#line 10001 #ifdef COMPILEPS // // Legacy Importance Sampled IBL // // vec3 ImportanceSampleSimple(in vec2 Xi, in float roughness, in vec3 T, in vec3 B, in vec3 N) // { // float a = roughness * roughness; // mat3 tbn = mat3(T, B, N); // #ifdef IBLFAST // const float blurFactor = 0.0; // #else // const float blurFactor = 5.0; // #endif // vec2 xx = Xi.xy * blurFactor; // xx = xx - 1.0 * trunc(xx/1.0); // hlsl style modulo // vec3 Xi3 = mix(vec3(0,0,1), normalize(vec3(xx, 1.0)), a); // vec3 XiWS = tbn * Xi3; // return normalize(N + XiWS); // } // // Karis '13 // vec3 ImportanceSampleGGX(in vec2 Xi, in float roughness, in vec3 T, in vec3 B, in vec3 N) // { // float a = roughness * roughness; // float Phi = 2.0 * M_PI * Xi.x; // float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y)); // float SinTheta = sqrt(1.0 - CosTheta * CosTheta); // vec3 H = vec3(0,0,0); // H.x = SinTheta * cos(Phi); // H.y = SinTheta * sin(Phi); // H.z = CosTheta; // vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); // vec3 TangentX = normalize(cross(UpVector, N)); // vec3 TangentY = cross(N, TangentX); // // Tangent to world space // return TangentX * H.x + TangentY * H.y + N * H.z; // } // #ifdef IBLFAST // #define IMPORTANCE_SAMPLES 1 // #else // #define IMPORTANCE_SAMPLES 4 // #endif // #define IMPORTANCE_KERNEL_SIZE 16 // vec2 IMPORTANCE_KERNEL[IMPORTANCE_KERNEL_SIZE] = vec2[] ( // vec2(-0.0780436, 0.0558389), // vec2(0.034318, -0.0635879), // vec2(0.00230821, 0.0807279), // vec2(0.0124638, 0.117585), // vec2(0.093943, -0.0944602), // vec2(0.139348, -0.109816), // vec2(-0.181872, -0.129649), // vec2(0.240066, -0.0494057), // vec2(0.115965, -0.0374714), // vec2(-0.294819, -0.100726), // vec2(-0.149652, 0.37459), // vec2(0.261695, -0.292813), // vec2(-0.37944, -0.425145), // vec2(0.628994, -0.189387), // vec2(-0.331257, -0.646864), // vec2(-0.467004, 0.439687) // ); // float GetMipFromRougness(float roughness) // { // float smoothness = 1.0 - roughness; // return (1.0 - smoothness * smoothness) * 10.0; // } // /// Perform importance sampling // /// reflectVec: calculated vector of reflection // /// wsNormal: world-space normal of the surface // /// toCamera: direction from the pixel to the camera // /// specular: specular color // /// roughness: surface roughness // /// reflectionCubeColor: output color for diffuse // // Implementation based on Epics 2013 course notes // vec3 ImportanceSampling(in vec3 reflectVec, in vec3 tangent, in vec3 bitangent, in vec3 wsNormal, in vec3 toCamera, in vec3 diffColor, in vec3 specColor, in float roughness, inout vec3 reflectionCubeColor) // { // reflectionCubeColor = vec3(1,1,1); // vec3 reflectSpec = normalize(GetSpecularDominantDir(wsNormal, reflectVec, roughness)); // vec3 V = normalize(-toCamera); // vec3 N = normalize(wsNormal); // float ndv = clamp(abs(dot(N, V)), 0.0, 1.0); // float specMipLevel = GetMipFromRougness(roughness); // vec3 accumulatedColor = vec3(0,0,0); // for (int i = 0; i < IMPORTANCE_SAMPLES; ++i) // { // vec3 kd = vec3(1,1,1); // vec3 diffuseFactor = vec3(0,0,0); // vec3 specularFactor = vec3(0,0,0); // { // // Diffuse IBL // const float rough = 1.0; // const float mipLevel = 9.0; // vec3 H = ImportanceSampleSimple(IMPORTANCE_KERNEL[i], rough, tangent, bitangent, N); // vec3 L = 2.0 * dot( V, H ) * H - V; // float vdh = clamp(abs(dot(V, H)), 0.0, 1.0); // float ndh = clamp(abs(dot(N, H)), 0.0, 1.0); // float ndl = clamp(abs(dot(N, L)), 0.0, 1.0); // vec3 sampledColor = textureLod(sZoneCubeMap, L, mipLevel).rgb; // vec3 diffuseTerm = Diffuse(diffColor, rough, ndv, ndl, vdh); // vec3 lightTerm = sampledColor; // diffuseFactor = lightTerm * diffuseTerm; // } // { // // Specular IBL // float rough = roughness; // float mipLevel = specMipLevel; // vec3 H = ImportanceSampleSimple(IMPORTANCE_KERNEL[i], rough, tangent, bitangent, N); // vec3 L = 2.0 * dot( V, H ) * H - V; // vec3 sampledColor = textureLod(sZoneCubeMap, L, mipLevel).rgb; // float vdh = clamp(abs(dot(V, H)), 0.0, 1.0); // float ndh = clamp(abs(dot(N, H)), 0.0, 1.0); // float ndl = clamp(abs(dot(N, L)), 0.0, 1.0); // vec3 fresnelTerm = Fresnel(specColor, vdh); // float distTerm = 1.0; // Optimization, this term is mathematically cancelled out -- Distribution(ndh, roughness); // float visTerm = Visibility(ndl, ndv, rough); // vec3 lightTerm = sampledColor * ndl; // float pdf = ndl > 0.05 ? ImportanceSamplePDF(distTerm, ndh, vdh) : 4.0; // reduce artifacts at extreme grazing angles // vec3 specularTerm = SpecularBRDF(distTerm, fresnelTerm, visTerm, ndl, ndv); // // energy conservation: // // Specular conservation: // specularFactor = lightTerm * specularTerm / pdf; // specularFactor = max( // clamp(normalize(specularFactor) * (length(sampledColor * specColor)), 0.0, 1.0), // specularFactor // ); // // Diffuse conservation: // //kd = (sampledColor * specColor)/specularFactor; //energy conservation // kd = 1.0 - specularFactor; // } // accumulatedColor += specularFactor + diffuseFactor * kd; // } // return (accumulatedColor / IMPORTANCE_SAMPLES); // } // vec3 ImportanceSamplingSimple(in vec3 reflectVec, in vec3 tangent, in vec3 bitangent, in vec3 wsNormal, in vec3 toCamera, in vec3 diffColor, in vec3 specColor, in float roughness, inout vec3 reflectionCubeColor) // { // reflectionCubeColor = vec3(1,1,1); // reflectVec = normalize(GetSpecularDominantDir(wsNormal, reflectVec, roughness)); // vec3 Hn = normalize(-toCamera + wsNormal); // float ndv = clamp(dot(-toCamera, wsNormal), 0.0, 1.0); // float vdh = clamp(dot(-toCamera, Hn), 0.0, 1.0); // float ndh = clamp(dot(wsNormal, Hn), 0.0, 1.0); // vec3 accumulatedColor = vec3(0,0,0); // for (int i = 0; i < IMPORTANCE_SAMPLES; ++i) // { // vec3 kd = vec3(1,1,1); // vec3 diffuseFactor = vec3(0,0,0); // vec3 specularFactor = vec3(0,0,0); // { // // Diffuse IBL // const float rough = 1.0; // const float mipLevel = 9.0; // vec3 perturb = ImportanceSampleGGX(IMPORTANCE_KERNEL[i].xy, rough, tangent, bitangent, wsNormal); // vec3 sampleVec = wsNormal + perturb; //perturb by the sample vector // vec3 sampledColor = textureLod(sZoneCubeMap, sampleVec, mipLevel).rgb; // float ndl = clamp(dot(sampleVec, wsNormal), 0.0, 1.0); // vec3 diffuseTerm = Diffuse(diffColor, rough, ndv, ndl, vdh); // vec3 lightTerm = sampledColor; // diffuseFactor = lightTerm * diffuseTerm; // } // { // // Specular IBL // float rough = roughness; // float mipLevel = GetMipFromRougness(rough); // vec3 perturb = ImportanceSampleGGX(IMPORTANCE_KERNEL[i].xy, rough, tangent, bitangent, reflectVec); // vec3 sampleVec = reflectVec + perturb; //perturb by the sample vector // vec3 sampledColor = textureCube(sZoneCubeMap, sampleVec, mipLevel).rgb; // float ndl = clamp(dot(sampleVec, wsNormal), 0.0, 1.0); // vec3 fresnelTerm = SchlickFresnel(specColor, ndh) ; // float distTerm = 1.0; //Optimization, this term is mathematically cancelled out //Distribution(ndh, roughness); // float visTerm = SmithGGXVisibility(ndl, ndv, rough); // vec3 lightTerm = sampledColor * ndl; // float pdf = 1.0; //ImportanceSamplePDF(distTerm, ndh, vdh); // specularFactor = lightTerm * SpecularBRDF(distTerm, fresnelTerm, visTerm, ndl, ndv) / pdf; // specularFactor *= pdf * ndv * (4.0 * ndl * ndv); // hacks // kd = (1.0 - clamp(specularFactor, 0.0, 1.0)); //energy conservation // } // accumulatedColor += specularFactor + diffuseFactor * kd; // } // return accumulatedColor / IMPORTANCE_SAMPLES; // } /// Determine reflection vector based on surface roughness, rougher uses closer to the normal and smoother uses closer to the reflection vector /// normal: surface normal /// reflection: vector of reflection off of the surface /// roughness: surface roughness vec3 GetSpecularDominantDir(vec3 normal, vec3 reflection, float roughness) { float smoothness = 1.0 - roughness; float lerpFactor = smoothness * (sqrt(smoothness) + roughness); return mix(normal, reflection, lerpFactor); } float GetMipFromRoughness(float roughness) { float Level = 3 - 1.15 * log2( roughness ); return 9.0 - 1 - Level; } vec3 EnvBRDFApprox (vec3 SpecularColor, float Roughness, float NoV) { vec4 c0 = vec4(-1, -0.0275, -0.572, 0.022 ); vec4 c1 = vec4(1, 0.0425, 1.0, -0.04 ); vec4 r = Roughness * c0 + c1; float a004 = min( r.x * r.x, exp2( -9.28 * NoV ) ) * r.x + r.y; vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw; return SpecularColor * AB.x + AB.y; } vec3 FixCubeLookup(vec3 v) { float M = max(max(abs(v.x), abs(v.y)), abs(v.z)); float scale = (1024 - 1) / 1024; if (abs(v.x) != M) v.x += scale; if (abs(v.y) != M) v.y += scale; if (abs(v.z) != M) v.z += scale; return v; } /// Calculate IBL contributation /// reflectVec: reflection vector for cube sampling /// wsNormal: surface normal in word space /// toCamera: normalized direction from surface point to camera /// roughness: surface roughness /// ambientOcclusion: ambient occlusion vec3 ImageBasedLighting(vec3 reflectVec, vec3 tangent, vec3 bitangent, vec3 wsNormal, vec3 toCamera, vec3 diffColor, vec3 specColor, float roughness, inout vec3 reflectionCubeColor) { reflectVec = GetSpecularDominantDir(wsNormal, reflectVec, roughness); float ndv = clamp(dot(-toCamera, wsNormal), 0.0, 1.0); // PMREM Mipmapmode https://seblagarde.wordpress.com/2012/06/10/amd-cubemapgen-for-physically-based-rendering/ //float GlossScale = 16.0; //float GlossBias = 5.0; float mipSelect = GetMipFromRoughness(roughness); //exp2(GlossScale * roughness * roughness + GlossBias) - exp2(GlossBias); // OpenGL ES does not support textureLod without extensions and does not have the sZoneCubeMap sampler, // so for now, sample without explicit LOD, and from the environment sampler, where the zone texture will be put // on mobile hardware #ifndef GL_ES vec3 cube = textureLod(sZoneCubeMap, FixCubeLookup(reflectVec), mipSelect).rgb; vec3 cubeD = textureLod(sZoneCubeMap, FixCubeLookup(wsNormal), 9.0).rgb; #else vec3 cube = textureCube(sEnvCubeMap, FixCubeLookup(reflectVec)).rgb; vec3 cubeD = textureCube(sEnvCubeMap, FixCubeLookup(wsNormal)).rgb; #endif // Fake the HDR texture float brightness = clamp(cAmbientColor.a, 0.0, 1.0); float darknessCutoff = clamp((cAmbientColor.a - 1.0) * 0.1, 0.0, 0.25); const float hdrMaxBrightness = 5.0; vec3 hdrCube = pow(cube + darknessCutoff, vec3(max(1.0, cAmbientColor.a))); hdrCube += max(vec3(0.0), hdrCube - vec3(1.0)) * hdrMaxBrightness; vec3 hdrCubeD = pow(cubeD + darknessCutoff, vec3(max(1.0, cAmbientColor.a))); hdrCubeD += max(vec3(0.0), hdrCubeD - vec3(1.0)) * hdrMaxBrightness; vec3 environmentSpecular = EnvBRDFApprox(specColor, roughness, ndv); vec3 environmentDiffuse = EnvBRDFApprox(diffColor, 1.0, ndv); return (hdrCube * environmentSpecular + hdrCubeD * environmentDiffuse) * brightness; //return ImportanceSampling(reflectVec, tangent, bitangent, wsNormal, toCamera, diffColor, specColor, roughness, reflectionCubeColor); } #endif