinterpret_cast(this)); LOGINFO("Created application window"); return true; } void Graphics::AdjustWindow(int newWidth, int newHeight, bool newFullscreen) { // Adjust window style/size now if (newFullscreen) { SetWindowLongPtrW(impl_->window_, GWL_STYLE, WS_POPUP); SetWindowPos(impl_->window_, HWND_TOP, 0, 0, newWidth, newHeight, SWP_SHOWWINDOW | SWP_NOCOPYBITS); } else { RECT rect = {0, 0, newWidth, newHeight}; AdjustWindowRect(&rect, windowStyle, FALSE); SetWindowLongPtrW(impl_->window_, GWL_STYLE, windowStyle); SetWindowPos(impl_->window_, HWND_TOP, windowPosX_, windowPosY_, rect.right - rect.left, rect.bottom - rect.top, SWP_SHOWWINDOW | SWP_NOCOPYBITS); // Clean up the desktop of old window contents InvalidateRect(0, 0, TRUE); } } bool Graphics::CreateInterface() { impl_->interface_ = Direct3DCreate9(D3D9b_SDK_VERSION); if (!impl_->interface_) { LOGERROR("Could not create Direct3D9 interface"); return false; } if (FAILED(impl_->interface_->GetDeviceCaps(impl_->adapter_, impl_->deviceType_, &impl_->deviceCaps_))) { LOGERROR("Could not get Direct3D capabilities"); return false; } if (FAILED(impl_->interface_->GetAdapterIdentifier(impl_->adapter_, 0, &impl_->adapterIdentifier_))) { LOGERROR("Could not get Direct3D adapter identifier"); return false; } if (impl_->deviceCaps_.PixelShaderVersion < D3DPS_VERSION(2, 0)) { LOGERROR("Shader model 2.0 display adapter is required"); return false; } return true; } bool Graphics::CreateDevice(unsigned adapter, unsigned deviceType) { DWORD behaviorFlags = 0; if (impl_->deviceCaps_.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT) { behaviorFlags |= D3DCREATE_HARDWARE_VERTEXPROCESSING; if (impl_->deviceCaps_.DevCaps & D3DDEVCAPS_PUREDEVICE) behaviorFlags |= D3DCREATE_PUREDEVICE; } else behaviorFlags |= D3DCREATE_SOFTWARE_VERTEXPROCESSING; if (FAILED(impl_->interface_->CreateDevice( adapter, // adapter (D3DDEVTYPE)deviceType, // device type impl_->window_, // window associated with device behaviorFlags, // vertex processing &impl_->presentParams_, // present parameters &impl_->device_))) // return created device { LOGERROR("Could not create Direct3D9 device"); return false; } impl_->adapter_ = adapter; impl_->deviceType_ = (D3DDEVTYPE)deviceType; OnDeviceReset(); LOGINFO("Created Direct3D9 device"); return true; } void Graphics::CheckFeatureSupport() { // Reset features first lightPrepassSupport_ = false; deferredSupport_ = false; hardwareShadowSupport_ = false; hiresShadowSupport_ = false; streamOffsetSupport_ = false; hasSM3_ = false; depthStencilFormat = D3DFMT_D24S8; // Check hardware shadow map support: prefer NVIDIA style hardware depth compared shadow maps if available shadowMapFormat_ = D3DFMT_D16; if (impl_->CheckFormatSupport((D3DFORMAT)shadowMapFormat_, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE)) { hardwareShadowSupport_ = true; // Check for hires depth support hiresShadowMapFormat_ = D3DFMT_D24X8; if (impl_->CheckFormatSupport((D3DFORMAT)hiresShadowMapFormat_, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE)) hiresShadowSupport_ = true; else hiresShadowMapFormat_ = shadowMapFormat_; } else { // ATI DF16 format needs manual depth compare in the shader shadowMapFormat_ = MAKEFOURCC('D', 'F', '1', '6'); if (impl_->CheckFormatSupport((D3DFORMAT)shadowMapFormat_, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE)) { // Check for hires depth support hiresShadowMapFormat_ = MAKEFOURCC('D', 'F', '2', '4'); if (impl_->CheckFormatSupport((D3DFORMAT)hiresShadowMapFormat_, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE)) hiresShadowSupport_ = true; else hiresShadowMapFormat_ = shadowMapFormat_; } else { // No shadow map support shadowMapFormat_ = 0; hiresShadowMapFormat_ = 0; } } // Check for Intel 4 Series with an old driver, enable manual shadow map compare in that case if (shadowMapFormat_ == D3DFMT_D16) { if (impl_->adapterIdentifier_.VendorId == 0x8086 && impl_->adapterIdentifier_.DeviceId == 0x2a42 && impl_->adapterIdentifier_.DriverVersion.QuadPart <= 0x0007000f000a05d0ULL) hardwareShadowSupport_ = false; } // Check for dummy color rendertarget format used with hardware shadow maps dummyColorFormat_ = D3DFMT_A8R8G8B8; D3DFORMAT nullFormat = (D3DFORMAT)MAKEFOURCC('N', 'U', 'L', 'L'); if (impl_->CheckFormatSupport(nullFormat, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) dummyColorFormat_ = nullFormat; else if (impl_->CheckFormatSupport(D3DFMT_R16F, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) dummyColorFormat_ = D3DFMT_R16F; else if (impl_->CheckFormatSupport(D3DFMT_R5G6B5, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) dummyColorFormat_ = D3DFMT_R5G6B5; else if (impl_->CheckFormatSupport(D3DFMT_A4R4G4B4, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) dummyColorFormat_ = D3DFMT_A4R4G4B4; // Check for Shader Model 3 if (!forceSM2_) { if (impl_->deviceCaps_.VertexShaderVersion >= D3DVS_VERSION(3, 0) && impl_->deviceCaps_.PixelShaderVersion >= D3DPS_VERSION(3, 0)) hasSM3_ = true; } // Check for readable hardware depth-stencil format (INTZ), light pre-pass and deferred rendering support if (impl_->CheckFormatSupport((D3DFORMAT)MAKEFOURCC('I', 'N', 'T', 'Z'), D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE)) { // Sampling INTZ buffer directly while also using it for depth test results in performance loss on ATI GPUs, // so use INTZ buffer only with other vendors if (impl_->adapterIdentifier_.VendorId != 0x1002) { hardwareDepthSupport_ = true; lightPrepassSupport_ = true; depthStencilFormat = MAKEFOURCC('I', 'N', 'T', 'Z'); if (impl_->deviceCaps_.NumSimultaneousRTs >= 3) deferredSupport_ = true; } } if (!hardwareDepthSupport_) { // If hardware depth is not supported, must support 2 rendertargets and R32F format for light pre-pass, // and 4 for deferred rendering if (impl_->deviceCaps_.NumSimultaneousRTs >= 2 && impl_->CheckFormatSupport(D3DFMT_R32F, D3DUSAGE_RENDERTARGET, D3DRTYPE_TEXTURE)) { lightPrepassSupport_ = true; if (impl_->deviceCaps_.NumSimultaneousRTs >= 4) deferredSupport_ = true; } } // Check for stream offset (needed for instancing) if (impl_->deviceCaps_.DevCaps2 & D3DDEVCAPS2_STREAMOFFSET) streamOffsetSupport_ = true; SendEvent(E_GRAPHICSFEATURES); } void Graphics::ResetDevice() { OnDeviceLost(); if (SUCCEEDED(impl_->device_->Reset(&impl_->presentParams_))) { deviceLost_ = false; OnDeviceReset(); } } void Graphics::OnDeviceLost() { if (impl_->defaultColorSurface_) { impl_->defaultColorSurface_->Release(); impl_->defaultColorSurface_ = 0; } if (impl_->defaultDepthStencilSurface_) { if (systemDepthStencil_) impl_->defaultDepthStencilSurface_->Release(); impl_->defaultDepthStencilSurface_ = 0; } for (unsigned i = 0; i < gpuObjects_.Size(); ++i) gpuObjects_[i]->OnDeviceLost(); } void Graphics::OnDeviceReset() { ResetCachedState(); for (unsigned i = 0; i < gpuObjects_.Size(); ++i) gpuObjects_[i]->OnDeviceReset(); // Get default surfaces impl_->device_->GetRenderTarget(0, &impl_->defaultColorSurface_); if (impl_->presentParams_.EnableAutoDepthStencil) { impl_->device_->GetDepthStencilSurface(&impl_->defaultDepthStencilSurface_); systemDepthStencil_ = true; } else { if (!depthTexture_) { depthTexture_ = new Texture2D(context_); depthTexture_->SetSize(width_, height_, (D3DFORMAT)MAKEFOURCC('I', 'N', 'T', 'Z'), TEXTURE_DEPTHSTENCIL); } impl_->defaultDepthStencilSurface_ = (IDirect3DSurface9*)depthTexture_->GetRenderSurface()->GetSurface(); systemDepthStencil_ = false; // When AutoDepthStencil is not used, depth buffering must be enabled manually impl_->device_->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE); } } void Graphics::ResetCachedState() { for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) { vertexBuffers_[i] = 0; streamOffsets_[i] = 0; } for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i) { textures_[i] = 0; impl_->minMagFilters_[i] = D3DTEXF_POINT; impl_->mipFilters_[i] = D3DTEXF_NONE; impl_->uAddressModes_[i] = D3DTADDRESS_WRAP; impl_->vAddressModes_[i] = D3DTADDRESS_WRAP; impl_->wAddressModes_[i] = D3DTADDRESS_WRAP; impl_->borderColors_[i] = Color(0.0f, 0.0f, 0.0f, 0.0f); } for (unsigned i = 0; i < MAX_RENDERTARGETS; ++i) { renderTargets_[i] = 0; impl_->colorSurfaces_[i] = 0; } depthStencil_ = 0; impl_->depthStencilSurface_ = 0; viewTexture_ = 0; viewport_ = IntRect(0, 0, width_, height_); for (unsigned i = 0; i < MAX_VERTEX_STREAMS; ++i) streamFrequencies_[i] = 1; indexBuffer_ = 0; vertexDeclaration_ = 0; vertexShader_ = 0; pixelShader_ = 0; blendMode_ = BLEND_REPLACE; alphaTest_ = false; alphaTestMode_ = CMP_ALWAYS; alphaRef_ = 0.0f; textureAnisotropy_ = 1; colorWrite_ = true; cullMode_ = CULL_CCW; constantDepthBias_ = 0.0f; slopeScaledDepthBias_ = 0.0f; depthTestMode_ = CMP_LESSEQUAL; depthWrite_ = true; fillMode_ = FILL_SOLID; scissorTest_ = false; scissorRect_ = IntRect::ZERO; stencilTest_ = false; stencilTestMode_ = CMP_ALWAYS; stencilPass_ = OP_KEEP; stencilFail_ = OP_KEEP; stencilZFail_ = OP_KEEP; stencilRef_ = 0; stencilCompareMask_ = M_MAX_UNSIGNED; stencilWriteMask_ = M_MAX_UNSIGNED; impl_->blendEnable_ = FALSE; impl_->srcBlend_ = D3DBLEND_ONE; impl_->destBlend_ = D3DBLEND_ZERO; } void Graphics::SetTextureUnitMappings() { textureUnits_["DiffMap"] = TU_DIFFUSE; textureUnits_["DiffCubeMap"] = TU_DIFFUSE; textureUnits_["NormalMap"] = TU_NORMAL; textureUnits_["SpecMap"] = TU_SPECULAR; textureUnits_["EmissiveMap"] = TU_EMISSIVE; textureUnits_["DetailMap"] = TU_DETAIL; textureUnits_["EnvironmentMap"] = TU_ENVIRONMENT; textureUnits_["EnvironmentCubeMap"] = TU_ENVIRONMENT; textureUnits_["LightRampMap"] = TU_LIGHTRAMP; textureUnits_["LightSpotMap"] = TU_LIGHTSHAPE; textureUnits_["LightCubeMap"] = TU_LIGHTSHAPE; textureUnits_["ShadowMap"] = TU_SHADOWMAP; textureUnits_["FaceSelectCubeMap"] = TU_FACESELECT; textureUnits_["IndirectionCubeMap"] = TU_INDIRECTION; } void Graphics::HandleWindowMessage(StringHash eventType, VariantMap& eventData) { using namespace WindowMessage; if (eventData[P_WINDOW].GetInt() != (int)impl_->window_) return; switch (eventData[P_MSG].GetInt()) { case WM_CLOSE: Close(); eventData[P_HANDLED] = true; break; case WM_DESTROY: eventData[P_HANDLED] = true; break; } } LRESULT CALLBACK wndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) { using namespace WindowMessage; Graphics* graphics = reinterpret_cast(GetWindowLongPtr(hwnd, GWLP_USERDATA)); if (graphics && graphics->IsInitialized()) { VariantMap eventData; eventData[P_WINDOW] = (int)hwnd; eventData[P_MSG] = (int)msg; eventData[P_WPARAM] = (int)wParam; eventData[P_LPARAM] = (int)lParam; eventData[P_HANDLED] = false; graphics->SendEvent(E_WINDOWMESSAGE, eventData); if (eventData[P_HANDLED].GetBool()) return 0; } return DefWindowProcW(hwnd, msg, wParam, lParam); } void RegisterGraphicsLibrary(Context* context) { Animation::RegisterObject(context); Material::RegisterObject(context); Model::RegisterObject(context); Shader::RegisterObject(context); Technique::RegisterObject(context); Texture2D::RegisterObject(context); TextureCube::RegisterObject(context); Camera::RegisterObject(context); Drawable::RegisterObject(context); Light::RegisterObject(context); StaticModel::RegisterObject(context); Skybox::RegisterObject(context); AnimatedModel::RegisterObject(context); AnimationController::RegisterObject(context); BillboardSet::RegisterObject(context); ParticleEmitter::RegisterObject(context); DebugRenderer::RegisterObject(context); Octree::RegisterObject(context); Zone::RegisterObject(context); }