// // Copyright (c) 2008-2020 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "InverseKinematics.h" #include URHO3D_DEFINE_APPLICATION_MAIN(InverseKinematics) InverseKinematics::InverseKinematics(Context* context) : Sample(context) { } void InverseKinematics::Start() { // Execute base class startup Sample::Start(); // Create the scene content CreateScene(); // Create the UI content CreateInstructions(); // Setup the viewport for displaying the scene SetupViewport(); // Hook up to the frame update events SubscribeToEvents(); // Set the mouse mode to use in the sample Sample::InitMouseMode(MM_RELATIVE); GetSubsystem()->SetMouseVisible(true); } void InverseKinematics::CreateScene() { auto* cache = GetSubsystem(); scene_ = new Scene(context_); // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000) scene_->CreateComponent(); scene_->CreateComponent(); scene_->CreateComponent(); // Create scene node & StaticModel component for showing a static plane floorNode_ = scene_->CreateChild("Plane"); floorNode_->SetScale(Vector3(50.0f, 1.0f, 50.0f)); auto* planeObject = floorNode_->CreateComponent(); planeObject->SetModel(cache->GetResource("Models/Plane.mdl")); planeObject->SetMaterial(cache->GetResource("Materials/StoneTiled.xml")); // Set up collision, we need to raycast to determine foot height floorNode_->CreateComponent(); auto* col = floorNode_->CreateComponent(); col->SetBox(Vector3(1, 0, 1)); // Create a directional light to the world. Node* lightNode = scene_->CreateChild("DirectionalLight"); lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f)); // The direction vector does not need to be normalized auto* light = lightNode->CreateComponent(); light->SetLightType(LIGHT_DIRECTIONAL); light->SetCastShadows(true); light->SetShadowBias(BiasParameters(0.00005f, 0.5f)); // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f)); // Load Jack model jackNode_ = scene_->CreateChild("Jack"); jackNode_->SetRotation(Quaternion(0.0f, 270.0f, 0.0f)); auto* jack = jackNode_->CreateComponent(); jack->SetModel(cache->GetResource("Models/Jack.mdl")); jack->SetMaterial(cache->GetResource("Materials/Jack.xml")); jack->SetCastShadows(true); // Create animation controller and play walk animation jackAnimCtrl_ = jackNode_->CreateComponent(); jackAnimCtrl_->PlayExclusive("Models/Jack_Walk.ani", 0, true, 0.0f); // We need to attach two inverse kinematic effectors to Jack's feet to // control the grounding. leftFoot_ = jackNode_->GetChild("Bip01_L_Foot", true); rightFoot_ = jackNode_->GetChild("Bip01_R_Foot", true); leftEffector_ = leftFoot_->CreateComponent(); rightEffector_ = rightFoot_->CreateComponent(); // Control 2 segments up to the hips leftEffector_->SetChainLength(2); rightEffector_->SetChainLength(2); // For the effectors to work, an IKSolver needs to be attached to one of // the parent nodes. Typically, you want to place the solver as close as // possible to the effectors for optimal performance. Since in this case // we're solving the legs only, we can place the solver at the spine. Node* spine = jackNode_->GetChild("Bip01_Spine", true); solver_ = spine->CreateComponent(); // Two-bone solver is more efficient and more stable than FABRIK (but only // works for two bones, obviously). solver_->SetAlgorithm(IKSolver::TWO_BONE); // Disable auto-solving, which means we need to call Solve() manually solver_->SetFeature(IKSolver::AUTO_SOLVE, false); // Only enable this so the debug draw shows us the pose before solving. // This should NOT be enabled for any other reason (it does nothing and is // a waste of performance). solver_->SetFeature(IKSolver::UPDATE_ORIGINAL_POSE, true); // Create the camera. cameraRotateNode_ = scene_->CreateChild("CameraRotate"); cameraNode_ = cameraRotateNode_->CreateChild("Camera"); cameraNode_->CreateComponent(); // Set an initial position for the camera scene node above the plane cameraNode_->SetPosition(Vector3(0, 0, -4)); cameraRotateNode_->SetPosition(Vector3(0, 0.4, 0)); pitch_ = 20; yaw_ = 50; } void InverseKinematics::CreateInstructions() { auto* cache = GetSubsystem(); auto* ui = GetSubsystem(); // Construct new Text object, set string to display and font to use auto* instructionText = ui->GetRoot()->CreateChild(); instructionText->SetText("Left-Click and drag to look around\nRight-Click and drag to change incline\nPress space to reset floor\nPress D to draw debug geometry"); instructionText->SetFont(cache->GetResource("Fonts/Anonymous Pro.ttf"), 15); // Position the text relative to the screen center instructionText->SetHorizontalAlignment(HA_CENTER); instructionText->SetVerticalAlignment(VA_CENTER); instructionText->SetPosition(0, ui->GetRoot()->GetHeight() / 4); } void InverseKinematics::SetupViewport() { auto* renderer = GetSubsystem(); // Set up a viewport to the Renderer subsystem so that the 3D scene can be seen. We need to define the scene and the camera // at minimum. Additionally we could configure the viewport screen size and the rendering path (eg. forward / deferred) to // use, but now we just use full screen and default render path configured in the engine command line options SharedPtr viewport(new Viewport(context_, scene_, cameraNode_->GetComponent())); renderer->SetViewport(0, viewport); } void InverseKinematics::UpdateCameraAndFloor(float /*timeStep*/) { // Do not move if the UI has a focused element (the console) if (GetSubsystem()->GetFocusElement()) return; auto* input = GetSubsystem(); // Mouse sensitivity as degrees per pixel const float MOUSE_SENSITIVITY = 0.1f; // Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees if (input->GetMouseButtonDown(MOUSEB_LEFT)) { IntVector2 mouseMove = input->GetMouseMove(); yaw_ += MOUSE_SENSITIVITY * mouseMove.x_; pitch_ += MOUSE_SENSITIVITY * mouseMove.y_; pitch_ = Clamp(pitch_, -90.0f, 90.0f); } if (input->GetMouseButtonDown(MOUSEB_RIGHT)) { IntVector2 mouseMoveInt = input->GetMouseMove(); Vector2 mouseMove = Matrix2( -Cos(yaw_), Sin(yaw_), Sin(yaw_), Cos(yaw_) ) * Vector2(mouseMoveInt.y_, -mouseMoveInt.x_); floorPitch_ += MOUSE_SENSITIVITY * mouseMove.x_; floorPitch_ = Clamp(floorPitch_, -90.0f, 90.0f); floorRoll_ += MOUSE_SENSITIVITY * mouseMove.y_; } if (input->GetKeyPress(KEY_SPACE)) { floorPitch_ = 0; floorRoll_ = 0; } if (input->GetKeyPress(KEY_D)) { drawDebug_ = !drawDebug_; } // Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero cameraRotateNode_->SetRotation(Quaternion(pitch_, yaw_, 0.0f)); floorNode_->SetRotation(Quaternion(floorPitch_, 0, floorRoll_)); } void InverseKinematics::SubscribeToEvents() { // Subscribe HandleUpdate() function for processing update events SubscribeToEvent(E_UPDATE, URHO3D_HANDLER(InverseKinematics, HandleUpdate)); SubscribeToEvent(E_POSTRENDERUPDATE, URHO3D_HANDLER(InverseKinematics, HandlePostRenderUpdate)); SubscribeToEvent(E_SCENEDRAWABLEUPDATEFINISHED, URHO3D_HANDLER(InverseKinematics, HandleSceneDrawableUpdateFinished)); } void InverseKinematics::HandleUpdate(StringHash /*eventType*/, VariantMap& eventData) { using namespace Update; // Take the frame time step, which is stored as a float float timeStep = eventData[P_TIMESTEP].GetFloat(); // Move the camera, scale movement with time step UpdateCameraAndFloor(timeStep); } void InverseKinematics::HandlePostRenderUpdate(StringHash /*eventType*/, VariantMap& eventData) { if (drawDebug_) solver_->DrawDebugGeometry(false); } void InverseKinematics::HandleSceneDrawableUpdateFinished(StringHash /*eventType*/, VariantMap& eventData) { auto* phyWorld = scene_->GetComponent(); Vector3 leftFootPosition = leftFoot_->GetWorldPosition(); Vector3 rightFootPosition = rightFoot_->GetWorldPosition(); // Cast ray down to get the normal of the underlying surface PhysicsRaycastResult result; phyWorld->RaycastSingle(result, Ray(leftFootPosition + Vector3(0, 1, 0), Vector3(0, -1, 0)), 2); if (result.body_) { // Cast again, but this time along the normal. Set the target position // to the ray intersection phyWorld->RaycastSingle(result, Ray(leftFootPosition + result.normal_, -result.normal_), 2); // The foot node has an offset relative to the root node float footOffset = leftFoot_->GetWorldPosition().y_ - jackNode_->GetWorldPosition().y_; leftEffector_->SetTargetPosition(result.position_ + result.normal_ * footOffset); // Rotate foot according to normal leftFoot_->Rotate(Quaternion(Vector3(0, 1, 0), result.normal_), TS_WORLD); } // Same deal with the right foot phyWorld->RaycastSingle(result, Ray(rightFootPosition + Vector3(0, 1, 0), Vector3(0, -1, 0)), 2); if (result.body_) { phyWorld->RaycastSingle(result, Ray(rightFootPosition + result.normal_, -result.normal_), 2); float footOffset = rightFoot_->GetWorldPosition().y_ - jackNode_->GetWorldPosition().y_; rightEffector_->SetTargetPosition(result.position_ + result.normal_ * footOffset); rightFoot_->Rotate(Quaternion(Vector3(0, 1, 0), result.normal_), TS_WORLD); } solver_->Solve(); }