// // Copyright (c) 2008-2017 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #pragma once #include "../Math/Vector3.h" namespace Urho3D { /// Four-dimensional vector. class URHO3D_API Vector4 { public: /// Construct a zero vector. Vector4() : x_(0.0f), y_(0.0f), z_(0.0f), w_(0.0f) { } /// Copy-construct from another vector. Vector4(const Vector4& vector) : x_(vector.x_), y_(vector.y_), z_(vector.z_), w_(vector.w_) { } /// Construct from a 3-dimensional vector and the W coordinate. Vector4(const Vector3& vector, float w) : x_(vector.x_), y_(vector.y_), z_(vector.z_), w_(w) { } /// Construct from coordinates. Vector4(float x, float y, float z, float w) : x_(x), y_(y), z_(z), w_(w) { } /// Construct from a float array. explicit Vector4(const float* data) : x_(data[0]), y_(data[1]), z_(data[2]), w_(data[3]) { } /// Assign from another vector. Vector4& operator =(const Vector4& rhs) { x_ = rhs.x_; y_ = rhs.y_; z_ = rhs.z_; w_ = rhs.w_; return *this; } /// Test for equality with another vector without epsilon. bool operator ==(const Vector4& rhs) const { return x_ == rhs.x_ && y_ == rhs.y_ && z_ == rhs.z_ && w_ == rhs.w_; } /// Test for inequality with another vector without epsilon. bool operator !=(const Vector4& rhs) const { return x_ != rhs.x_ || y_ != rhs.y_ || z_ != rhs.z_ || w_ != rhs.w_; } /// Add a vector. Vector4 operator +(const Vector4& rhs) const { return Vector4(x_ + rhs.x_, y_ + rhs.y_, z_ + rhs.z_, w_ + rhs.w_); } /// Return negation. Vector4 operator -() const { return Vector4(-x_, -y_, -z_, -w_); } /// Subtract a vector. Vector4 operator -(const Vector4& rhs) const { return Vector4(x_ - rhs.x_, y_ - rhs.y_, z_ - rhs.z_, w_ - rhs.w_); } /// Multiply with a scalar. Vector4 operator *(float rhs) const { return Vector4(x_ * rhs, y_ * rhs, z_ * rhs, w_ * rhs); } /// Multiply with a vector. Vector4 operator *(const Vector4& rhs) const { return Vector4(x_ * rhs.x_, y_ * rhs.y_, z_ * rhs.z_, w_ * rhs.w_); } /// Divide by a scalar. Vector4 operator /(float rhs) const { return Vector4(x_ / rhs, y_ / rhs, z_ / rhs, w_ / rhs); } /// Divide by a vector. Vector4 operator /(const Vector4& rhs) const { return Vector4(x_ / rhs.x_, y_ / rhs.y_, z_ / rhs.z_, w_ / rhs.w_); } /// Add-assign a vector. Vector4& operator +=(const Vector4& rhs) { x_ += rhs.x_; y_ += rhs.y_; z_ += rhs.z_; w_ += rhs.w_; return *this; } /// Subtract-assign a vector. Vector4& operator -=(const Vector4& rhs) { x_ -= rhs.x_; y_ -= rhs.y_; z_ -= rhs.z_; w_ -= rhs.w_; return *this; } /// Multiply-assign a scalar. Vector4& operator *=(float rhs) { x_ *= rhs; y_ *= rhs; z_ *= rhs; w_ *= rhs; return *this; } /// Multiply-assign a vector. Vector4& operator *=(const Vector4& rhs) { x_ *= rhs.x_; y_ *= rhs.y_; z_ *= rhs.z_; w_ *= rhs.w_; return *this; } /// Divide-assign a scalar. Vector4& operator /=(float rhs) { float invRhs = 1.0f / rhs; x_ *= invRhs; y_ *= invRhs; z_ *= invRhs; w_ *= invRhs; return *this; } /// Divide-assign a vector. Vector4& operator /=(const Vector4& rhs) { x_ /= rhs.x_; y_ /= rhs.y_; z_ /= rhs.z_; w_ /= rhs.w_; return *this; } /// Return const value by index. float operator[](unsigned index) const { return (&x_)[index]; } /// Return mutable value by index. float& operator[](unsigned index) { return (&x_)[index]; } /// Calculate dot product. float DotProduct(const Vector4& rhs) const { return x_ * rhs.x_ + y_ * rhs.y_ + z_ * rhs.z_ + w_ * rhs.w_; } /// Calculate absolute dot product. float AbsDotProduct(const Vector4& rhs) const { return Urho3D::Abs(x_ * rhs.x_) + Urho3D::Abs(y_ * rhs.y_) + Urho3D::Abs(z_ * rhs.z_) + Urho3D::Abs(w_ * rhs.w_); } /// Project vector onto axis. float ProjectOntoAxis(const Vector3& axis) const { return DotProduct(Vector4(axis.Normalized(), 0.0f)); } /// Return absolute vector. Vector4 Abs() const { return Vector4(Urho3D::Abs(x_), Urho3D::Abs(y_), Urho3D::Abs(z_), Urho3D::Abs(w_)); } /// Linear interpolation with another vector. Vector4 Lerp(const Vector4& rhs, float t) const { return *this * (1.0f - t) + rhs * t; } /// Test for equality with another vector with epsilon. bool Equals(const Vector4& rhs) const { return Urho3D::Equals(x_, rhs.x_) && Urho3D::Equals(y_, rhs.y_) && Urho3D::Equals(z_, rhs.z_) && Urho3D::Equals(w_, rhs.w_); } /// Return whether is NaN. bool IsNaN() const { return Urho3D::IsNaN(x_) || Urho3D::IsNaN(y_) || Urho3D::IsNaN(z_) || Urho3D::IsNaN(w_); } /// Return float data. const float* Data() const { return &x_; } /// Return as string. String ToString() const; /// Return hash value for HashSet & HashMap. unsigned ToHash() const { unsigned hash = 37; hash = 37 * hash + FloatToRawIntBits(x_); hash = 37 * hash + FloatToRawIntBits(y_); hash = 37 * hash + FloatToRawIntBits(z_); hash = 37 * hash + FloatToRawIntBits(w_); return hash; } /// X coordinate. float x_; /// Y coordinate. float y_; /// Z coordinate. float z_; /// W coordinate. float w_; /// Zero vector. static const Vector4 ZERO; /// (1,1,1) vector. static const Vector4 ONE; }; /// Multiply Vector4 with a scalar. inline Vector4 operator *(float lhs, const Vector4& rhs) { return rhs * lhs; } /// Per-component linear interpolation between two 4-vectors. inline Vector4 VectorLerp(const Vector4& lhs, const Vector4& rhs, const Vector4& t) { return lhs + (rhs - lhs) * t; } /// Per-component min of two 4-vectors. inline Vector4 VectorMin(const Vector4& lhs, const Vector4& rhs) { return Vector4(Min(lhs.x_, rhs.x_), Min(lhs.y_, rhs.y_), Min(lhs.z_, rhs.z_), Min(lhs.w_, rhs.w_)); } /// Per-component max of two 4-vectors. inline Vector4 VectorMax(const Vector4& lhs, const Vector4& rhs) { return Vector4(Max(lhs.x_, rhs.x_), Max(lhs.y_, rhs.y_), Max(lhs.z_, rhs.z_), Max(lhs.w_, rhs.w_)); } /// Per-component floor of 4-vector. inline Vector4 VectorFloor(const Vector4& vec) { return Vector4(Floor(vec.x_), Floor(vec.y_), Floor(vec.z_), Floor(vec.w_)); } /// Per-component round of 4-vector. inline Vector4 VectorRound(const Vector4& vec) { return Vector4(Round(vec.x_), Round(vec.y_), Round(vec.z_), Round(vec.w_)); } /// Per-component ceil of 4-vector. inline Vector4 VectorCeil(const Vector4& vec) { return Vector4(Ceil(vec.x_), Ceil(vec.y_), Ceil(vec.z_), Ceil(vec.w_)); } }