#ifdef COMPILEVS vec3 GetAmbient(float zonePos) { return cAmbientStartColor + zonePos * cAmbientEndColor; } #ifdef NUMVERTEXLIGHTS float GetVertexLight(int index, vec3 worldPos, vec3 normal) { vec3 lightDir = cVertexLights[index * 3 + 1].xyz; vec3 lightPos = cVertexLights[index * 3 + 2].xyz; float invRange = cVertexLights[index * 3].w; float cutoff = cVertexLights[index * 3 + 1].w; float invCutoff = cVertexLights[index * 3 + 2].w; // Directional light if (invRange == 0.0) { #ifdef TRANSLUCENT float NdotL = abs(dot(normal, lightDir)); #else float NdotL = max(dot(normal, lightDir), 0.0); #endif return NdotL; } // Point/spot light else { vec3 lightVec = (lightPos - worldPos) * invRange; float lightDist = length(lightVec); vec3 localDir = lightVec / lightDist; #ifdef TRANSLUCENT float NdotL = abs(dot(normal, localDir)); #else float NdotL = max(dot(normal, localDir), 0.0); #endif float atten = clamp(1.0 - lightDist * lightDist, 0.0, 1.0); float spotEffect = dot(localDir, lightDir); float spotAtten = clamp((spotEffect - cutoff) * invCutoff, 0.0, 1.0); return NdotL * atten * spotAtten; } } float GetVertexLightVolumetric(int index, vec3 worldPos) { vec3 lightDir = cVertexLights[index * 3 + 1].xyz; vec3 lightPos = cVertexLights[index * 3 + 2].xyz; float invRange = cVertexLights[index * 3].w; float cutoff = cVertexLights[index * 3 + 1].w; float invCutoff = cVertexLights[index * 3 + 2].w; // Directional light if (invRange == 0.0) return 1.0; // Point/spot light else { vec3 lightVec = (lightPos - worldPos) * invRange; float lightDist = length(lightVec); vec3 localDir = lightVec / lightDist; float atten = clamp(1.0 - lightDist * lightDist, 0.0, 1.0); float spotEffect = dot(localDir, lightDir); float spotAtten = clamp((spotEffect - cutoff) * invCutoff, 0.0, 1.0); return atten * spotAtten; } } #endif #ifdef SHADOW #if defined(DIRLIGHT) && (!defined(GL_ES) || defined(WEBGL)) #define NUMCASCADES 4 #else #define NUMCASCADES 1 #endif vec4 GetShadowPos(int index, vec3 normal, vec4 projWorldPos) { #ifdef NORMALOFFSET float normalOffsetScale[4]; normalOffsetScale[0] = cNormalOffsetScale.x; normalOffsetScale[1] = cNormalOffsetScale.y; normalOffsetScale[2] = cNormalOffsetScale.z; normalOffsetScale[3] = cNormalOffsetScale.w; #ifdef DIRLIGHT float cosAngle = clamp(1.0 - dot(normal, cLightDir), 0.0, 1.0); #else float cosAngle = clamp(1.0 - dot(normal, normalize(cLightPos.xyz - projWorldPos.xyz)), 0.0, 1.0); #endif projWorldPos.xyz += cosAngle * normalOffsetScale[index] * normal; #endif #if defined(DIRLIGHT) return projWorldPos * cLightMatrices[index]; #elif defined(SPOTLIGHT) return projWorldPos * cLightMatrices[1]; #else return vec4(projWorldPos.xyz - cLightPos.xyz, 1.0); #endif } #endif #endif #ifdef COMPILEPS float GetDiffuse(vec3 normal, vec3 worldPos, out vec3 lightDir) { #ifdef DIRLIGHT lightDir = cLightDirPS; #ifdef TRANSLUCENT return abs(dot(normal, lightDir)); #else return max(dot(normal, lightDir), 0.0); #endif #else vec3 lightVec = (cLightPosPS.xyz - worldPos) * cLightPosPS.w; float lightDist = length(lightVec); lightDir = lightVec / lightDist; #ifdef TRANSLUCENT return abs(dot(normal, lightDir)) * texture2D(sLightRampMap, vec2(lightDist, 0.0)).r; #else return max(dot(normal, lightDir), 0.0) * texture2D(sLightRampMap, vec2(lightDist, 0.0)).r; #endif #endif } float GetAtten(vec3 normal, vec3 worldPos, out vec3 lightDir) { lightDir = cLightDirPS; return clamp(dot(normal, lightDir), 0.0, 1.0); } float GetAttenPoint(vec3 normal, vec3 worldPos, out vec3 lightDir) { vec3 lightVec = (cLightPosPS.xyz - worldPos) * cLightPosPS.w; float lightDist = length(lightVec); float falloff = pow(clamp(1.0 - pow(lightDist / 1.0, 4.0), 0.0, 1.0), 2.0) * 3.14159265358979323846 / (4.0 * 3.14159265358979323846)*(pow(lightDist, 2.0) + 1.0); lightDir = lightVec / lightDist; return clamp(dot(normal, lightDir), 0.0, 1.0) * falloff; } float GetAttenSpot(vec3 normal, vec3 worldPos, out vec3 lightDir) { vec3 lightVec = (cLightPosPS.xyz - worldPos) * cLightPosPS.w; float lightDist = length(lightVec); float falloff = pow(clamp(1.0 - pow(lightDist / 1.0, 4.0), 0.0, 1.0), 2.0) / (pow(lightDist, 2.0) + 1.0); lightDir = lightVec / lightDist; return clamp(dot(normal, lightDir), 0.0, 1.0) * falloff; } float GetDiffuseVolumetric(vec3 worldPos) { #ifdef DIRLIGHT return 1.0; #else vec3 lightVec = (cLightPosPS.xyz - worldPos) * cLightPosPS.w; float lightDist = length(lightVec); return texture2D(sLightRampMap, vec2(lightDist, 0.0)).r; #endif } float GetSpecular(vec3 normal, vec3 eyeVec, vec3 lightDir, float specularPower) { vec3 halfVec = normalize(normalize(eyeVec) + lightDir); return pow(max(dot(normal, halfVec), 0.0), specularPower); } float GetIntensity(vec3 color) { return dot(color, vec3(0.299, 0.587, 0.114)); } #ifdef SHADOW #if defined(DIRLIGHT) && (!defined(GL_ES) || defined(WEBGL)) #define NUMCASCADES 4 #else #define NUMCASCADES 1 #endif #ifdef VSM_SHADOW float ReduceLightBleeding(float min, float p_max) { return clamp((p_max - min) / (1.0 - min), 0.0, 1.0); } float Chebyshev(vec2 Moments, float depth) { //One-tailed inequality valid if depth > Moments.x float p = float(depth <= Moments.x); //Compute variance. float Variance = Moments.y - (Moments.x * Moments.x); float minVariance = cVSMShadowParams.x; Variance = max(Variance, minVariance); //Compute probabilistic upper bound. float d = depth - Moments.x; float p_max = Variance / (Variance + d*d); // Prevent light bleeding p_max = ReduceLightBleeding(cVSMShadowParams.y, p_max); return max(p, p_max); } #endif #ifndef GL_ES float GetShadow(vec4 shadowPos) { #if defined(SIMPLE_SHADOW) // Take one sample #ifndef GL3 float inLight = shadow2DProj(sShadowMap, shadowPos).r; #else float inLight = textureProj(sShadowMap, shadowPos); #endif return cShadowIntensity.y + cShadowIntensity.x * inLight; #elif defined(PCF_SHADOW) // Take four samples and average them // Note: in case of sampling a point light cube shadow, we optimize out the w divide as it has already been performed #ifndef POINTLIGHT vec2 offsets = cShadowMapInvSize * shadowPos.w; #else vec2 offsets = cShadowMapInvSize; #endif #ifndef GL3 return cShadowIntensity.y + cShadowIntensity.x * (shadow2DProj(sShadowMap, shadowPos).r + shadow2DProj(sShadowMap, vec4(shadowPos.x + offsets.x, shadowPos.yzw)).r + shadow2DProj(sShadowMap, vec4(shadowPos.x, shadowPos.y + offsets.y, shadowPos.zw)).r + shadow2DProj(sShadowMap, vec4(shadowPos.xy + offsets.xy, shadowPos.zw)).r); #else return cShadowIntensity.y + cShadowIntensity.x * (textureProj(sShadowMap, shadowPos) + textureProj(sShadowMap, vec4(shadowPos.x + offsets.x, shadowPos.yzw)) + textureProj(sShadowMap, vec4(shadowPos.x, shadowPos.y + offsets.y, shadowPos.zw)) + textureProj(sShadowMap, vec4(shadowPos.xy + offsets.xy, shadowPos.zw))); #endif #elif defined(VSM_SHADOW) vec2 samples = texture2D(sShadowMap, shadowPos.xy / shadowPos.w).rg; return cShadowIntensity.y + cShadowIntensity.x * Chebyshev(samples, shadowPos.z / shadowPos.w); #endif } #else float GetShadow(highp vec4 shadowPos) { #if defined(SIMPLE_SHADOW) // Take one sample return cShadowIntensity.y + (texture2DProj(sShadowMap, shadowPos).r * shadowPos.w > shadowPos.z ? cShadowIntensity.x : 0.0); #elif defined(PCF_SHADOW) // Take four samples and average them vec2 offsets = cShadowMapInvSize * shadowPos.w; vec4 inLight = vec4( texture2DProj(sShadowMap, shadowPos).r * shadowPos.w > shadowPos.z, texture2DProj(sShadowMap, vec4(shadowPos.x + offsets.x, shadowPos.yzw)).r * shadowPos.w > shadowPos.z, texture2DProj(sShadowMap, vec4(shadowPos.x, shadowPos.y + offsets.y, shadowPos.zw)).r * shadowPos.w > shadowPos.z, texture2DProj(sShadowMap, vec4(shadowPos.xy + offsets.xy, shadowPos.zw)).r * shadowPos.w > shadowPos.z ); return cShadowIntensity.y + dot(inLight, vec4(cShadowIntensity.x)); #elif defined(VSM_SHADOW) vec2 samples = texture2D(sShadowMap, shadowPos.xy / shadowPos.w).rg; return cShadowIntensity.y + cShadowIntensity.x * Chebyshev(samples, shadowPos.z / shadowPos.w); #endif } #endif #ifdef POINTLIGHT float GetPointShadow(vec3 lightVec) { vec3 axis = textureCube(sFaceSelectCubeMap, lightVec).rgb; float depth = abs(dot(lightVec, axis)); // Expand the maximum component of the light vector to get full 0.0 - 1.0 UV range from the cube map, // and to avoid sampling across faces. Some GPU's filter across faces, while others do not, and in this // case filtering across faces is wrong const vec3 factor = vec3(1.0 / 256.0); lightVec += factor * axis * lightVec; // Read the 2D UV coordinates, adjust according to shadow map size and add face offset vec4 indirectPos = textureCube(sIndirectionCubeMap, lightVec); indirectPos.xy *= cShadowCubeAdjust.xy; indirectPos.xy += vec2(cShadowCubeAdjust.z + indirectPos.z * 0.5, cShadowCubeAdjust.w + indirectPos.w); vec4 shadowPos = vec4(indirectPos.xy, cShadowDepthFade.x + cShadowDepthFade.y / depth, 1.0); return GetShadow(shadowPos); } #endif #ifdef DIRLIGHT float GetDirShadowFade(float inLight, float depth) { return min(inLight + max((depth - cShadowDepthFade.z) * cShadowDepthFade.w, 0.0), 1.0); } #if !defined(GL_ES) || defined(WEBGL) float GetDirShadow(const vec4 iShadowPos[NUMCASCADES], float depth) { vec4 shadowPos; if (depth < cShadowSplits.x) shadowPos = iShadowPos[0]; else if (depth < cShadowSplits.y) shadowPos = iShadowPos[1]; else if (depth < cShadowSplits.z) shadowPos = iShadowPos[2]; else shadowPos = iShadowPos[3]; return GetDirShadowFade(GetShadow(shadowPos), depth); } #else float GetDirShadow(const highp vec4 iShadowPos[NUMCASCADES], float depth) { return GetDirShadowFade(GetShadow(iShadowPos[0]), depth); } #endif #ifndef GL_ES float GetDirShadowDeferred(vec4 projWorldPos, vec3 normal, float depth) { vec4 shadowPos; #ifdef NORMALOFFSET float cosAngle = clamp(1.0 - dot(normal, cLightDirPS), 0.0, 1.0); if (depth < cShadowSplits.x) shadowPos = vec4(projWorldPos.xyz + cosAngle * cNormalOffsetScalePS.x * normal, 1.0) * cLightMatricesPS[0]; else if (depth < cShadowSplits.y) shadowPos = vec4(projWorldPos.xyz + cosAngle * cNormalOffsetScalePS.y * normal, 1.0) * cLightMatricesPS[1]; else if (depth < cShadowSplits.z) shadowPos = vec4(projWorldPos.xyz + cosAngle * cNormalOffsetScalePS.z * normal, 1.0) * cLightMatricesPS[2]; else shadowPos = vec4(projWorldPos.xyz + cosAngle * cNormalOffsetScalePS.w * normal, 1.0) * cLightMatricesPS[3]; #else if (depth < cShadowSplits.x) shadowPos = projWorldPos * cLightMatricesPS[0]; else if (depth < cShadowSplits.y) shadowPos = projWorldPos * cLightMatricesPS[1]; else if (depth < cShadowSplits.z) shadowPos = projWorldPos * cLightMatricesPS[2]; else shadowPos = projWorldPos * cLightMatricesPS[3]; #endif return GetDirShadowFade(GetShadow(shadowPos), depth); } #endif #endif #ifndef GL_ES float GetShadow(const vec4 iShadowPos[NUMCASCADES], float depth) #else float GetShadow(const highp vec4 iShadowPos[NUMCASCADES], float depth) #endif { #if defined(DIRLIGHT) return GetDirShadow(iShadowPos, depth); #elif defined(SPOTLIGHT) return GetShadow(iShadowPos[0]); #else return GetPointShadow(iShadowPos[0].xyz); #endif } #ifndef GL_ES float GetShadowDeferred(vec4 projWorldPos, vec3 normal, float depth) { #ifdef DIRLIGHT return GetDirShadowDeferred(projWorldPos, normal, depth); #else #ifdef NORMALOFFSET float cosAngle = clamp(1.0 - dot(normal, normalize(cLightPosPS.xyz - projWorldPos.xyz)), 0.0, 1.0); projWorldPos.xyz += cosAngle * cNormalOffsetScalePS.x * normal; #endif #ifdef SPOTLIGHT vec4 shadowPos = projWorldPos * cLightMatricesPS[1]; return GetShadow(shadowPos); #else vec3 shadowPos = projWorldPos.xyz - cLightPosPS.xyz; return GetPointShadow(shadowPos); #endif #endif } #endif #endif #endif