View.cpp 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "OctreeQuery.h"
  34. #include "Renderer.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderVariation.h"
  38. #include "Sort.h"
  39. #include "Technique.h"
  40. #include "Texture2D.h"
  41. #include "TextureCube.h"
  42. #include "VertexBuffer.h"
  43. #include "View.h"
  44. #include "Zone.h"
  45. #include "DebugNew.h"
  46. static const Vector3 directions[] =
  47. {
  48. Vector3(1.0f, 0.0f, 0.0f),
  49. Vector3(-1.0f, 0.0f, 0.0f),
  50. Vector3(0.0f, 1.0f, 0.0f),
  51. Vector3(0.0f, -1.0f, 0.0f),
  52. Vector3(0.0f, 0.0f, 1.0f),
  53. Vector3(0.0f, 0.0f, -1.0f)
  54. };
  55. OBJECTTYPESTATIC(View);
  56. View::View(Context* context) :
  57. Object(context),
  58. graphics_(GetSubsystem<Graphics>()),
  59. renderer_(GetSubsystem<Renderer>()),
  60. octree_(0),
  61. camera_(0),
  62. cameraZone_(0),
  63. renderTarget_(0),
  64. depthStencil_(0)
  65. {
  66. frame_.camera_ = 0;
  67. }
  68. View::~View()
  69. {
  70. }
  71. bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
  72. {
  73. if (!viewport.scene_ || !viewport.camera_)
  74. return false;
  75. // If scene is loading asynchronously, it is incomplete and should not be rendered
  76. if (viewport.scene_->IsAsyncLoading())
  77. return false;
  78. Octree* octree = viewport.scene_->GetComponent<Octree>();
  79. if (!octree)
  80. return false;
  81. octree_ = octree;
  82. camera_ = viewport.camera_;
  83. renderTarget_ = renderTarget;
  84. if (!renderTarget)
  85. depthStencil_ = 0;
  86. else
  87. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  88. // Validate the rect and calculate size. If zero rect, use whole render target size
  89. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  90. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  91. if (viewport.rect_ != IntRect::ZERO)
  92. {
  93. screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
  94. screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
  95. screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
  96. screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
  97. }
  98. else
  99. screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
  100. width_ = screenRect_.right_ - screenRect_.left_;
  101. height_ = screenRect_.bottom_ - screenRect_.top_;
  102. // Set possible quality overrides from the camera
  103. drawShadows_ = renderer_->GetDrawShadows();
  104. materialQuality_ = renderer_->GetMaterialQuality();
  105. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  106. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  107. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  108. materialQuality_ = QUALITY_LOW;
  109. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  110. drawShadows_ = false;
  111. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  112. maxOccluderTriangles_ = 0;
  113. return true;
  114. }
  115. void View::Update(const FrameInfo& frame)
  116. {
  117. if (!camera_ || !octree_)
  118. return;
  119. frame_.camera_ = camera_;
  120. frame_.timeStep_ = frame.timeStep_;
  121. frame_.frameNumber_ = frame.frameNumber_;
  122. frame_.viewSize_ = IntVector2(width_, height_);
  123. shadowFrame_ = frame_;
  124. // Clear old light scissor cache, geometry, light, occluder & batch lists
  125. lightScissorCache_.Clear();
  126. geometries_.Clear();
  127. geometryDepthBounds_.Clear();
  128. lights_.Clear();
  129. occluders_.Clear();
  130. shadowOccluders_.Clear();
  131. baseQueue_.Clear();
  132. preAlphaQueue_.Clear();
  133. alphaQueue_.Clear();
  134. postAlphaQueue_.Clear();
  135. lightQueues_.Clear();
  136. // Do not update if camera projection is illegal
  137. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  138. if (!camera_->IsProjectionValid())
  139. return;
  140. // Set automatic aspect ratio if required
  141. if (camera_->GetAutoAspectRatio())
  142. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  143. // Cache the camera frustum to avoid recalculating it constantly
  144. frustum_ = camera_->GetFrustum();
  145. // Reset shadow map allocations; they can be reused between views as each is rendered completely at a time
  146. renderer_->ResetShadowMapAllocations();
  147. GetDrawables();
  148. GetBatches();
  149. }
  150. void View::Render()
  151. {
  152. if (!octree_ || !camera_)
  153. return;
  154. // Forget parameter sources from the previous view
  155. graphics_->ClearParameterSources();
  156. // If stream offset is supported, write all instance transforms to a single large buffer
  157. // Else we must lock the instance buffer for each batch group
  158. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  159. PrepareInstancingBuffer();
  160. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  161. // again to ensure correct projection will be used
  162. if (camera_->GetAutoAspectRatio())
  163. camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_));
  164. graphics_->SetColorWrite(true);
  165. graphics_->SetFillMode(FILL_SOLID);
  166. // Bind the face selection and indirection cube maps for point light shadows
  167. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  168. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  169. // Reset the light optimization stencil reference value
  170. lightStencilValue_ = 1;
  171. // Render
  172. RenderBatches();
  173. graphics_->SetScissorTest(false);
  174. graphics_->SetStencilTest(false);
  175. graphics_->ResetStreamFrequencies();
  176. // If this is a main view, draw the associated debug geometry now
  177. if (!renderTarget_)
  178. {
  179. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  180. if (scene)
  181. {
  182. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  183. if (debug)
  184. {
  185. debug->SetView(camera_);
  186. debug->Render();
  187. }
  188. }
  189. }
  190. // "Forget" the camera, octree and zone after rendering
  191. camera_ = 0;
  192. octree_ = 0;
  193. cameraZone_ = 0;
  194. frame_.camera_ = 0;
  195. }
  196. void View::GetDrawables()
  197. {
  198. PROFILE(GetDrawables);
  199. Vector3 cameraPos = camera_->GetWorldPosition();
  200. // Find the camera & farclip zones
  201. {
  202. PROFILE(FindCameraZone);
  203. Vector3 cameraPos = camera_->GetWorldPosition();
  204. Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * camera_->GetFarClip();
  205. // Get default zone in case we do not have anything else
  206. Zone* defaultZone = renderer_->GetDefaultZone();
  207. cameraZone_ = defaultZone;
  208. PointOctreeQuery query(tempZones_, cameraPos, DRAWABLE_ZONE);
  209. PODVector<Zone*>& zoneResult = reinterpret_cast<PODVector<Zone*>&>(tempZones_);
  210. int bestPriority = M_MIN_INT;
  211. Zone* newZone = 0;
  212. for (PODVector<Zone*>::Iterator i = zoneResult.Begin(); i != zoneResult.End(); ++i)
  213. {
  214. Zone* zone = *i;
  215. int priority = zone->GetPriority();
  216. if (zone->IsInside(cameraPos) && priority > bestPriority)
  217. {
  218. newZone = zone;
  219. bestPriority = priority;
  220. }
  221. }
  222. if (newZone)
  223. cameraZone_ = newZone;
  224. }
  225. // If occlusion in use, get & render the occluders, then build the depth buffer hierarchy
  226. OcclusionBuffer* buffer = 0;
  227. if (maxOccluderTriangles_ > 0)
  228. {
  229. FrustumOctreeQuery query(occluders_, frustum_, DRAWABLE_GEOMETRY, camera_->GetViewMask(), true, false);
  230. octree_->GetDrawables(query);
  231. UpdateOccluders(occluders_, camera_);
  232. if (occluders_.Size())
  233. {
  234. buffer = renderer_->GetOrCreateOcclusionBuffer(camera_, maxOccluderTriangles_);
  235. DrawOccluders(buffer, occluders_);
  236. buffer->BuildDepthHierarchy();
  237. }
  238. }
  239. if (!buffer)
  240. {
  241. // Get geometries & lights without occlusion
  242. FrustumOctreeQuery query(tempDrawables_, frustum_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  243. octree_->GetDrawables(query);
  244. }
  245. else
  246. {
  247. // Get geometries & lights using occlusion
  248. OccludedFrustumOctreeQuery query(tempDrawables_, frustum_, buffer, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT,
  249. camera_->GetViewMask());
  250. octree_->GetDrawables(query);
  251. }
  252. // Add unculled geometries & lights
  253. octree_->GetUnculledDrawables(tempDrawables_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  254. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  255. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  256. sceneBox_.defined_ = false;
  257. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  258. sceneViewBox_.defined_ = false;
  259. Matrix3x4 view(camera_->GetInverseWorldTransform());
  260. for (unsigned i = 0; i < tempDrawables_.Size(); ++i)
  261. {
  262. Drawable* drawable = tempDrawables_[i];
  263. drawable->UpdateDistance(frame_);
  264. // If draw distance non-zero, check it
  265. float maxDistance = drawable->GetDrawDistance();
  266. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  267. continue;
  268. unsigned flags = drawable->GetDrawableFlags();
  269. if (flags & DRAWABLE_GEOMETRY)
  270. {
  271. // Find new zone for the drawable if necessary
  272. if (!drawable->GetZone() && !cameraZoneOverride_)
  273. drawable->FindZone(tempZones_);
  274. drawable->ClearLights();
  275. drawable->MarkInView(frame_);
  276. drawable->UpdateGeometry(frame_);
  277. // Expand the scene bounding boxes. However, do not take "infinite" objects such as the skybox into account,
  278. // as the bounding boxes are also used for shadow focusing
  279. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  280. BoundingBox geomViewBox = geomBox.Transformed(view);
  281. if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
  282. {
  283. sceneBox_.Merge(geomBox);
  284. sceneViewBox_.Merge(geomViewBox);
  285. }
  286. // Store depth info for split directional light queries
  287. GeometryDepthBounds bounds;
  288. bounds.min_ = geomViewBox.min_.z_;
  289. bounds.max_ = geomViewBox.max_.z_;
  290. geometryDepthBounds_.Push(bounds);
  291. geometries_.Push(drawable);
  292. }
  293. else if (flags & DRAWABLE_LIGHT)
  294. {
  295. Light* light = static_cast<Light*>(drawable);
  296. light->MarkInView(frame_);
  297. lights_.Push(light);
  298. }
  299. }
  300. // Sort the lights to brightest/closest first
  301. for (unsigned i = 0; i < lights_.Size(); ++i)
  302. {
  303. Light* light = lights_[i];
  304. light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
  305. }
  306. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  307. }
  308. void View::GetBatches()
  309. {
  310. maxLightsDrawables_.Clear();
  311. lightQueueIndex_.Clear();
  312. bool fallback = graphics_->GetFallback();
  313. // Go through lights
  314. {
  315. PROFILE_MULTIPLE(GetLightBatches, lights_.Size());
  316. // Preallocate enough light queues so that we can store pointers to them without having to worry about the
  317. // vector reallocating itself
  318. lightQueues_.Resize(lights_.Size());
  319. unsigned lightQueueCount = 0;
  320. for (unsigned i = 0; i < lights_.Size(); ++i)
  321. {
  322. Light* light = lights_[i];
  323. unsigned shadowSplits = ProcessLight(light);
  324. if (litGeometries_.Empty())
  325. continue;
  326. // Initialize light queue. Store pointer-to-index mapping so that the queue can be found later
  327. LightBatchQueue& lightQueue = lightQueues_[lightQueueCount];
  328. lightQueueIndex_[light] = lightQueueCount;
  329. lightQueue.light_ = light;
  330. lightQueue.litBatches_.Clear();
  331. // Allocate shadow map now
  332. lightQueue.shadowMap_ = 0;
  333. if (shadowSplits > 0)
  334. {
  335. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, width_, height_);
  336. // If did not manage to get a shadow map, convert the light to unshadowed
  337. if (!lightQueue.shadowMap_)
  338. shadowSplits = 0;
  339. }
  340. // Setup shadow batch queues
  341. lightQueue.shadowSplits_.Resize(shadowSplits);
  342. for (unsigned j = 0; j < shadowSplits; ++j)
  343. {
  344. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  345. Camera* shadowCamera = shadowCameras_[j];
  346. shadowQueue.shadowCamera_ = shadowCameras_[j];
  347. shadowQueue.nearSplit_ = shadowNearSplits_[j];
  348. shadowQueue.farSplit_ = shadowFarSplits_[j];
  349. shadowFrame_.camera_ = shadowCamera;
  350. // Setup the shadow split viewport and finalize shadow camera parameters
  351. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  352. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, shadowCasterBox_[j]);
  353. // Loop through shadow casters
  354. for (unsigned k = 0; k < shadowCasters_[j].Size(); ++k)
  355. {
  356. Drawable* drawable = shadowCasters_[j][k];
  357. unsigned numBatches = drawable->GetNumBatches();
  358. for (unsigned l = 0; l < numBatches; ++l)
  359. {
  360. Batch shadowBatch;
  361. drawable->GetBatch(shadowFrame_, l, shadowBatch);
  362. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  363. if (!shadowBatch.geometry_ || !tech)
  364. continue;
  365. Pass* pass = tech->GetPass(PASS_SHADOW);
  366. // Skip if material has no shadow pass
  367. if (!pass)
  368. continue;
  369. // Fill the rest of the batch
  370. shadowBatch.camera_ = shadowCamera;
  371. shadowBatch.lightQueue_ = &lightQueue;
  372. renderer_->SetBatchShaders(shadowBatch, tech, pass);
  373. shadowQueue.shadowBatches_.AddBatch(shadowBatch);
  374. }
  375. }
  376. }
  377. // Loop through lit geometries
  378. for (unsigned j = 0; j < litGeometries_.Size(); ++j)
  379. {
  380. Drawable* drawable = litGeometries_[j];
  381. drawable->AddLight(light);
  382. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  383. if (!drawable->GetMaxLights())
  384. GetLitBatches(drawable, lightQueue);
  385. else
  386. maxLightsDrawables_.Insert(drawable);
  387. }
  388. ++lightQueueCount;
  389. }
  390. // Resize the light queue vector now that final size is known
  391. lightQueues_.Resize(lightQueueCount);
  392. }
  393. // Process drawables with limited light count
  394. if (maxLightsDrawables_.Size())
  395. {
  396. PROFILE(GetMaxLightsBatches);
  397. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  398. {
  399. Drawable* drawable = *i;
  400. drawable->LimitLights();
  401. const PODVector<Light*>& lights = drawable->GetLights();
  402. for (unsigned i = 0; i < lights.Size(); ++i)
  403. {
  404. Light* light = lights[i];
  405. // Find the correct light queue again
  406. Map<Light*, unsigned>::Iterator j = lightQueueIndex_.Find(light);
  407. if (j != lightQueueIndex_.End())
  408. GetLitBatches(drawable, lightQueues_[j->second_]);
  409. }
  410. }
  411. }
  412. // Go through geometries for base pass batches
  413. {
  414. PROFILE(GetBaseBatches);
  415. for (unsigned i = 0; i < geometries_.Size(); ++i)
  416. {
  417. Drawable* drawable = geometries_[i];
  418. unsigned numBatches = drawable->GetNumBatches();
  419. for (unsigned j = 0; j < numBatches; ++j)
  420. {
  421. Batch baseBatch;
  422. drawable->GetBatch(frame_, j, baseBatch);
  423. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  424. if (!baseBatch.geometry_ || !tech)
  425. continue;
  426. // Check here if the material technique refers to a render target texture with camera(s) attached
  427. // Only check this for the main view (null rendertarget)
  428. if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
  429. CheckMaterialForAuxView(baseBatch.material_);
  430. // If object already has a lit base pass, can skip the unlit base pass
  431. if (drawable->HasBasePass(j))
  432. continue;
  433. // Fill the rest of the batch
  434. baseBatch.camera_ = camera_;
  435. baseBatch.zone_ = GetZone(drawable);
  436. baseBatch.hasPriority_ = true;
  437. Pass* pass = 0;
  438. // Check for unlit base pass
  439. pass = tech->GetPass(PASS_BASE);
  440. if (pass)
  441. {
  442. renderer_->SetBatchShaders(baseBatch, tech, pass);
  443. if (pass->GetBlendMode() == BLEND_REPLACE)
  444. baseQueue_.AddBatch(baseBatch);
  445. else
  446. alphaQueue_.AddBatch(baseBatch, false);
  447. continue;
  448. }
  449. // If no base pass, finally check for prealpha / postalpha custom passes
  450. pass = tech->GetPass(PASS_PREALPHA);
  451. if (pass)
  452. {
  453. renderer_->SetBatchShaders(baseBatch, tech, pass);
  454. preAlphaQueue_.AddBatch(baseBatch);
  455. continue;
  456. }
  457. pass = tech->GetPass(PASS_POSTALPHA);
  458. if (pass)
  459. {
  460. renderer_->SetBatchShaders(baseBatch, tech, pass);
  461. postAlphaQueue_.AddBatch(baseBatch, false);
  462. continue;
  463. }
  464. }
  465. }
  466. }
  467. // All batches have been collected. Sort them now
  468. SortBatches();
  469. }
  470. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  471. {
  472. Light* light = lightQueue.light_;
  473. Light* firstLight = drawable->GetFirstLight();
  474. // Shadows on transparencies can only be rendered if shadow maps are not reused
  475. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  476. unsigned numBatches = drawable->GetNumBatches();
  477. for (unsigned i = 0; i < numBatches; ++i)
  478. {
  479. Batch litBatch;
  480. drawable->GetBatch(frame_, i, litBatch);
  481. Technique* tech = GetTechnique(drawable, litBatch.material_);
  482. if (!litBatch.geometry_ || !tech)
  483. continue;
  484. Pass* pass = 0;
  485. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  486. if (light == firstLight && !drawable->HasBasePass(i))
  487. {
  488. pass = tech->GetPass(PASS_LITBASE);
  489. if (pass)
  490. {
  491. litBatch.hasPriority_ = true;
  492. drawable->SetBasePass(i);
  493. }
  494. }
  495. // If no lit base pass, get ordinary light pass
  496. if (!pass)
  497. pass = tech->GetPass(PASS_LIGHT);
  498. // Skip if material does not receive light at all
  499. if (!pass)
  500. continue;
  501. // Fill the rest of the batch
  502. litBatch.camera_ = camera_;
  503. litBatch.lightQueue_ = &lightQueue;
  504. litBatch.zone_ = GetZone(drawable);
  505. // Check from the ambient pass whether the object is opaque or transparent
  506. Pass* ambientPass = tech->GetPass(PASS_BASE);
  507. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  508. {
  509. renderer_->SetBatchShaders(litBatch, tech, pass);
  510. lightQueue.litBatches_.AddBatch(litBatch);
  511. }
  512. else
  513. {
  514. renderer_->SetBatchShaders(litBatch, tech, pass, allowTransparentShadows);
  515. alphaQueue_.AddBatch(litBatch, true);
  516. }
  517. }
  518. }
  519. void View::RenderBatches()
  520. {
  521. // If not reusing shadowmaps, render all of them first
  522. if (!renderer_->GetReuseShadowMaps())
  523. {
  524. PROFILE(RenderShadowMaps);
  525. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  526. {
  527. LightBatchQueue& queue = lightQueues_[i];
  528. if (queue.shadowMap_)
  529. RenderShadowMap(queue);
  530. }
  531. }
  532. {
  533. // Render opaque object base pass
  534. PROFILE(RenderAmbient);
  535. graphics_->SetRenderTarget(0, renderTarget_);
  536. graphics_->SetDepthStencil(depthStencil_);
  537. graphics_->SetViewport(screenRect_);
  538. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, cameraZone_->GetFogColor());
  539. RenderBatchQueue(baseQueue_);
  540. }
  541. {
  542. // Render shadow maps + opaque objects' shadowed additive lighting
  543. PROFILE(RenderLights);
  544. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  545. {
  546. LightBatchQueue& queue = lightQueues_[i];
  547. // If reusing shadowmaps, render each of them before the lit batches
  548. if (renderer_->GetReuseShadowMaps() && queue.shadowMap_)
  549. RenderShadowMap(queue);
  550. graphics_->SetRenderTarget(0, renderTarget_);
  551. graphics_->SetDepthStencil(depthStencil_);
  552. graphics_->SetViewport(screenRect_);
  553. RenderLightBatchQueue(queue.litBatches_, queue.light_);
  554. }
  555. }
  556. graphics_->SetScissorTest(false);
  557. graphics_->SetStencilTest(false);
  558. graphics_->SetRenderTarget(0, renderTarget_);
  559. graphics_->SetDepthStencil(depthStencil_);
  560. graphics_->SetViewport(screenRect_);
  561. if (!preAlphaQueue_.IsEmpty())
  562. {
  563. // Render pre-alpha custom pass
  564. PROFILE(RenderPreAlpha);
  565. RenderBatchQueue(preAlphaQueue_);
  566. }
  567. if (!alphaQueue_.IsEmpty())
  568. {
  569. // Render transparent objects (both base passes & additive lighting)
  570. PROFILE(RenderAlpha);
  571. RenderBatchQueue(alphaQueue_, true);
  572. }
  573. if (!postAlphaQueue_.IsEmpty())
  574. {
  575. // Render pre-alpha custom pass
  576. PROFILE(RenderPostAlpha);
  577. RenderBatchQueue(postAlphaQueue_);
  578. }
  579. }
  580. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  581. {
  582. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  583. float halfViewSize = camera->GetHalfViewSize();
  584. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  585. Vector3 cameraPos = camera->GetWorldPosition();
  586. for (unsigned i = 0; i < occluders.Size(); ++i)
  587. {
  588. Drawable* occluder = occluders[i];
  589. occluder->UpdateDistance(frame_);
  590. bool erase = false;
  591. // Check occluder's draw distance (in main camera view)
  592. float maxDistance = occluder->GetDrawDistance();
  593. if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
  594. erase = true;
  595. // Check that occluder is big enough on the screen
  596. const BoundingBox& box = occluder->GetWorldBoundingBox();
  597. float diagonal = (box.max_ - box.min_).LengthFast();
  598. float compare;
  599. if (!camera->IsOrthographic())
  600. compare = diagonal * halfViewSize / occluder->GetDistance();
  601. else
  602. compare = diagonal * invOrthoSize;
  603. if (compare < occluderSizeThreshold_)
  604. erase = true;
  605. if (!erase)
  606. {
  607. unsigned totalTriangles = 0;
  608. unsigned batches = occluder->GetNumBatches();
  609. Batch tempBatch;
  610. for (unsigned j = 0; j < batches; ++j)
  611. {
  612. occluder->GetBatch(frame_, j, tempBatch);
  613. if (tempBatch.geometry_)
  614. totalTriangles += tempBatch.geometry_->GetIndexCount() / 3;
  615. }
  616. // Store amount of triangles divided by screen size as a sorting key
  617. // (best occluders are big and have few triangles)
  618. occluder->SetSortValue((float)totalTriangles / compare);
  619. }
  620. else
  621. {
  622. occluders.Erase(occluders.Begin() + i);
  623. --i;
  624. }
  625. }
  626. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  627. if (occluders.Size())
  628. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  629. }
  630. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  631. {
  632. for (unsigned i = 0; i < occluders.Size(); ++i)
  633. {
  634. Drawable* occluder = occluders[i];
  635. if (i > 0)
  636. {
  637. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  638. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  639. continue;
  640. }
  641. occluder->UpdateGeometry(frame_);
  642. // Check for running out of triangles
  643. if (!occluder->DrawOcclusion(buffer))
  644. return;
  645. }
  646. }
  647. unsigned View::ProcessLight(Light* light)
  648. {
  649. // Check if light should be shadowed
  650. bool isShadowed = drawShadows_ && light->GetCastShadows() && light->GetShadowIntensity() < 1.0f;
  651. unsigned shadowSplits = 0;
  652. // If shadow distance non-zero, check it
  653. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  654. isShadowed = false;
  655. LightType type = light->GetLightType();
  656. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  657. litGeometries_.Clear();
  658. switch (type)
  659. {
  660. case LIGHT_DIRECTIONAL:
  661. for (unsigned i = 0; i < geometries_.Size(); ++i)
  662. {
  663. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  664. litGeometries_.Push(geometries_[i]);
  665. }
  666. break;
  667. case LIGHT_SPOT:
  668. {
  669. FrustumOctreeQuery query(tempDrawables_, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  670. octree_->GetDrawables(query);
  671. for (unsigned i = 0; i < tempDrawables_.Size(); ++i)
  672. {
  673. if (tempDrawables_[i]->IsInView(frame_) && (GetLightMask(tempDrawables_[i]) & light->GetLightMask()))
  674. litGeometries_.Push(tempDrawables_[i]);
  675. }
  676. }
  677. break;
  678. case LIGHT_POINT:
  679. {
  680. SphereOctreeQuery query(tempDrawables_, Sphere(light->GetWorldPosition(), light->GetRange()), DRAWABLE_GEOMETRY,
  681. camera_->GetViewMask());
  682. octree_->GetDrawables(query);
  683. for (unsigned i = 0; i < tempDrawables_.Size(); ++i)
  684. {
  685. if (tempDrawables_[i]->IsInView(frame_) && (GetLightMask(tempDrawables_[i]) & light->GetLightMask()))
  686. litGeometries_.Push(tempDrawables_[i]);
  687. }
  688. }
  689. break;
  690. }
  691. // If no lit geometries or not shadowed, no need to process shadow cameras
  692. if (litGeometries_.Empty() || !isShadowed)
  693. return 0;
  694. // Determine number of shadow cameras and setup their initial positions
  695. shadowSplits = SetupShadowCameras(light);
  696. // For a shadowed directional light, get occluders once using the whole (non-split) light frustum
  697. bool useOcclusion = false;
  698. OcclusionBuffer* buffer = 0;
  699. if (maxOccluderTriangles_ > 0 && isShadowed && light->GetLightType() == LIGHT_DIRECTIONAL)
  700. {
  701. // This shadow camera is never used for actually querying shadow casters, just occluders
  702. Camera* shadowCamera = renderer_->CreateShadowCamera();
  703. SetupDirLightShadowCamera(shadowCamera, light, 0.0f, Min(light->GetShadowCascade().GetShadowRange(), camera_->GetFarClip()),
  704. true);
  705. // Get occluders, which must be shadow-casting themselves
  706. FrustumOctreeQuery query(shadowOccluders_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask(),
  707. true, true);
  708. octree_->GetDrawables(query);
  709. UpdateOccluders(shadowOccluders_, shadowCamera);
  710. if (shadowOccluders_.Size())
  711. {
  712. // Shadow viewport is rectangular and consumes more CPU fillrate, so halve size
  713. buffer = renderer_->GetOrCreateOcclusionBuffer(shadowCamera, maxOccluderTriangles_, true);
  714. DrawOccluders(buffer, shadowOccluders_);
  715. buffer->BuildDepthHierarchy();
  716. useOcclusion = true;
  717. }
  718. }
  719. // Process each split for shadow casters
  720. bool hasShadowCasters = false;
  721. for (unsigned i = 0; i < shadowSplits; ++i)
  722. {
  723. shadowCasters_[i].Clear();
  724. shadowCasterBox_[i].defined_ = false;
  725. Camera* shadowCamera = shadowCameras_[i];
  726. if (!useOcclusion)
  727. {
  728. // For spot light (which has only one shadow split) we can optimize by reusing the query for
  729. // lit geometries, whose result still exists in tempDrawables_
  730. if (type != LIGHT_SPOT)
  731. {
  732. Frustum shadowCameraFrustum = shadowCamera->GetFrustum();
  733. // If a point light face, check that the face is visible: if not, there is no need to query and render
  734. // the shadow casters
  735. if (type == LIGHT_POINT)
  736. {
  737. BoundingBox shadowCameraBox(shadowCameraFrustum);
  738. if (frustum_.IsInsideFast(shadowCameraBox) == OUTSIDE)
  739. continue;
  740. }
  741. FrustumOctreeQuery query(tempDrawables_, shadowCameraFrustum, DRAWABLE_GEOMETRY, camera_->GetViewMask(),
  742. false, true);
  743. octree_->GetDrawables(query);
  744. }
  745. }
  746. else
  747. {
  748. OccludedFrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), buffer,
  749. DRAWABLE_GEOMETRY, camera_->GetViewMask(), false, true);
  750. octree_->GetDrawables(query);
  751. }
  752. // Check which shadow casters actually contribute to the shadowing
  753. ProcessShadowCasters(light, i, tempDrawables_, shadowCasterBox_[i]);
  754. if (shadowCasters_[i].Size())
  755. hasShadowCasters = true;
  756. }
  757. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  758. // only cost has been the shadow camera setup & queries
  759. if (!hasShadowCasters)
  760. shadowSplits = 0;
  761. return shadowSplits;
  762. }
  763. void View::ProcessShadowCasters(Light* light, unsigned splitIndex, const PODVector<Drawable*>& result, BoundingBox& shadowCasterBox)
  764. {
  765. Matrix3x4 lightView;
  766. Matrix4 lightProj;
  767. Camera* shadowCamera = shadowCameras_[splitIndex];
  768. lightView = shadowCamera->GetInverseWorldTransform();
  769. lightProj = shadowCamera->GetProjection();
  770. bool dirLight = shadowCamera->IsOrthographic();
  771. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  772. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  773. // frustum, so that shadow casters do not get rendered into unnecessary splits
  774. Frustum lightViewFrustum;
  775. if (!dirLight)
  776. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  777. else
  778. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, shadowNearSplits_[splitIndex]),
  779. Min(sceneViewBox_.max_.z_, shadowFarSplits_[splitIndex])).Transformed(lightView);
  780. BoundingBox lightViewFrustumBox(lightViewFrustum);
  781. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  782. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  783. return;
  784. BoundingBox lightViewBox;
  785. BoundingBox lightProjBox;
  786. for (unsigned i = 0; i < result.Size(); ++i)
  787. {
  788. Drawable* drawable = static_cast<Drawable*>(result[i]);
  789. // In case this is a spot light query result reused for optimization, we may have non-shadowcasters included.
  790. // Check for that first
  791. if (!drawable->GetCastShadows())
  792. continue;
  793. drawable->UpdateDistance(frame_);
  794. // Check shadow distance
  795. float maxShadowDistance = drawable->GetShadowDistance();
  796. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  797. continue;
  798. // Check light mask
  799. if (!(GetLightMask(drawable) & light->GetLightMask()))
  800. continue;
  801. // Project shadow caster bounding box to light view space for visibility check
  802. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  803. if (drawable->IsInView(frame_) || IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum,
  804. lightViewFrustumBox))
  805. {
  806. // Update geometry now if not updated yet
  807. if (!drawable->IsInView(frame_))
  808. {
  809. drawable->MarkInShadowView(frame_);
  810. drawable->UpdateGeometry(frame_);
  811. }
  812. // Merge to shadow caster bounding box and add to the list
  813. if (dirLight)
  814. shadowCasterBox.Merge(lightViewBox);
  815. else
  816. {
  817. lightProjBox = lightViewBox.Projected(lightProj);
  818. shadowCasterBox.Merge(lightProjBox);
  819. }
  820. shadowCasters_[splitIndex].Push(drawable);
  821. }
  822. }
  823. }
  824. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  825. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  826. {
  827. // If shadow caster is also an occluder, must let it be visible, because it has potentially already culled
  828. // away other shadow casters (could also check the actual shadow occluder vector, but that would be slower)
  829. if (drawable->IsOccluder())
  830. return true;
  831. if (shadowCamera->IsOrthographic())
  832. {
  833. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  834. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  835. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  836. }
  837. else
  838. {
  839. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  840. if (drawable->IsInView(frame_))
  841. return true;
  842. // For perspective lights, extrusion direction depends on the position of the shadow caster
  843. Vector3 center = lightViewBox.Center();
  844. Ray extrusionRay(center, center.Normalized());
  845. float extrusionDistance = shadowCamera->GetFarClip();
  846. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  847. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  848. float sizeFactor = extrusionDistance / originalDistance;
  849. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  850. // than necessary, so the test will be conservative
  851. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  852. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  853. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  854. lightViewBox.Merge(extrudedBox);
  855. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  856. }
  857. }
  858. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  859. {
  860. unsigned width = shadowMap->GetWidth();
  861. unsigned height = shadowMap->GetHeight();
  862. int maxCascades = renderer_->GetMaxShadowCascades();
  863. switch (light->GetLightType())
  864. {
  865. case LIGHT_DIRECTIONAL:
  866. if (maxCascades == 1)
  867. return IntRect(0, 0, width, height);
  868. else if (maxCascades == 2)
  869. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  870. else
  871. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  872. (splitIndex / 2 + 1) * height / 2);
  873. case LIGHT_SPOT:
  874. return IntRect(0, 0, width, height);
  875. case LIGHT_POINT:
  876. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  877. (splitIndex / 2 + 1) * height / 3);
  878. }
  879. return IntRect();
  880. }
  881. void View::OptimizeLightByScissor(Light* light)
  882. {
  883. if (light)
  884. graphics_->SetScissorTest(true, GetLightScissor(light));
  885. else
  886. graphics_->SetScissorTest(false);
  887. }
  888. void View::OptimizeLightByStencil(Light* light)
  889. {
  890. if (light && renderer_->GetLightStencilMasking())
  891. {
  892. Geometry* geometry = renderer_->GetLightGeometry(light);
  893. if (!geometry)
  894. {
  895. graphics_->SetStencilTest(false);
  896. return;
  897. }
  898. LightType type = light->GetLightType();
  899. Matrix3x4 view(camera_->GetInverseWorldTransform());
  900. Matrix4 projection(camera_->GetProjection());
  901. float lightDist;
  902. if (type == LIGHT_POINT)
  903. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
  904. else
  905. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  906. // If the camera is actually inside the light volume, do not draw to stencil as it would waste fillrate
  907. if (lightDist < M_EPSILON)
  908. {
  909. graphics_->SetStencilTest(false);
  910. return;
  911. }
  912. // If the stencil value has wrapped, clear the whole stencil first
  913. if (!lightStencilValue_)
  914. {
  915. graphics_->Clear(CLEAR_STENCIL);
  916. lightStencilValue_ = 1;
  917. }
  918. // If possible, render the stencil volume front faces. However, close to the near clip plane render back faces instead
  919. // to avoid clipping the front faces.
  920. if (lightDist < camera_->GetNearClip() * 2.0f)
  921. {
  922. graphics_->SetCullMode(CULL_CW);
  923. graphics_->SetDepthTest(CMP_GREATER);
  924. }
  925. else
  926. {
  927. graphics_->SetCullMode(CULL_CCW);
  928. graphics_->SetDepthTest(CMP_LESSEQUAL);
  929. }
  930. graphics_->SetColorWrite(false);
  931. graphics_->SetDepthWrite(false);
  932. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, lightStencilValue_);
  933. graphics_->SetShaders(renderer_->GetStencilVS(), renderer_->GetStencilPS());
  934. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  935. graphics_->SetShaderParameter(VSP_MODEL, light->GetVolumeTransform());
  936. geometry->Draw(graphics_);
  937. graphics_->ClearTransformSources();
  938. graphics_->SetColorWrite(true);
  939. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, lightStencilValue_);
  940. // Increase stencil value for next light
  941. ++lightStencilValue_;
  942. }
  943. else
  944. graphics_->SetStencilTest(false);
  945. }
  946. const Rect& View::GetLightScissor(Light* light)
  947. {
  948. HashMap<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  949. if (i != lightScissorCache_.End())
  950. return i->second_;
  951. Matrix3x4 view(camera_->GetInverseWorldTransform());
  952. Matrix4 projection(camera_->GetProjection());
  953. switch (light->GetLightType())
  954. {
  955. case LIGHT_POINT:
  956. {
  957. BoundingBox viewBox(light->GetWorldBoundingBox().Transformed(view));
  958. return lightScissorCache_[light] = viewBox.Projected(projection);
  959. }
  960. case LIGHT_SPOT:
  961. {
  962. Frustum viewFrustum(light->GetFrustum().Transformed(view));
  963. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  964. }
  965. default:
  966. return lightScissorCache_[light] = Rect::FULL;
  967. }
  968. }
  969. unsigned View::SetupShadowCameras(Light* light)
  970. {
  971. LightType type = light->GetLightType();
  972. if (type == LIGHT_DIRECTIONAL)
  973. {
  974. const CascadeParameters& cascade = light->GetShadowCascade();
  975. int splits = 0;
  976. float nearSplit = camera_->GetNearClip();
  977. float farSplit;
  978. while (splits < renderer_->GetMaxShadowCascades())
  979. {
  980. // If split is completely beyond camera far clip, we are done
  981. if (nearSplit > camera_->GetFarClip())
  982. break;
  983. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  984. if (farSplit <= nearSplit)
  985. break;
  986. // Setup the shadow camera for the split
  987. Camera* shadowCamera = renderer_->CreateShadowCamera();
  988. shadowCameras_[splits] = shadowCamera;
  989. shadowNearSplits_[splits] = nearSplit;
  990. shadowFarSplits_[splits] = farSplit;
  991. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit, false);
  992. nearSplit = farSplit;
  993. ++splits;
  994. }
  995. return splits;
  996. }
  997. if (type == LIGHT_SPOT)
  998. {
  999. Camera* shadowCamera = renderer_->CreateShadowCamera();
  1000. shadowCameras_[0] = shadowCamera;
  1001. Node* cameraNode = shadowCamera->GetNode();
  1002. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1003. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1004. shadowCamera->SetFarClip(light->GetRange());
  1005. shadowCamera->SetFov(light->GetFov());
  1006. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1007. return 1;
  1008. }
  1009. if (type == LIGHT_POINT)
  1010. {
  1011. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1012. {
  1013. Camera* shadowCamera = renderer_->CreateShadowCamera();
  1014. shadowCameras_[i] = shadowCamera;
  1015. Node* cameraNode = shadowCamera->GetNode();
  1016. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1017. cameraNode->SetPosition(light->GetWorldPosition());
  1018. cameraNode->SetDirection(directions[i]);
  1019. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1020. shadowCamera->SetFarClip(light->GetRange());
  1021. shadowCamera->SetFov(90.0f);
  1022. shadowCamera->SetAspectRatio(1.0f);
  1023. }
  1024. return MAX_CUBEMAP_FACES;
  1025. }
  1026. return 0;
  1027. }
  1028. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit, bool shadowOcclusion)
  1029. {
  1030. Node* cameraNode = shadowCamera->GetNode();
  1031. float extrusionDistance = camera_->GetFarClip();
  1032. const FocusParameters& parameters = light->GetShadowFocus();
  1033. // Calculate initial position & rotation
  1034. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1035. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1036. cameraNode->SetTransform(pos, light->GetWorldRotation());
  1037. // Calculate main camera shadowed frustum in light's view space
  1038. farSplit = Min(farSplit, camera_->GetFarClip());
  1039. // Use the scene Z bounds to limit frustum size if applicable
  1040. if (shadowOcclusion || parameters.focus_)
  1041. {
  1042. nearSplit = Max(sceneViewBox_.min_.z_, nearSplit);
  1043. farSplit = Min(sceneViewBox_.max_.z_, farSplit);
  1044. }
  1045. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1046. frustumVolume_.Define(splitFrustum);
  1047. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1048. if (!shadowOcclusion && parameters.focus_)
  1049. {
  1050. PROFILE(ClipFrustumVolume);
  1051. BoundingBox litGeometriesBox;
  1052. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1053. {
  1054. // Skip "infinite" objects like the skybox
  1055. const BoundingBox& geomBox = geometries_[i]->GetWorldBoundingBox();
  1056. if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
  1057. {
  1058. if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit &&
  1059. (GetLightMask(geometries_[i]) & light->GetLightMask()))
  1060. litGeometriesBox.Merge(geomBox);
  1061. }
  1062. }
  1063. if (litGeometriesBox.defined_)
  1064. {
  1065. frustumVolume_.Clip(litGeometriesBox);
  1066. // If volume became empty, restore it to avoid zero size
  1067. if (frustumVolume_.Empty())
  1068. frustumVolume_.Define(splitFrustum);
  1069. }
  1070. }
  1071. // Transform frustum volume to light space
  1072. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1073. frustumVolume_.Transform(lightView);
  1074. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1075. BoundingBox shadowBox;
  1076. if (shadowOcclusion || !parameters.nonUniform_)
  1077. shadowBox.Define(Sphere(frustumVolume_));
  1078. else
  1079. shadowBox.Define(frustumVolume_);
  1080. shadowCamera->SetOrthographic(true);
  1081. shadowCamera->SetAspectRatio(1.0f);
  1082. shadowCamera->SetNearClip(0.0f);
  1083. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1084. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1085. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1086. }
  1087. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1088. const BoundingBox& shadowCasterBox)
  1089. {
  1090. const FocusParameters& parameters = light->GetShadowFocus();
  1091. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1092. LightType type = light->GetLightType();
  1093. if (type == LIGHT_DIRECTIONAL)
  1094. {
  1095. BoundingBox shadowBox;
  1096. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1097. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1098. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1099. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1100. // Requantize and snap to shadow map texels
  1101. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1102. }
  1103. if (type == LIGHT_SPOT)
  1104. {
  1105. if (parameters.focus_)
  1106. {
  1107. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1108. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1109. float viewSize = Max(viewSizeX, viewSizeY);
  1110. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1111. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1112. float quantize = parameters.quantize_ * invOrthoSize;
  1113. float minView = parameters.minView_ * invOrthoSize;
  1114. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1115. if (viewSize < 1.0f)
  1116. shadowCamera->SetZoom(1.0f / viewSize);
  1117. }
  1118. }
  1119. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1120. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1121. if (shadowCamera->GetZoom() >= 1.0f)
  1122. {
  1123. if (light->GetLightType() != LIGHT_POINT)
  1124. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1125. else
  1126. {
  1127. #ifdef USE_OPENGL
  1128. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1129. #else
  1130. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1131. #endif
  1132. }
  1133. }
  1134. }
  1135. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1136. const BoundingBox& viewBox)
  1137. {
  1138. Node* cameraNode = shadowCamera->GetNode();
  1139. const FocusParameters& parameters = light->GetShadowFocus();
  1140. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1141. float minX = viewBox.min_.x_;
  1142. float minY = viewBox.min_.y_;
  1143. float maxX = viewBox.max_.x_;
  1144. float maxY = viewBox.max_.y_;
  1145. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1146. Vector2 viewSize(maxX - minX, maxY - minY);
  1147. // Quantize size to reduce swimming
  1148. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1149. if (parameters.nonUniform_)
  1150. {
  1151. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1152. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1153. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1154. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1155. }
  1156. else if (parameters.focus_)
  1157. {
  1158. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1159. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1160. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1161. viewSize.y_ = viewSize.x_;
  1162. }
  1163. shadowCamera->SetOrthoSize(viewSize);
  1164. // Center shadow camera to the view space bounding box
  1165. Vector3 pos(shadowCamera->GetWorldPosition());
  1166. Quaternion rot(shadowCamera->GetWorldRotation());
  1167. Vector3 adjust(center.x_, center.y_, 0.0f);
  1168. cameraNode->Translate(rot * adjust);
  1169. // If the shadow map viewport is known, snap to whole texels
  1170. if (shadowMapWidth > 0.0f)
  1171. {
  1172. Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
  1173. // Take into account that shadow map border will not be used
  1174. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1175. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1176. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1177. cameraNode->Translate(rot * snap);
  1178. }
  1179. }
  1180. Zone* View::GetZone(Drawable* drawable)
  1181. {
  1182. if (cameraZoneOverride_)
  1183. return cameraZone_;
  1184. Zone* drawableZone = drawable->GetZone();
  1185. return drawableZone ? drawableZone : cameraZone_;
  1186. }
  1187. unsigned View::GetLightMask(Drawable* drawable)
  1188. {
  1189. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1190. }
  1191. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1192. {
  1193. if (!material)
  1194. material = renderer_->GetDefaultMaterial();
  1195. if (!material)
  1196. return 0;
  1197. float lodDistance = drawable->GetLodDistance();
  1198. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1199. if (techniques.Empty())
  1200. return 0;
  1201. // Check for suitable technique. Techniques should be ordered like this:
  1202. // Most distant & highest quality
  1203. // Most distant & lowest quality
  1204. // Second most distant & highest quality
  1205. // ...
  1206. for (unsigned i = 0; i < techniques.Size(); ++i)
  1207. {
  1208. const TechniqueEntry& entry = techniques[i];
  1209. Technique* technique = entry.technique_;
  1210. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1211. continue;
  1212. if (lodDistance >= entry.lodDistance_)
  1213. return technique;
  1214. }
  1215. // If no suitable technique found, fallback to the last
  1216. return techniques.Back().technique_;
  1217. }
  1218. void View::CheckMaterialForAuxView(Material* material)
  1219. {
  1220. const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
  1221. for (unsigned i = 0; i < textures.Size(); ++i)
  1222. {
  1223. // Have to check cube & 2D textures separately
  1224. Texture* texture = textures[i];
  1225. if (texture)
  1226. {
  1227. if (texture->GetType() == Texture2D::GetTypeStatic())
  1228. {
  1229. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1230. RenderSurface* target = tex2D->GetRenderSurface();
  1231. if (target)
  1232. {
  1233. const Viewport& viewport = target->GetViewport();
  1234. if (viewport.scene_ && viewport.camera_)
  1235. renderer_->AddView(target, viewport);
  1236. }
  1237. }
  1238. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1239. {
  1240. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1241. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1242. {
  1243. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1244. if (target)
  1245. {
  1246. const Viewport& viewport = target->GetViewport();
  1247. if (viewport.scene_ && viewport.camera_)
  1248. renderer_->AddView(target, viewport);
  1249. }
  1250. }
  1251. }
  1252. }
  1253. }
  1254. // Set frame number so that we can early-out next time we come across this material on the same frame
  1255. material->MarkForAuxView(frame_.frameNumber_);
  1256. }
  1257. void View::SortBatches()
  1258. {
  1259. PROFILE(SortBatches);
  1260. baseQueue_.SortFrontToBack();
  1261. preAlphaQueue_.SortFrontToBack();
  1262. alphaQueue_.SortBackToFront();
  1263. postAlphaQueue_.SortBackToFront();
  1264. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1265. {
  1266. for (unsigned j = 0; j < lightQueues_[i].shadowSplits_.Size(); ++j)
  1267. lightQueues_[i].shadowSplits_[j].shadowBatches_.SortFrontToBack();
  1268. lightQueues_[i].litBatches_.SortFrontToBack();
  1269. }
  1270. }
  1271. void View::PrepareInstancingBuffer()
  1272. {
  1273. PROFILE(PrepareInstancingBuffer);
  1274. unsigned totalInstances = 0;
  1275. totalInstances += baseQueue_.GetNumInstances(renderer_);
  1276. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  1277. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1278. {
  1279. for (unsigned j = 0; j < lightQueues_[i].shadowSplits_.Size(); ++j)
  1280. totalInstances += lightQueues_[i].shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  1281. totalInstances += lightQueues_[i].litBatches_.GetNumInstances(renderer_);
  1282. }
  1283. // If fail to set buffer size, fall back to per-group locking
  1284. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  1285. {
  1286. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  1287. unsigned freeIndex = 0;
  1288. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  1289. if (lockedData)
  1290. {
  1291. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1292. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1293. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1294. {
  1295. for (unsigned j = 0; j < lightQueues_[i].shadowSplits_.Size(); ++j)
  1296. lightQueues_[i].shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1297. lightQueues_[i].litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1298. }
  1299. instancingBuffer->Unlock();
  1300. }
  1301. }
  1302. }
  1303. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor)
  1304. {
  1305. graphics_->SetScissorTest(false);
  1306. graphics_->SetStencilTest(false);
  1307. // Priority instanced
  1308. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedPriorityBatchGroups_.Begin(); i !=
  1309. queue.sortedPriorityBatchGroups_.End(); ++i)
  1310. {
  1311. BatchGroup* group = *i;
  1312. group->Draw(graphics_, renderer_);
  1313. }
  1314. // Priority non-instanced
  1315. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1316. {
  1317. Batch* batch = *i;
  1318. batch->Draw(graphics_, renderer_);
  1319. }
  1320. // Non-priority instanced
  1321. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  1322. {
  1323. BatchGroup* group = *i;
  1324. if (useScissor && group->lightQueue_)
  1325. OptimizeLightByScissor(group->lightQueue_->light_);
  1326. group->Draw(graphics_, renderer_);
  1327. }
  1328. // Non-priority non-instanced
  1329. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1330. {
  1331. Batch* batch = *i;
  1332. if (useScissor)
  1333. {
  1334. if (!batch->hasPriority_ && batch->lightQueue_)
  1335. OptimizeLightByScissor(batch->lightQueue_->light_);
  1336. else
  1337. graphics_->SetScissorTest(false);
  1338. }
  1339. batch->Draw(graphics_, renderer_);
  1340. }
  1341. }
  1342. void View::RenderLightBatchQueue(const BatchQueue& queue, Light* light)
  1343. {
  1344. graphics_->SetScissorTest(false);
  1345. graphics_->SetStencilTest(false);
  1346. // Priority instanced
  1347. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedPriorityBatchGroups_.Begin(); i !=
  1348. queue.sortedPriorityBatchGroups_.End(); ++i)
  1349. {
  1350. BatchGroup* group = *i;
  1351. group->Draw(graphics_, renderer_);
  1352. }
  1353. // Priority non-instanced
  1354. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1355. {
  1356. Batch* batch = *i;
  1357. batch->Draw(graphics_, renderer_);
  1358. }
  1359. // All base passes have been drawn. Optimize at this point by both stencil volume and scissor
  1360. OptimizeLightByStencil(light);
  1361. OptimizeLightByScissor(light);
  1362. // Non-priority instanced
  1363. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  1364. {
  1365. BatchGroup* group = *i;
  1366. group->Draw(graphics_, renderer_);
  1367. }
  1368. // Non-priority non-instanced
  1369. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1370. {
  1371. Batch* batch = *i;
  1372. batch->Draw(graphics_, renderer_);
  1373. }
  1374. }
  1375. void View::RenderShadowMap(const LightBatchQueue& queue)
  1376. {
  1377. PROFILE(RenderShadowMap);
  1378. Texture2D* shadowMap = queue.shadowMap_;
  1379. graphics_->SetStencilTest(false);
  1380. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1381. if (!graphics_->GetFallback())
  1382. {
  1383. graphics_->SetColorWrite(false);
  1384. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1385. graphics_->SetDepthStencil(shadowMap);
  1386. graphics_->Clear(CLEAR_DEPTH);
  1387. }
  1388. else
  1389. {
  1390. graphics_->SetColorWrite(true);
  1391. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface());
  1392. graphics_->SetDepthStencil(shadowMap->GetRenderSurface()->GetLinkedDepthBuffer());
  1393. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH, Color::WHITE);
  1394. }
  1395. // Set shadow depth bias
  1396. BiasParameters parameters = queue.light_->GetShadowBias();
  1397. // Adjust the light's constant depth bias according to global shadow map resolution
  1398. /// \todo Should remove this adjustment and find a more flexible solution
  1399. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  1400. if (shadowMapSize <= 512)
  1401. parameters.constantBias_ *= 2.0f;
  1402. else if (shadowMapSize >= 2048)
  1403. parameters.constantBias_ *= 0.5f;
  1404. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1405. // Render each of the splits
  1406. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  1407. {
  1408. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  1409. if (!shadowQueue.shadowBatches_.IsEmpty())
  1410. {
  1411. graphics_->SetViewport(shadowQueue.shadowViewport_);
  1412. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1413. // However, do not do this for point lights, which need to render continuously across cube faces
  1414. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  1415. if (queue.light_->GetLightType() != LIGHT_POINT)
  1416. {
  1417. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  1418. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1419. graphics_->SetScissorTest(true, zoomRect, false);
  1420. }
  1421. else
  1422. graphics_->SetScissorTest(false);
  1423. // Draw instanced and non-instanced shadow casters
  1424. RenderBatchQueue(shadowQueue.shadowBatches_);
  1425. }
  1426. }
  1427. graphics_->SetColorWrite(true);
  1428. graphics_->SetDepthBias(0.0f, 0.0f);
  1429. }