// // Urho3D Engine // Copyright (c) 2008-2011 Lasse Öörni // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include "Precompiled.h" #include "Camera.h" #include "DebugRenderer.h" #include "Geometry.h" #include "Graphics.h" #include "Light.h" #include "Log.h" #include "Material.h" #include "OcclusionBuffer.h" #include "Octree.h" #include "Renderer.h" #include "Profiler.h" #include "Scene.h" #include "ShaderVariation.h" #include "Sort.h" #include "Technique.h" #include "Texture2D.h" #include "TextureCube.h" #include "VertexBuffer.h" #include "View.h" #include "WorkQueue.h" #include "Zone.h" #include "DebugNew.h" static const Vector3 directions[] = { Vector3(1.0f, 0.0f, 0.0f), Vector3(-1.0f, 0.0f, 0.0f), Vector3(0.0f, 1.0f, 0.0f), Vector3(0.0f, -1.0f, 0.0f), Vector3(0.0f, 0.0f, 1.0f), Vector3(0.0f, 0.0f, -1.0f) }; static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64; void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex) { View* view = reinterpret_cast(item->aux_); Drawable** start = reinterpret_cast(item->start_); Drawable** end = reinterpret_cast(item->end_); Drawable** unculledStart = &view->tempDrawables_[0][0] + view->unculledDrawableStart_; OcclusionBuffer* buffer = view->occlusionBuffer_; while (start != end) { Drawable* drawable = *start; bool useOcclusion = start < unculledStart; unsigned char flags = drawable->GetDrawableFlags(); ++start; if (flags & DRAWABLE_ZONE) continue; drawable->UpdateDistance(view->frame_); // If draw distance non-zero, check it float maxDistance = drawable->GetDrawDistance(); if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance) continue; if (buffer && useOcclusion && !buffer->IsVisible(drawable->GetWorldBoundingBox())) continue; drawable->MarkInView(view->frame_); // For geometries, clear lights and find new zone if necessary if (flags & DRAWABLE_GEOMETRY) { drawable->ClearLights(); if (!drawable->GetZone() && !view->cameraZoneOverride_) view->FindZone(drawable, threadIndex); } } } void ProcessLightWork(const WorkItem* item, unsigned threadIndex) { View* view = reinterpret_cast(item->aux_); LightQueryResult* query = reinterpret_cast(item->start_); view->ProcessLight(*query, threadIndex); } void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex) { const FrameInfo& frame = *(reinterpret_cast(item->aux_)); Drawable** start = reinterpret_cast(item->start_); Drawable** end = reinterpret_cast(item->end_); while (start != end) { Drawable* drawable = *start; drawable->UpdateGeometry(frame); ++start; } } void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex) { BatchQueue* queue = reinterpret_cast(item->start_); queue->SortFrontToBack(); } void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex) { BatchQueue* queue = reinterpret_cast(item->start_); queue->SortBackToFront(); } void SortLightQueueWork(const WorkItem* item, unsigned threadIndex) { LightBatchQueue* start = reinterpret_cast(item->start_); for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i) start->shadowSplits_[i].shadowBatches_.SortFrontToBack(); start->litBatches_.SortFrontToBack(); } OBJECTTYPESTATIC(View); View::View(Context* context) : Object(context), graphics_(GetSubsystem()), renderer_(GetSubsystem()), octree_(0), camera_(0), cameraZone_(0), farClipZone_(0), renderTarget_(0), depthStencil_(0) { frame_.camera_ = 0; // Create octree query vectors for each thread tempDrawables_.Resize(GetSubsystem()->GetNumThreads() + 1); tempZones_.Resize(GetSubsystem()->GetNumThreads() + 1); } View::~View() { } bool View::Define(RenderSurface* renderTarget, const Viewport& viewport) { if (!viewport.scene_ || !viewport.camera_) return false; // If scene is loading asynchronously, it is incomplete and should not be rendered if (viewport.scene_->IsAsyncLoading()) return false; Octree* octree = viewport.scene_->GetComponent(); if (!octree) return false; // Check for the render texture being too large if (renderer_->GetLightPrepass() && renderTarget) { if (renderTarget->GetWidth() > graphics_->GetWidth() || renderTarget->GetHeight() > graphics_->GetHeight()) { // Display message only once per render target, do not spam each frame if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End()) { gBufferErrorDisplayed_.Insert(renderTarget); LOGERROR("Render texture is larger than the G-buffer, can not render"); } return false; } } octree_ = octree; camera_ = viewport.camera_; renderTarget_ = renderTarget; if (!renderTarget) depthStencil_ = 0; else depthStencil_ = renderTarget->GetLinkedDepthBuffer(); // Validate the rect and calculate size. If zero rect, use whole render target size int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth(); int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight(); if (viewport.rect_ != IntRect::ZERO) { screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1); screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1); screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth); screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight); } else screenRect_ = IntRect(0, 0, rtWidth, rtHeight); width_ = screenRect_.right_ - screenRect_.left_; height_ = screenRect_.bottom_ - screenRect_.top_; // Set possible quality overrides from the camera drawShadows_ = renderer_->GetDrawShadows(); materialQuality_ = renderer_->GetMaterialQuality(); maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles(); unsigned viewOverrideFlags = camera_->GetViewOverrideFlags(); if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY) materialQuality_ = QUALITY_LOW; if (viewOverrideFlags & VO_DISABLE_SHADOWS) drawShadows_ = false; if (viewOverrideFlags & VO_DISABLE_OCCLUSION) maxOccluderTriangles_ = 0; return true; } void View::Update(const FrameInfo& frame) { if (!camera_ || !octree_) return; frame_.camera_ = camera_; frame_.timeStep_ = frame.timeStep_; frame_.frameNumber_ = frame.frameNumber_; frame_.viewSize_ = IntVector2(width_, height_); // Clear old light scissor cache, geometry, light, occluder & batch lists lightScissorCache_.Clear(); geometries_.Clear(); allGeometries_.Clear(); geometryDepthBounds_.Clear(); lights_.Clear(); zones_.Clear(); occluders_.Clear(); baseQueue_.Clear(); preAlphaQueue_.Clear(); gbufferQueue_.Clear(); alphaQueue_.Clear(); postAlphaQueue_.Clear(); lightQueues_.Clear(); vertexLightQueues_.Clear(); // Do not update if camera projection is illegal // (there is a possibility of crash if occlusion is used and it can not clip properly) if (!camera_->IsProjectionValid()) return; // Set automatic aspect ratio if required if (camera_->GetAutoAspectRatio()) camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_); // Cache the camera frustum to avoid recalculating it constantly frustum_ = camera_->GetFrustum(); // Reset shadow map allocations; they can be reused between views as each is rendered completely at a time renderer_->ResetShadowMapAllocations(); GetDrawables(); GetBatches(); UpdateGeometries(); } void View::Render() { if (!octree_ || !camera_) return; // Forget parameter sources from the previous view graphics_->ClearParameterSources(); // If stream offset is supported, write all instance transforms to a single large buffer // Else we must lock the instance buffer for each batch group if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport()) PrepareInstancingBuffer(); // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio // again to ensure correct projection will be used if (camera_->GetAutoAspectRatio()) camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_)); graphics_->SetColorWrite(true); graphics_->SetFillMode(FILL_SOLID); // Bind the face selection and indirection cube maps for point light shadows graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap()); graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap()); // Render if (renderer_->GetLightPrepass()) RenderBatchesLightPrepass(); else RenderBatchesForward(); graphics_->SetScissorTest(false); graphics_->SetStencilTest(false); graphics_->ResetStreamFrequencies(); // If this is a main view, draw the associated debug geometry now if (!renderTarget_) { Scene* scene = static_cast(octree_->GetNode()); if (scene) { DebugRenderer* debug = scene->GetComponent(); if (debug) { debug->SetView(camera_); debug->Render(); } } } // "Forget" the camera, octree and zone after rendering camera_ = 0; octree_ = 0; cameraZone_ = 0; farClipZone_ = 0; occlusionBuffer_ = 0; frame_.camera_ = 0; } void View::GetDrawables() { PROFILE(GetDrawables); WorkQueue* queue = GetSubsystem(); PODVector& tempDrawables = tempDrawables_[0]; // Perform one octree query to get everything, then examine the results FrustumOctreeQuery query(tempDrawables, frustum_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT | DRAWABLE_ZONE); octree_->GetDrawables(query); // Add unculled geometries & lights unculledDrawableStart_ = tempDrawables.Size(); octree_->GetUnculledDrawables(tempDrawables, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT); // Get zones and occluders first highestZonePriority_ = M_MIN_INT; int bestPriority = M_MIN_INT; Vector3 cameraPos = camera_->GetWorldPosition(); // Get default zone first in case we do not have zones defined Zone* defaultZone = renderer_->GetDefaultZone(); cameraZone_ = farClipZone_ = defaultZone; for (PODVector::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i) { Drawable* drawable = *i; unsigned char flags = drawable->GetDrawableFlags(); if (flags & DRAWABLE_ZONE) { Zone* zone = static_cast(drawable); zones_.Push(zone); int priority = zone->GetPriority(); if (priority > highestZonePriority_) highestZonePriority_ = priority; if (zone->IsInside(cameraPos) && priority > bestPriority) { cameraZone_ = zone; bestPriority = priority; } } else if (flags & DRAWABLE_GEOMETRY && drawable->IsOccluder()) occluders_.Push(drawable); } // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone cameraZoneOverride_ = cameraZone_->GetOverride(); if (!cameraZoneOverride_) { Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0, 0, camera_->GetFarClip()); bestPriority = M_MIN_INT; for (PODVector::Iterator i = zones_.Begin(); i != zones_.End(); ++i) { int priority = (*i)->GetPriority(); if ((*i)->IsInside(farClipPos) && priority > bestPriority) { farClipZone_ = *i; bestPriority = priority; } } } if (farClipZone_ == defaultZone) farClipZone_ = cameraZone_; // If occlusion in use, get & render the occluders occlusionBuffer_ = 0; if (maxOccluderTriangles_ > 0) { UpdateOccluders(occluders_, camera_); if (occluders_.Size()) { PROFILE(DrawOcclusion); occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_); DrawOccluders(occlusionBuffer_, occluders_); } } // Check visibility and find zones for moved drawables in worker threads { WorkItem item; item.workFunction_ = CheckVisibilityWork; item.aux_ = this; PODVector::Iterator start = tempDrawables.Begin(); while (start != tempDrawables.End()) { PODVector::Iterator end = tempDrawables.End(); if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM) end = start + CHECK_DRAWABLES_PER_WORK_ITEM; item.start_ = &(*start); item.end_ = &(*end); queue->AddWorkItem(item); start = end; } queue->Complete(); } // Sort into geometries & lights, and build visible scene bounding boxes in world and view space sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO; sceneBox_.defined_ = false; sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO; sceneViewBox_.defined_ = false; Matrix3x4 view(camera_->GetInverseWorldTransform()); for (unsigned i = 0; i < tempDrawables.Size(); ++i) { Drawable* drawable = tempDrawables[i]; unsigned char flags = drawable->GetDrawableFlags(); if (flags & DRAWABLE_ZONE || !drawable->IsInView(frame_)) continue; if (flags & DRAWABLE_GEOMETRY) { // Expand the scene bounding boxes. However, do not take "infinite" objects such as the skybox into account, // as the bounding boxes are also used for shadow focusing const BoundingBox& geomBox = drawable->GetWorldBoundingBox(); BoundingBox geomViewBox = geomBox.Transformed(view); if (geomBox.Size().LengthFast() < M_LARGE_VALUE) { sceneBox_.Merge(geomBox); sceneViewBox_.Merge(geomViewBox); } // Store depth info for split directional light queries GeometryDepthBounds bounds; bounds.min_ = geomViewBox.min_.z_; bounds.max_ = geomViewBox.max_.z_; geometryDepthBounds_.Push(bounds); geometries_.Push(drawable); allGeometries_.Push(drawable); } else if (flags & DRAWABLE_LIGHT) { Light* light = static_cast(drawable); lights_.Push(light); } } // Sort the lights to brightest/closest first for (unsigned i = 0; i < lights_.Size(); ++i) { Light* light = lights_[i]; light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition())); } Sort(lights_.Begin(), lights_.End(), CompareDrawables); } void View::GetBatches() { WorkQueue* queue = GetSubsystem(); bool prepass = renderer_->GetLightPrepass(); // Process lit geometries and shadow casters for each light { PROFILE_MULTIPLE(ProcessLights, lights_.Size()); lightQueryResults_.Resize(lights_.Size()); WorkItem item; item.workFunction_ = ProcessLightWork; item.aux_ = this; for (unsigned i = 0; i < lightQueryResults_.Size(); ++i) { LightQueryResult& query = lightQueryResults_[i]; query.light_ = lights_[i]; item.start_ = &query; queue->AddWorkItem(item); } // Ensure all lights have been processed before proceeding queue->Complete(); } // Build light queues and lit batches { bool fallback = graphics_->GetFallback(); maxLightsDrawables_.Clear(); lightQueueMapping_.Clear(); for (Vector::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i) { const LightQueryResult& query = *i; if (query.litGeometries_.Empty()) continue; PROFILE(GetLightBatches); Light* light = query.light_; // Per-pixel light if (!light->GetPerVertex()) { unsigned shadowSplits = query.numSplits_; // Initialize light queue. Store light-to-queue mapping so that the queue can be found later lightQueues_.Resize(lightQueues_.Size() + 1); LightBatchQueue& lightQueue = lightQueues_.Back(); lightQueueMapping_[light] = &lightQueue; lightQueue.light_ = light; lightQueue.litBatches_.Clear(); lightQueue.volumeBatches_.Clear(); // Allocate shadow map now lightQueue.shadowMap_ = 0; if (shadowSplits > 0) { lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, width_, height_); // If did not manage to get a shadow map, convert the light to unshadowed if (!lightQueue.shadowMap_) shadowSplits = 0; } // Setup shadow batch queues lightQueue.shadowSplits_.Resize(shadowSplits); for (unsigned j = 0; j < shadowSplits; ++j) { ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j]; Camera* shadowCamera = query.shadowCameras_[j]; shadowQueue.shadowCamera_ = shadowCamera; shadowQueue.nearSplit_ = query.shadowNearSplits_[j]; shadowQueue.farSplit_ = query.shadowFarSplits_[j]; // Setup the shadow split viewport and finalize shadow camera parameters shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_); FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]); // Loop through shadow casters for (PODVector::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j]; k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k) { Drawable* drawable = *k; if (!drawable->IsInView(frame_, false)) { drawable->MarkInView(frame_, false); allGeometries_.Push(drawable); } unsigned numBatches = drawable->GetNumBatches(); for (unsigned l = 0; l < numBatches; ++l) { Batch shadowBatch; drawable->GetBatch(shadowBatch, frame_, l); Technique* tech = GetTechnique(drawable, shadowBatch.material_); if (!shadowBatch.geometry_ || !tech) continue; Pass* pass = tech->GetPass(PASS_SHADOW); // Skip if material has no shadow pass if (!pass) continue; // Fill the rest of the batch shadowBatch.camera_ = shadowCamera; shadowBatch.zone_ = GetZone(drawable); shadowBatch.lightQueue_ = &lightQueue; FinalizeBatch(shadowBatch, tech, pass); shadowQueue.shadowBatches_.AddBatch(shadowBatch); } } } // Loop through lit geometries for (PODVector::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j) { Drawable* drawable = *j; drawable->AddLight(light); // If drawable limits maximum lights, only record the light, and check maximum count / build batches later if (!drawable->GetMaxLights()) GetLitBatches(drawable, lightQueue); else maxLightsDrawables_.Insert(drawable); } // In light pre-pass mode, store the light volume batch now if (prepass) { Batch volumeBatch; volumeBatch.geometry_ = renderer_->GetLightGeometry(light); volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_); volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL; volumeBatch.camera_ = camera_; volumeBatch.lightQueue_ = &lightQueue; volumeBatch.distance_ = light->GetDistance(); volumeBatch.material_ = 0; volumeBatch.pass_ = 0; volumeBatch.zone_ = 0; renderer_->SetLightVolumeBatchShaders(volumeBatch); lightQueue.volumeBatches_.Push(volumeBatch); } } // Per-vertex light else { // Loop through lit geometries for (PODVector::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j) { Drawable* drawable = *j; drawable->AddVertexLight(light); } } } } // Process drawables with limited per-pixel light count if (maxLightsDrawables_.Size()) { PROFILE(GetMaxLightsBatches); for (HashSet::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i) { Drawable* drawable = *i; drawable->LimitLights(); const PODVector& lights = drawable->GetLights(); for (unsigned i = 0; i < lights.Size(); ++i) { Light* light = lights[i]; // Find the correct light queue again Map::Iterator j = lightQueueMapping_.Find(light); if (j != lightQueueMapping_.End()) GetLitBatches(drawable, *(j->second_)); } } } // Build base pass batches { PROFILE(GetBaseBatches); for (PODVector::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i) { Drawable* drawable = *i; unsigned numBatches = drawable->GetNumBatches(); for (unsigned j = 0; j < numBatches; ++j) { Batch baseBatch; drawable->GetBatch(baseBatch, frame_, j); Technique* tech = GetTechnique(drawable, baseBatch.material_); if (!baseBatch.geometry_ || !tech) continue; // Check here if the material technique refers to a render target texture with camera(s) attached // Only check this for the main view (null render target) if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_) CheckMaterialForAuxView(baseBatch.material_); // Fill the rest of the batch baseBatch.camera_ = camera_; baseBatch.zone_ = GetZone(drawable); baseBatch.isBase_ = true; Pass* pass = 0; // In light prepass mode check for G-buffer and material passes first if (prepass) { pass = tech->GetPass(PASS_GBUFFER); if (pass) { FinalizeBatch(baseBatch, tech, pass); gbufferQueue_.AddBatch(baseBatch); pass = tech->GetPass(PASS_MATERIAL); } } // Next check for forward base pass if (!pass) pass = tech->GetPass(PASS_BASE); if (pass) { // Check for vertex lights (both forward unlit and light pre-pass material pass) const PODVector& vertexLights = drawable->GetVertexLights(); if (!vertexLights.Empty()) { drawable->LimitVertexLights(); // Find a vertex light queue. If not found, create new unsigned long long hash = GetVertexLightQueueHash(vertexLights); HashMap::Iterator i = vertexLightQueues_.Find(hash); if (i == vertexLightQueues_.End()) { vertexLightQueues_[hash].vertexLights_ = vertexLights; i = vertexLightQueues_.Find(hash); } baseBatch.lightQueue_ = &(i->second_); } if (pass->GetBlendMode() == BLEND_REPLACE) { FinalizeBatch(baseBatch, tech, pass); baseQueue_.AddBatch(baseBatch); } else { // Transparent batches can not be instanced FinalizeBatch(baseBatch, tech, pass, false); alphaQueue_.AddBatch(baseBatch); } continue; } // If no base pass, finally check for pre-alpha / post-alpha custom passes pass = tech->GetPass(PASS_PREALPHA); if (pass) { FinalizeBatch(baseBatch, tech, pass); preAlphaQueue_.AddBatch(baseBatch); continue; } pass = tech->GetPass(PASS_POSTALPHA); if (pass) { // Post-alpha pass is treated similarly as alpha, and is not instanced FinalizeBatch(baseBatch, tech, pass, false); postAlphaQueue_.AddBatch(baseBatch); continue; } } } } } void View::UpdateGeometries() { PROFILE(UpdateGeometries); WorkQueue* queue = GetSubsystem(); // Sort batches { WorkItem item; item.workFunction_ = SortBatchQueueFrontToBackWork; item.start_ = &baseQueue_; queue->AddWorkItem(item); item.start_ = &preAlphaQueue_; queue->AddWorkItem(item); if (renderer_->GetLightPrepass()) { item.start_ = &gbufferQueue_; queue->AddWorkItem(item); } item.workFunction_ = SortBatchQueueBackToFrontWork; item.start_ = &alphaQueue_; queue->AddWorkItem(item); item.start_ = &postAlphaQueue_; queue->AddWorkItem(item); for (List::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { item.workFunction_ = SortLightQueueWork; item.start_ = &(*i); queue->AddWorkItem(item); } } // Update geometries. Split into threaded and non-threaded updates. { nonThreadedGeometries_.Clear(); threadedGeometries_.Clear(); for (PODVector::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i) { UpdateGeometryType type = (*i)->GetUpdateGeometryType(); if (type == UPDATE_MAIN_THREAD) nonThreadedGeometries_.Push(*i); else if (type == UPDATE_WORKER_THREAD) threadedGeometries_.Push(*i); } if (threadedGeometries_.Size()) { WorkItem item; item.workFunction_ = UpdateDrawableGeometriesWork; item.aux_ = const_cast(&frame_); PODVector::Iterator start = threadedGeometries_.Begin(); while (start != threadedGeometries_.End()) { PODVector::Iterator end = threadedGeometries_.End(); if (end - start > DRAWABLES_PER_WORK_ITEM) end = start + DRAWABLES_PER_WORK_ITEM; item.start_ = &(*start); item.end_ = &(*end); queue->AddWorkItem(item); start = end; } } // While the work queue is processed, update non-threaded geometries for (PODVector::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i) (*i)->UpdateGeometry(frame_); } // Finally ensure all threaded work has completed queue->Complete(); } void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue) { Light* light = lightQueue.light_; // Shadows on transparencies can only be rendered if shadow maps are not reused bool allowTransparentShadows = !renderer_->GetReuseShadowMaps(); bool hasVertexLights = drawable->GetVertexLights().Size() > 0; bool prepass = renderer_->GetLightPrepass(); unsigned numBatches = drawable->GetNumBatches(); for (unsigned i = 0; i < numBatches; ++i) { Batch litBatch; drawable->GetBatch(litBatch, frame_, i); Technique* tech = GetTechnique(drawable, litBatch.material_); if (!litBatch.geometry_ || !tech) continue; // Do not create pixel lit forward passes for materials that render into the G-buffer if (prepass && tech->HasPass(PASS_GBUFFER)) continue; Pass* pass = tech->GetPass(PASS_LIGHT); // Skip if material does not receive light at all if (!pass) continue; // Fill the rest of the batch litBatch.camera_ = camera_; litBatch.lightQueue_ = &lightQueue; litBatch.zone_ = GetZone(drawable); // Check from the ambient pass whether the object is opaque or transparent Pass* ambientPass = tech->GetPass(PASS_BASE); if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE) { FinalizeBatch(litBatch, tech, pass); lightQueue.litBatches_.AddBatch(litBatch); } else { // Transparent batches can not be instanced FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows); alphaQueue_.AddBatch(litBatch); } } } void View::RenderBatchesForward() { // Reset the light optimization stencil reference value lightStencilValue_ = 1; // If not reusing shadowmaps, render all of them first if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty()) { PROFILE(RenderShadowMaps); for (List::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { if (i->shadowMap_) RenderShadowMap(*i); } } graphics_->SetRenderTarget(0, renderTarget_); graphics_->SetDepthStencil(depthStencil_); graphics_->SetViewport(screenRect_); graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, farClipZone_->GetFogColor()); if (!baseQueue_.IsEmpty()) { // Render opaque object unlit base pass PROFILE(RenderBase); RenderBatchQueue(baseQueue_); } if (!lightQueues_.Empty()) { // Render shadow maps + opaque objects' additive lighting PROFILE(RenderLights); for (List::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { // If reusing shadowmaps, render each of them before the lit batches if (renderer_->GetReuseShadowMaps() && i->shadowMap_) { RenderShadowMap(*i); graphics_->SetRenderTarget(0, renderTarget_); graphics_->SetDepthStencil(depthStencil_); graphics_->SetViewport(screenRect_); } RenderLightBatchQueue(i->litBatches_, i->light_); } } graphics_->SetScissorTest(false); graphics_->SetStencilTest(false); graphics_->SetRenderTarget(0, renderTarget_); graphics_->SetDepthStencil(depthStencil_); graphics_->SetViewport(screenRect_); if (!preAlphaQueue_.IsEmpty()) { // Render pre-alpha custom pass PROFILE(RenderPreAlpha); RenderBatchQueue(preAlphaQueue_); } if (!alphaQueue_.IsEmpty()) { // Render transparent objects (both base passes & additive lighting) PROFILE(RenderAlpha); RenderBatchQueue(alphaQueue_, true); } if (!postAlphaQueue_.IsEmpty()) { // Render pre-alpha custom pass PROFILE(RenderPostAlpha); RenderBatchQueue(postAlphaQueue_); } } void View::RenderBatchesLightPrepass() { // If not reusing shadowmaps, render all of them first if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty()) { PROFILE(RenderShadowMaps); for (List::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { if (i->shadowMap_) RenderShadowMap(*i); } } Texture2D* normalBuffer = renderer_->GetNormalBuffer(); Texture2D* depthBuffer = renderer_->GetDepthBuffer(); RenderSurface* depthStencil = 0; // Hardware depth support: render to RGBA normal buffer and read hardware depth if (graphics_->GetHardwareDepthSupport()) { depthStencil = depthBuffer->GetRenderSurface(); graphics_->SetRenderTarget(0, normalBuffer); graphics_->SetDepthStencil(depthStencil); graphics_->SetViewport(screenRect_); graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL); } // No hardware depth support: render to R32F depth and RGBA normal buffers else { graphics_->SetRenderTarget(0, depthBuffer); graphics_->SetRenderTarget(1, normalBuffer); graphics_->SetDepthStencil(depthStencil); graphics_->SetViewport(screenRect_); graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL); } if (!gbufferQueue_.IsEmpty()) { // Render G-buffer batches PROFILE(RenderGBuffer); RenderBatchQueue(gbufferQueue_); } // Clear the light accumulation buffer Texture2D* lightBuffer = renderer_->GetLightBuffer(); graphics_->ResetRenderTarget(1); graphics_->SetRenderTarget(0, lightBuffer); graphics_->SetDepthStencil(depthStencil); graphics_->SetViewport(screenRect_); graphics_->Clear(CLEAR_COLOR); if (!lightQueues_.Empty()) { // Render shadow maps + light volumes PROFILE(RenderLights); for (List::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { // If reusing shadowmaps, render each of them before the lit batches if (renderer_->GetReuseShadowMaps() && i->shadowMap_) { RenderShadowMap(*i); graphics_->SetRenderTarget(0, lightBuffer); graphics_->SetDepthStencil(depthStencil); graphics_->SetViewport(screenRect_); } graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer); graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer); for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j) { SetupLightVolumeBatch(i->volumeBatches_[j]); i->volumeBatches_[j].Draw(graphics_, renderer_); } } } // Clear destination render target with fog color graphics_->SetScissorTest(false); graphics_->SetStencilTest(false); graphics_->SetRenderTarget(0, renderTarget_); graphics_->SetDepthStencil(depthStencil); graphics_->SetViewport(screenRect_); graphics_->Clear(CLEAR_COLOR, farClipZone_->GetFogColor()); if (!baseQueue_.IsEmpty()) { // Render opaque objects with deferred lighting result PROFILE(RenderBase); graphics_->SetTexture(TU_LIGHTBUFFER, lightBuffer); RenderBatchQueue(baseQueue_); } if (!preAlphaQueue_.IsEmpty()) { // Render pre-alpha custom pass PROFILE(RenderPreAlpha); RenderBatchQueue(preAlphaQueue_); } if (!alphaQueue_.IsEmpty()) { // Render transparent objects (both base passes & additive lighting) PROFILE(RenderAlpha); RenderBatchQueue(alphaQueue_, true); } if (!postAlphaQueue_.IsEmpty()) { // Render pre-alpha custom pass PROFILE(RenderPostAlpha); RenderBatchQueue(postAlphaQueue_); } } void View::UpdateOccluders(PODVector& occluders, Camera* camera) { float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold(); float halfViewSize = camera->GetHalfViewSize(); float invOrthoSize = 1.0f / camera->GetOrthoSize(); Vector3 cameraPos = camera->GetWorldPosition(); for (PODVector::Iterator i = occluders.Begin(); i != occluders.End();) { Drawable* occluder = *i; bool erase = false; if (!occluder->IsInView(frame_, false)) occluder->UpdateDistance(frame_); // Check occluder's draw distance (in main camera view) float maxDistance = occluder->GetDrawDistance(); if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance) erase = true; else { // Check that occluder is big enough on the screen const BoundingBox& box = occluder->GetWorldBoundingBox(); float diagonal = (box.max_ - box.min_).LengthFast(); float compare; if (!camera->IsOrthographic()) compare = diagonal * halfViewSize / occluder->GetDistance(); else compare = diagonal * invOrthoSize; if (compare < occluderSizeThreshold_) erase = true; else { // Store amount of triangles divided by screen size as a sorting key // (best occluders are big and have few triangles) occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare); } } if (erase) i = occluders.Erase(i); else ++i; } // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn if (occluders.Size()) Sort(occluders.Begin(), occluders.End(), CompareDrawables); } void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector& occluders) { buffer->SetMaxTriangles(maxOccluderTriangles_); buffer->Clear(); for (unsigned i = 0; i < occluders.Size(); ++i) { Drawable* occluder = occluders[i]; if (i > 0) { // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary if (!buffer->IsVisible(occluder->GetWorldBoundingBox())) continue; } // Check for running out of triangles if (!occluder->DrawOcclusion(buffer)) break; } buffer->BuildDepthHierarchy(); } void View::ProcessLight(LightQueryResult& query, unsigned threadIndex) { Light* light = query.light_; LightType type = light->GetLightType(); // Check if light should be shadowed bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f; // If shadow distance non-zero, check it if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance()) isShadowed = false; // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered PODVector& tempDrawables = tempDrawables_[threadIndex]; query.litGeometries_.Clear(); switch (type) { case LIGHT_DIRECTIONAL: for (unsigned i = 0; i < geometries_.Size(); ++i) { if (GetLightMask(geometries_[i]) & light->GetLightMask()) query.litGeometries_.Push(geometries_[i]); } break; case LIGHT_SPOT: { FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask()); octree_->GetDrawables(octreeQuery); for (unsigned i = 0; i < tempDrawables.Size(); ++i) { if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask())) query.litGeometries_.Push(tempDrawables[i]); } } break; case LIGHT_POINT: { SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()), DRAWABLE_GEOMETRY, camera_->GetViewMask()); octree_->GetDrawables(octreeQuery); for (unsigned i = 0; i < tempDrawables.Size(); ++i) { if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask())) query.litGeometries_.Push(tempDrawables[i]); } } break; } // If no lit geometries or not shadowed, no need to process shadow cameras if (query.litGeometries_.Empty() || !isShadowed) { query.numSplits_ = 0; return; } // Determine number of shadow cameras and setup their initial positions SetupShadowCameras(query); // Process each split for shadow casters query.shadowCasters_.Clear(); for (unsigned i = 0; i < query.numSplits_; ++i) { Camera* shadowCamera = query.shadowCameras_[i]; Frustum shadowCameraFrustum = shadowCamera->GetFrustum(); query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size(); // For point light check that the face is visible: if not, can skip the split if (type == LIGHT_POINT) { BoundingBox shadowCameraBox(shadowCameraFrustum); if (frustum_.IsInsideFast(shadowCameraBox) == OUTSIDE) continue; } // For directional light check that the split is inside the visible scene: if not, can skip the split if (type == LIGHT_DIRECTIONAL) { if (sceneViewBox_.min_.z_ > query.shadowFarSplits_[i]) continue; if (sceneViewBox_.max_.z_ < query.shadowNearSplits_[i]) continue; } // For spot light (which has only one shadow split) we can optimize by reusing the query for // lit geometries, whose result still exists in tempDrawables if (type != LIGHT_SPOT) { FrustumOctreeQuery octreeQuery(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY, camera_->GetViewMask(), true); octree_->GetDrawables(octreeQuery); } // Check which shadow casters actually contribute to the shadowing ProcessShadowCasters(query, tempDrawables, i); } // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the // only cost has been the shadow camera setup & queries if (query.shadowCasters_.Empty()) query.numSplits_ = 0; } void View::ProcessShadowCasters(LightQueryResult& query, const PODVector& drawables, unsigned splitIndex) { Light* light = query.light_; Matrix3x4 lightView; Matrix4 lightProj; Camera* shadowCamera = query.shadowCameras_[splitIndex]; lightView = shadowCamera->GetInverseWorldTransform(); lightProj = shadowCamera->GetProjection(); bool dirLight = shadowCamera->IsOrthographic(); query.shadowCasterBox_[splitIndex].defined_ = false; // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights, // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split // frustum, so that shadow casters do not get rendered into unnecessary splits Frustum lightViewFrustum; if (!dirLight) lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView); else lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, query.shadowNearSplits_[splitIndex]), Min(sceneViewBox_.max_.z_, query.shadowFarSplits_[splitIndex])).Transformed(lightView); BoundingBox lightViewFrustumBox(lightViewFrustum); // Check for degenerate split frustum: in that case there is no need to get shadow casters if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4]) return; BoundingBox lightViewBox; BoundingBox lightProjBox; for (PODVector::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i) { Drawable* drawable = *i; // In case this is a spot light query result reused for optimization, we may have non-shadowcasters included. // Check for that first if (!drawable->GetCastShadows()) continue; // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several // times. However, this should not cause problems as no scene modification happens at this point. if (!drawable->IsInView(frame_, false)) drawable->UpdateDistance(frame_); // Check shadow distance float maxShadowDistance = drawable->GetShadowDistance(); if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance) continue; // Check shadow mask if (!(GetShadowMask(drawable) & light->GetLightMask())) continue; // Project shadow caster bounding box to light view space for visibility check lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView); if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox)) { // Merge to shadow caster bounding box and add to the list if (dirLight) query.shadowCasterBox_[splitIndex].Merge(lightViewBox); else { lightProjBox = lightViewBox.Projected(lightProj); query.shadowCasterBox_[splitIndex].Merge(lightProjBox); } query.shadowCasters_.Push(drawable); } } query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size(); } bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView, const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox) { if (shadowCamera->IsOrthographic()) { // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_); return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE; } else { // If light is not directional, can do a simple check: if object is visible, its shadow is too if (drawable->IsInView(frame_)) return true; // For perspective lights, extrusion direction depends on the position of the shadow caster Vector3 center = lightViewBox.Center(); Ray extrusionRay(center, center.Normalized()); float extrusionDistance = shadowCamera->GetFarClip(); float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance); // Because of the perspective, the bounding box must also grow when it is extruded to the distance float sizeFactor = extrusionDistance / originalDistance; // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger // than necessary, so the test will be conservative Vector3 newCenter = extrusionDistance * extrusionRay.direction_; Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f; BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize); lightViewBox.Merge(extrudedBox); return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE; } } IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap) { unsigned width = shadowMap->GetWidth(); unsigned height = shadowMap->GetHeight(); int maxCascades = renderer_->GetMaxShadowCascades(); // Due to instruction count limits, light prepass in SM2.0 can only support up to 3 cascades if (renderer_->GetLightPrepass() && !graphics_->GetSM3Support()) maxCascades = Max(maxCascades, 3); switch (light->GetLightType()) { case LIGHT_DIRECTIONAL: if (maxCascades == 1) return IntRect(0, 0, width, height); else if (maxCascades == 2) return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height); else return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2, (splitIndex / 2 + 1) * height / 2); case LIGHT_SPOT: return IntRect(0, 0, width, height); case LIGHT_POINT: return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2, (splitIndex / 2 + 1) * height / 3); } return IntRect(); } void View::OptimizeLightByScissor(Light* light) { if (light && light->GetLightType() != LIGHT_DIRECTIONAL) graphics_->SetScissorTest(true, GetLightScissor(light)); else graphics_->SetScissorTest(false); } void View::OptimizeLightByStencil(Light* light) { if (light && renderer_->GetLightStencilMasking()) { LightType type = light->GetLightType(); if (type == LIGHT_DIRECTIONAL) { graphics_->SetStencilTest(false); return; } Geometry* geometry = renderer_->GetLightGeometry(light); Matrix3x4 view(camera_->GetInverseWorldTransform()); Matrix4 projection(camera_->GetProjection()); float lightDist; if (type == LIGHT_POINT) lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition()); else lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition()); // If the camera is actually inside the light volume, do not draw to stencil as it would waste fillrate if (lightDist < M_EPSILON) { graphics_->SetStencilTest(false); return; } // If the stencil value has wrapped, clear the whole stencil first if (!lightStencilValue_) { graphics_->Clear(CLEAR_STENCIL); lightStencilValue_ = 1; } // If possible, render the stencil volume front faces. However, close to the near clip plane render back faces instead // to avoid clipping the front faces. if (lightDist < camera_->GetNearClip() * 2.0f) { graphics_->SetCullMode(CULL_CW); graphics_->SetDepthTest(CMP_GREATER); } else { graphics_->SetCullMode(CULL_CCW); graphics_->SetDepthTest(CMP_LESSEQUAL); } graphics_->SetColorWrite(false); graphics_->SetDepthWrite(false); graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, lightStencilValue_); graphics_->SetShaders(renderer_->GetStencilVS(), renderer_->GetStencilPS()); graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view); graphics_->SetShaderParameter(VSP_MODEL, light->GetVolumeTransform(camera_)); geometry->Draw(graphics_); graphics_->ClearTransformSources(); graphics_->SetColorWrite(true); graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, lightStencilValue_); // Increase stencil value for next light ++lightStencilValue_; } else graphics_->SetStencilTest(false); } const Rect& View::GetLightScissor(Light* light) { HashMap::Iterator i = lightScissorCache_.Find(light); if (i != lightScissorCache_.End()) return i->second_; Matrix3x4 view(camera_->GetInverseWorldTransform()); Matrix4 projection(camera_->GetProjection()); switch (light->GetLightType()) { case LIGHT_POINT: { BoundingBox viewBox(light->GetWorldBoundingBox().Transformed(view)); return lightScissorCache_[light] = viewBox.Projected(projection); } case LIGHT_SPOT: { Frustum viewFrustum(light->GetFrustum().Transformed(view)); return lightScissorCache_[light] = viewFrustum.Projected(projection); } default: return lightScissorCache_[light] = Rect::FULL; } } void View::SetupShadowCameras(LightQueryResult& query) { Light* light = query.light_; LightType type = light->GetLightType(); int splits = 0; if (type == LIGHT_DIRECTIONAL) { const CascadeParameters& cascade = light->GetShadowCascade(); float nearSplit = camera_->GetNearClip(); float farSplit; while (splits < renderer_->GetMaxShadowCascades()) { // If split is completely beyond camera far clip, we are done if (nearSplit > camera_->GetFarClip()) break; farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]); if (farSplit <= nearSplit) break; // Setup the shadow camera for the split Camera* shadowCamera = renderer_->GetShadowCamera(); query.shadowCameras_[splits] = shadowCamera; query.shadowNearSplits_[splits] = nearSplit; query.shadowFarSplits_[splits] = farSplit; SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit); nearSplit = farSplit; ++splits; } } if (type == LIGHT_SPOT) { Camera* shadowCamera = renderer_->GetShadowCamera(); query.shadowCameras_[0] = shadowCamera; Node* cameraNode = shadowCamera->GetNode(); cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation()); shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange()); shadowCamera->SetFarClip(light->GetRange()); shadowCamera->SetFov(light->GetFov()); shadowCamera->SetAspectRatio(light->GetAspectRatio()); splits = 1; } if (type == LIGHT_POINT) { for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i) { Camera* shadowCamera = renderer_->GetShadowCamera(); query.shadowCameras_[i] = shadowCamera; Node* cameraNode = shadowCamera->GetNode(); // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation cameraNode->SetPosition(light->GetWorldPosition()); cameraNode->SetDirection(directions[i]); shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange()); shadowCamera->SetFarClip(light->GetRange()); shadowCamera->SetFov(90.0f); shadowCamera->SetAspectRatio(1.0f); } splits = MAX_CUBEMAP_FACES; } query.numSplits_ = splits; } void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit) { Node* cameraNode = shadowCamera->GetNode(); float extrusionDistance = camera_->GetFarClip(); const FocusParameters& parameters = light->GetShadowFocus(); // Calculate initial position & rotation Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD; Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection; cameraNode->SetTransform(pos, light->GetWorldRotation()); // Calculate main camera shadowed frustum in light's view space farSplit = Min(farSplit, camera_->GetFarClip()); // Use the scene Z bounds to limit frustum size if applicable if (parameters.focus_) { nearSplit = Max(sceneViewBox_.min_.z_, nearSplit); farSplit = Min(sceneViewBox_.max_.z_, farSplit); } Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit); frustumVolume_.Define(splitFrustum); // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum if (parameters.focus_) { BoundingBox litGeometriesBox; for (unsigned i = 0; i < geometries_.Size(); ++i) { // Skip "infinite" objects like the skybox const BoundingBox& geomBox = geometries_[i]->GetWorldBoundingBox(); if (geomBox.Size().LengthFast() < M_LARGE_VALUE) { if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit && (GetLightMask(geometries_[i]) & light->GetLightMask())) litGeometriesBox.Merge(geomBox); } } if (litGeometriesBox.defined_) { frustumVolume_.Clip(litGeometriesBox); // If volume became empty, restore it to avoid zero size if (frustumVolume_.Empty()) frustumVolume_.Define(splitFrustum); } } // Transform frustum volume to light space Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform()); frustumVolume_.Transform(lightView); // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead BoundingBox shadowBox; if (!parameters.nonUniform_) shadowBox.Define(Sphere(frustumVolume_)); else shadowBox.Define(frustumVolume_); shadowCamera->SetOrthographic(true); shadowCamera->SetAspectRatio(1.0f); shadowCamera->SetNearClip(0.0f); shadowCamera->SetFarClip(shadowBox.max_.z_); // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox); } void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport, const BoundingBox& shadowCasterBox) { const FocusParameters& parameters = light->GetShadowFocus(); float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_); LightType type = light->GetLightType(); if (type == LIGHT_DIRECTIONAL) { BoundingBox shadowBox; shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f; shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_; shadowBox.min_.y_ = -shadowBox.max_.y_; shadowBox.min_.x_ = -shadowBox.max_.x_; // Requantize and snap to shadow map texels QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox); } if (type == LIGHT_SPOT) { if (parameters.focus_) { float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_)); float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_)); float viewSize = Max(viewSizeX, viewSizeY); // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0) float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize(); float quantize = parameters.quantize_ * invOrthoSize; float minView = parameters.minView_ * invOrthoSize; viewSize = Max(ceilf(viewSize / quantize) * quantize, minView); if (viewSize < 1.0f) shadowCamera->SetZoom(1.0f / viewSize); } } // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF) if (shadowCamera->GetZoom() >= 1.0f) { if (light->GetLightType() != LIGHT_POINT) shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth)); else { #ifdef USE_OPENGL shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth)); #else shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth)); #endif } } } void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport, const BoundingBox& viewBox) { Node* cameraNode = shadowCamera->GetNode(); const FocusParameters& parameters = light->GetShadowFocus(); float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_); float minX = viewBox.min_.x_; float minY = viewBox.min_.y_; float maxX = viewBox.max_.x_; float maxY = viewBox.max_.y_; Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f); Vector2 viewSize(maxX - minX, maxY - minY); // Quantize size to reduce swimming // Note: if size is uniform and there is no focusing, quantization is unnecessary if (parameters.nonUniform_) { viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_)); viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_)); viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_); viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_); } else if (parameters.focus_) { viewSize.x_ = Max(viewSize.x_, viewSize.y_); viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_)); viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_); viewSize.y_ = viewSize.x_; } shadowCamera->SetOrthoSize(viewSize); // Center shadow camera to the view space bounding box Vector3 pos(shadowCamera->GetWorldPosition()); Quaternion rot(shadowCamera->GetWorldRotation()); Vector3 adjust(center.x_, center.y_, 0.0f); cameraNode->Translate(rot * adjust); // If the shadow map viewport is known, snap to whole texels if (shadowMapWidth > 0.0f) { Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition()); // Take into account that shadow map border will not be used float invActualSize = 1.0f / (shadowMapWidth - 2.0f); Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize); Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f); cameraNode->Translate(rot * snap); } } void View::FindZone(Drawable* drawable, unsigned threadIndex) { Vector3 center = drawable->GetWorldBoundingBox().Center(); int bestPriority = M_MIN_INT; Zone* newZone = 0; // If bounding box center is in view, can use the visible zones. Else must query via the octree if (frustum_.IsInside(center)) { // First check if the last zone remains a conclusive result Zone* lastZone = drawable->GetLastZone(); if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) && lastZone->GetPriority() >= highestZonePriority_) newZone = lastZone; else { for (PODVector::Iterator i = zones_.Begin(); i != zones_.End(); ++i) { int priority = (*i)->GetPriority(); if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority) { newZone = *i; bestPriority = priority; } } } } else { PODVector& tempZones = tempZones_[threadIndex]; PointOctreeQuery query(reinterpret_cast&>(tempZones), center, DRAWABLE_ZONE); octree_->GetDrawables(query); bestPriority = M_MIN_INT; for (PODVector::Iterator i = tempZones.Begin(); i != tempZones.End(); ++i) { int priority = (*i)->GetPriority(); if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority) { newZone = *i; bestPriority = priority; } } } drawable->SetZone(newZone); } Zone* View::GetZone(Drawable* drawable) { if (cameraZoneOverride_) return cameraZone_; Zone* drawableZone = drawable->GetZone(); return drawableZone ? drawableZone : cameraZone_; } unsigned View::GetLightMask(Drawable* drawable) { return drawable->GetLightMask() & GetZone(drawable)->GetLightMask(); } unsigned View::GetShadowMask(Drawable* drawable) { return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask(); } unsigned long long View::GetVertexLightQueueHash(const PODVector& vertexLights) { unsigned long long hash = 0; for (PODVector::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i) hash += (unsigned long long)(*i); return hash; } Technique* View::GetTechnique(Drawable* drawable, Material*& material) { if (!material) material = renderer_->GetDefaultMaterial(); if (!material) return 0; float lodDistance = drawable->GetLodDistance(); const Vector& techniques = material->GetTechniques(); if (techniques.Empty()) return 0; // Check for suitable technique. Techniques should be ordered like this: // Most distant & highest quality // Most distant & lowest quality // Second most distant & highest quality // ... for (unsigned i = 0; i < techniques.Size(); ++i) { const TechniqueEntry& entry = techniques[i]; Technique* technique = entry.technique_; if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_) continue; if (lodDistance >= entry.lodDistance_) return technique; } // If no suitable technique found, fallback to the last return techniques.Back().technique_; } void View::CheckMaterialForAuxView(Material* material) { const Vector >& textures = material->GetTextures(); for (unsigned i = 0; i < textures.Size(); ++i) { // Have to check cube & 2D textures separately Texture* texture = textures[i]; if (texture) { if (texture->GetType() == Texture2D::GetTypeStatic()) { Texture2D* tex2D = static_cast(texture); RenderSurface* target = tex2D->GetRenderSurface(); if (target) { const Viewport& viewport = target->GetViewport(); if (viewport.scene_ && viewport.camera_) renderer_->AddView(target, viewport); } } else if (texture->GetType() == TextureCube::GetTypeStatic()) { TextureCube* texCube = static_cast(texture); for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j) { RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j); if (target) { const Viewport& viewport = target->GetViewport(); if (viewport.scene_ && viewport.camera_) renderer_->AddView(target, viewport); } } } } } // Set frame number so that we can early-out next time we come across this material on the same frame material->MarkForAuxView(frame_.frameNumber_); } void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows) { // Convert to instanced if possible if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_) batch.geometryType_ = GEOM_INSTANCED; batch.pass_ = pass; renderer_->SetBatchShaders(batch, tech, pass, allowShadows); batch.CalculateSortKey(); } void View::PrepareInstancingBuffer() { PROFILE(PrepareInstancingBuffer); unsigned totalInstances = 0; bool prepass = renderer_->GetLightPrepass(); totalInstances += baseQueue_.GetNumInstances(renderer_); totalInstances += preAlphaQueue_.GetNumInstances(renderer_); if (prepass) totalInstances += gbufferQueue_.GetNumInstances(renderer_); for (List::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j) totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_); totalInstances += i->litBatches_.GetNumInstances(renderer_); } // If fail to set buffer size, fall back to per-group locking if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances)) { VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer(); unsigned freeIndex = 0; void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD); if (lockedData) { baseQueue_.SetTransforms(renderer_, lockedData, freeIndex); preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex); if (prepass) gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex); for (List::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i) { for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j) i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex); i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex); } instancingBuffer->Unlock(); } } } void View::SetupLightVolumeBatch(Batch& batch) { Light* light = batch.lightQueue_->light_; LightType type = light->GetLightType(); float lightDist; graphics_->SetAlphaTest(false); graphics_->SetBlendMode(BLEND_ADD); graphics_->SetDepthWrite(false); if (type != LIGHT_DIRECTIONAL) { if (type == LIGHT_POINT) lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition()); else lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition()); // Draw front faces if not inside light volume if (lightDist < camera_->GetNearClip() * 2.0f) { graphics_->SetCullMode(CULL_CW); graphics_->SetDepthTest(CMP_GREATER); } else { graphics_->SetCullMode(CULL_CCW); graphics_->SetDepthTest(CMP_LESSEQUAL); } } else { graphics_->SetCullMode(CULL_NONE); graphics_->SetDepthTest(CMP_ALWAYS); } graphics_->SetScissorTest(false); graphics_->SetStencilTest(true, CMP_LESS, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask()); } void View::DrawFullscreenQuad(Camera* camera, bool nearQuad) { Light quadDirLight(context_); quadDirLight.SetLightType(LIGHT_DIRECTIONAL); Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad)); graphics_->SetCullMode(CULL_NONE); graphics_->SetShaderParameter(VSP_MODEL, model); graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection()); graphics_->ClearTransformSources(); renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_); } void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor) { graphics_->SetScissorTest(false); // During G-buffer rendering, mark opaque pixels to scissor /// \todo Use objects' light masks if (&queue != &gbufferQueue_) graphics_->SetStencilTest(false); else graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, 0xff); // Base instanced for (PODVector::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i != queue.sortedBaseBatchGroups_.End(); ++i) { BatchGroup* group = *i; group->Draw(graphics_, renderer_); } // Base non-instanced for (PODVector::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i) { Batch* batch = *i; batch->Draw(graphics_, renderer_); } // Non-base instanced for (PODVector::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i) { BatchGroup* group = *i; if (useScissor && group->lightQueue_) OptimizeLightByScissor(group->lightQueue_->light_); group->Draw(graphics_, renderer_); } // Non-base non-instanced for (PODVector::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i) { Batch* batch = *i; if (useScissor) { if (!batch->isBase_ && batch->lightQueue_) OptimizeLightByScissor(batch->lightQueue_->light_); else graphics_->SetScissorTest(false); } batch->Draw(graphics_, renderer_); } } void View::RenderLightBatchQueue(const BatchQueue& queue, Light* light) { graphics_->SetScissorTest(false); graphics_->SetStencilTest(false); // Base instanced for (PODVector::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i != queue.sortedBaseBatchGroups_.End(); ++i) { BatchGroup* group = *i; group->Draw(graphics_, renderer_); } // Base non-instanced for (PODVector::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i) { Batch* batch = *i; batch->Draw(graphics_, renderer_); } // All base passes have been drawn. Optimize at this point by both stencil volume and scissor OptimizeLightByStencil(light); OptimizeLightByScissor(light); // Non-base instanced for (PODVector::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i) { BatchGroup* group = *i; group->Draw(graphics_, renderer_); } // Non-base non-instanced for (PODVector::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i) { Batch* batch = *i; batch->Draw(graphics_, renderer_); } } void View::RenderShadowMap(const LightBatchQueue& queue) { PROFILE(RenderShadowMap); Texture2D* shadowMap = queue.shadowMap_; graphics_->SetStencilTest(false); graphics_->SetTexture(TU_SHADOWMAP, 0); if (!graphics_->GetFallback()) { graphics_->SetColorWrite(false); graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget()); graphics_->SetDepthStencil(shadowMap); graphics_->Clear(CLEAR_DEPTH); } else { graphics_->SetColorWrite(true); graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()); graphics_->SetDepthStencil(shadowMap->GetRenderSurface()->GetLinkedDepthBuffer()); graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH, Color::WHITE); } // Set shadow depth bias BiasParameters parameters = queue.light_->GetShadowBias(); // Adjust the light's constant depth bias according to global shadow map resolution /// \todo Should remove this adjustment and find a more flexible solution unsigned shadowMapSize = renderer_->GetShadowMapSize(); if (shadowMapSize <= 512) parameters.constantBias_ *= 2.0f; else if (shadowMapSize >= 2048) parameters.constantBias_ *= 0.5f; graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_); // Render each of the splits for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i) { const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i]; if (!shadowQueue.shadowBatches_.IsEmpty()) { graphics_->SetViewport(shadowQueue.shadowViewport_); // Set a scissor rectangle to match possible shadow map size reduction by out-zooming // However, do not do this for point lights, which need to render continuously across cube faces float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_); if (queue.light_->GetLightType() != LIGHT_POINT) { float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width); Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom); graphics_->SetScissorTest(true, zoomRect, false); } else graphics_->SetScissorTest(false); // Draw instanced and non-instanced shadow casters RenderBatchQueue(shadowQueue.shadowBatches_); } } graphics_->SetColorWrite(true); graphics_->SetDepthBias(0.0f, 0.0f); }