// // Copyright (c) 2008-2014 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include "Precompiled.h" #include "Camera.h" #include "Context.h" #include "ParticleModel2D.h" #include "ParticleEmitter2D.h" #include "ResourceCache.h" #include "Scene.h" #include "SceneEvents.h" #include "DebugNew.h" namespace Urho3D { extern const char* URHO2D_CATEGORY; ParticleEmitter2D::ParticleEmitter2D(Context* context) : Drawable2D(context), lifeTime_(0.0f), numParticles_(0), emitParticleTime_(0.0f), timeBetweenParticles_(1.0f) { } ParticleEmitter2D::~ParticleEmitter2D() { } void ParticleEmitter2D::RegisterObject(Context* context) { context->RegisterFactory(URHO2D_CATEGORY); ACCESSOR_ATTRIBUTE(ParticleEmitter2D, VAR_RESOURCEREF, "Particle Model", GetParticleModelAttr, SetParticleModelAttr, ResourceRef, ResourceRef(ParticleModel2D::GetTypeStatic()), AM_DEFAULT); COPY_BASE_ATTRIBUTES(ParticleEmitter2D, Drawable2D); } void ParticleEmitter2D::OnSetEnabled() { Drawable2D::OnSetEnabled(); Scene* scene = GetScene(); if (scene) { if (IsEnabledEffective()) SubscribeToEvent(scene, E_SCENEPOSTUPDATE, HANDLER(ParticleEmitter2D, HandleScenePostUpdate)); else UnsubscribeFromEvent(scene, E_SCENEPOSTUPDATE); } } void ParticleEmitter2D::UpdateBatches(const FrameInfo& frame) { // const Matrix3x4& worldTransform = node_->GetWorldTransform(); distance_ = frame.camera_->GetDistance(GetWorldBoundingBox().Center()); batches_[0].distance_ = distance_; batches_[0].worldTransform_ = &Matrix3x4::IDENTITY; } void ParticleEmitter2D::Update(const FrameInfo& frame) { if (!model_) return; float timeStep = frame.timeStep_; float worldScale = GetNode()->GetWorldScale().x_; unsigned particleIndex = 0; while (particleIndex < numParticles_) { Particle2D& currentParticle = particles_[particleIndex]; if (currentParticle.timeToLive_ > timeStep) { UpdateParticle(currentParticle, timeStep, worldScale); ++particleIndex; } else { if (particleIndex != numParticles_ - 1) particles_[particleIndex] = particles_[numParticles_ - 1]; --numParticles_; } } if (lifeTime_< 0.0f || lifeTime_ > 0.0f) { Vector3 worldPosition = GetNode()->GetWorldPosition(); float worldAngle = GetNode()->GetWorldRotation().RollAngle(); emitParticleTime_ += timeStep; while (emitParticleTime_ > 0.0f) { EmitParticle(worldPosition, worldAngle, worldScale); emitParticleTime_ -= timeBetweenParticles_; } if (lifeTime_ > 0.0f) lifeTime_ = Max(0.0f, lifeTime_ - timeStep); } OnMarkedDirty(node_); } void ParticleEmitter2D::SetModel(ParticleModel2D* model) { if (model == model_) return; model_ = model; MarkNetworkUpdate(); if (!model_) return; SetSprite(model_->GetSprite()); SetBlendMode(model_->GetBlendMode()); lifeTime_ = model_->GetDuration(); numParticles_ = Min((int)model_->GetMaxParticles(), (int)numParticles_); particles_.Resize(model_->GetMaxParticles()); vertices_.Reserve(model_->GetMaxParticles() * 4); emitParticleTime_ = 0.0f; timeBetweenParticles_ = model_->GetParticleLifeSpan() / model_->GetMaxParticles(); } ParticleModel2D* ParticleEmitter2D::GetModel() const { return model_; } void ParticleEmitter2D::SetParticleModelAttr(ResourceRef value) { ResourceCache* cache = GetSubsystem(); SetModel(cache->GetResource(value.name_)); } Urho3D::ResourceRef ParticleEmitter2D::GetParticleModelAttr() const { return GetResourceRef(model_, ParticleModel2D::GetTypeStatic()); } void ParticleEmitter2D::OnNodeSet(Node* node) { Drawable2D::OnNodeSet(node); if (node) { Scene* scene = GetScene(); if (scene && IsEnabledEffective()) SubscribeToEvent(scene, E_SCENEPOSTUPDATE, HANDLER(ParticleEmitter2D, HandleScenePostUpdate)); } } void ParticleEmitter2D::OnWorldBoundingBoxUpdate() { if (verticesDirty_) { UpdateVertices(); boundingBox_.Clear(); for (unsigned i = 0; i < vertices_.Size(); ++i) boundingBox_.Merge(vertices_[i].position_); } worldBoundingBox_ = boundingBox_; } void ParticleEmitter2D::UpdateVertices() { if (!verticesDirty_) return; vertices_.Clear(); if (!sprite_) return; Texture2D* texture = sprite_->GetTexture(); if (!texture) return; const IntRect& rectangle_ = sprite_->GetRectangle(); if (rectangle_.Width() == 0 || rectangle_.Height() == 0) return; Vertex2D vertex0; Vertex2D vertex1; Vertex2D vertex2; Vertex2D vertex3; vertex0.uv_ = Vector2(0.0f, 1.0f); vertex1.uv_ = Vector2(0.0f, 0.0f); vertex2.uv_ = Vector2(1.0f, 0.0f); vertex3.uv_ = Vector2(1.0f, 1.0f); for (unsigned i = 0; i < numParticles_; ++i) { Particle2D& p = particles_[i]; float c = Cos(p.rotation_); float s = Sin(p.rotation_); float add = (c + s) * p.size_ * 0.5f; float sub = (c - s) * p.size_ * 0.5f; vertex0.position_ = Vector3(p.position_.x_ - sub, p.position_.y_ - add, zValue_) * unitPerPixel_; vertex1.position_ = Vector3(p.position_.x_ - add, p.position_.y_ + sub, zValue_) * unitPerPixel_; vertex2.position_ = Vector3(p.position_.x_ + sub, p.position_.y_ + add, zValue_) * unitPerPixel_; vertex3.position_ = Vector3(p.position_.x_ + add, p.position_.y_ - sub, zValue_) * unitPerPixel_; vertex0.color_ = vertex1.color_ = vertex2.color_ = vertex3.color_ = p.color_.ToUInt(); vertices_.Push(vertex0); vertices_.Push(vertex1); vertices_.Push(vertex2); vertices_.Push(vertex3); } geometryDirty_ = true; verticesDirty_ = false; } void ParticleEmitter2D::HandleScenePostUpdate(StringHash eventType, VariantMap& eventData) { MarkForUpdate(); } void ParticleEmitter2D::EmitParticle(const Vector3& worldPosition, float worldAngle, float worldScale) { if (numParticles_ >= model_->GetMaxParticles()) return; float lifespan = model_->GetParticleLifeSpan() + model_->GetParticleLifeSpanVariance() * Random(-1.0f, 1.0f); if (lifespan <= 0.0f) return; float invLifespan = 1.0f / lifespan; Particle2D& particle = particles_[numParticles_++]; particle.timeToLive_ = lifespan; particle.startPos_.x_ = worldPosition.x_; particle.startPos_.y_ = worldPosition.y_; particle.position_.x_ = worldPosition.x_ + model_->GetSourcePositionVariance().x_ * Random(-1.0f, 1.0f); particle.position_.y_ = worldPosition.y_ + model_->GetSourcePositionVariance().y_ * Random(-1.0f, 1.0f); float angle = worldAngle + model_->GetEmitAngle() + model_->GetEmitAngleVariance() * Random(-1.0f, 1.0f); float speed = worldScale * (model_->GetSpeed() + model_->GetSpeedVariance() * Random(-1.0f, 1.0f)); particle.velocity_.x_ = speed * Cos(angle); particle.velocity_.y_ = speed * Sin(angle); particle.radius_ = worldScale * (model_->GetMaxRadius() + model_->GetMaxRadiusVariance() * Random(-1.0f, 1.0f)); particle.radiusDelta_ = worldScale * (model_->GetMaxRadius() * invLifespan); particle.rotation_ = worldAngle + model_->GetEmitAngle() + model_->GetEmitAngleVariance() * Random(-1.0f, 1.0f); particle.rotationDelta_ = model_->GetRotatePerSecond() + model_->GetRotatePerSecondVariance() * Random(-1.0f, 1.0f); particle.radialAccel_ = worldScale * (model_->GetRadialAcceleration() + model_->GetRadialAccelerationVariance() * Random(-1.0f, 1.0f)); particle.tangentialAccel_ = worldScale * (model_->GetTangentialAcceleration() + model_->GetTangentialAccelerationVariance() * Random(-1.0f, 1.0f)); float particleStartSize = worldScale * Max(0.1f, model_->GetStartParticleSize() + model_->GetStartParticleSizeVariance() * Random(-1.0f, 1.0f)); float particleFinishSize = worldScale * Max(0.1f, model_->GetEndParticleSize() + model_->GetEndParticleSizeVariance() * Random(-1.0f, 1.0f)); particle.size_ = particleStartSize; particle.sizeDelta_ = (particleFinishSize - particleStartSize) * invLifespan; Color startColor = model_->GetStartColor() + model_->GetStartColorVariance() * Random(-1.0f, 1.0f); Color endColor = model_->GetEndColor() + model_->GetEndColorVariance() * Random(-1.0f, 1.0f); Color colorDelta; colorDelta.r_ = (endColor.r_ - startColor.r_) * invLifespan; colorDelta.g_ = (endColor.g_ - startColor.g_) * invLifespan; colorDelta.b_ = (endColor.b_ - startColor.b_) * invLifespan; colorDelta.a_ = (endColor.a_ - startColor.a_) * invLifespan; particle.color_ = startColor; particle.colorDelta_ = colorDelta; } void ParticleEmitter2D::UpdateParticle(Particle2D& particle, float timeStep, float worldScale) { timeStep = Min(timeStep, particle.timeToLive_); particle.timeToLive_ -= timeStep; if (model_->GetEmitterType() == EMITTER_TYPE_RADIAL) { particle.rotation_ += particle.rotationDelta_ * timeStep; particle.radius_ -= particle.radiusDelta_ * timeStep; Vector3 worldPosition = GetNode()->GetWorldPosition(); particle.position_.x_ = worldPosition.x_ - cosf(particle.rotation_) * particle.radius_; particle.position_.y_ = worldPosition.y_ - sinf(particle.rotation_) * particle.radius_; if (particle.radius_ < model_->GetMinRadius() * worldScale) particle.timeToLive_ = 0.0f; } else { float distanceX = particle.position_.x_ - particle.startPos_.x_; float distanceY = particle.position_.y_ - particle.startPos_.y_; float distanceScalar = Max(0.01f, sqrtf(distanceX * distanceX + distanceY * distanceY)); float radialX = distanceX / distanceScalar; float radialY = distanceY / distanceScalar; float tangentialX = radialX; float tangentialY = radialY; radialX *= particle.radialAccel_; radialY *= particle.radialAccel_; float newY = tangentialX; tangentialX = -tangentialY * particle.tangentialAccel_; tangentialY = newY * particle.tangentialAccel_; particle.velocity_.x_ += timeStep * (model_->GetGravity().x_ + radialX + tangentialX); particle.velocity_.y_ += timeStep * (model_->GetGravity().y_ + radialY + tangentialY); particle.position_.x_ += particle.velocity_.x_ * timeStep; particle.position_.y_ += particle.velocity_.y_ * timeStep; } particle.size_ += particle.sizeDelta_ * timeStep; particle.color_.r_ += particle.colorDelta_.r_ * timeStep; particle.color_.g_ += particle.colorDelta_.g_ * timeStep; particle.color_.b_ += particle.colorDelta_.b_ * timeStep; particle.color_.a_ += particle.colorDelta_.a_ * timeStep; } }