View.cpp 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "GraphicsImpl.h"
  29. #include "Light.h"
  30. #include "Log.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "ResourceCache.h"
  35. #include "PostProcess.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Sort.h"
  41. #include "Technique.h"
  42. #include "Texture2D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "Zone.h"
  48. #include "DebugNew.h"
  49. static const Vector3 directions[] =
  50. {
  51. Vector3(1.0f, 0.0f, 0.0f),
  52. Vector3(-1.0f, 0.0f, 0.0f),
  53. Vector3(0.0f, 1.0f, 0.0f),
  54. Vector3(0.0f, -1.0f, 0.0f),
  55. Vector3(0.0f, 0.0f, 1.0f),
  56. Vector3(0.0f, 0.0f, -1.0f)
  57. };
  58. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  60. /// %Frustum octree query for shadowcasters.
  61. class ShadowCasterOctreeQuery : public OctreeQuery
  62. {
  63. public:
  64. /// Construct with frustum and query parameters.
  65. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  66. unsigned viewMask = DEFAULT_VIEWMASK) :
  67. OctreeQuery(result, drawableFlags, viewMask),
  68. frustum_(frustum)
  69. {
  70. }
  71. /// Intersection test for an octant.
  72. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  73. {
  74. if (inside)
  75. return INSIDE;
  76. else
  77. return frustum_.IsInside(box);
  78. }
  79. /// Intersection test for drawables.
  80. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  81. {
  82. while (start != end)
  83. {
  84. Drawable* drawable = *start;
  85. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->GetCastShadows() && drawable->IsVisible() &&
  86. (drawable->GetViewMask() & viewMask_))
  87. {
  88. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  89. result_.Push(drawable);
  90. }
  91. ++start;
  92. }
  93. }
  94. /// Frustum.
  95. Frustum frustum_;
  96. };
  97. /// %Frustum octree query for zones and occluders.
  98. class ZoneOccluderOctreeQuery : public OctreeQuery
  99. {
  100. public:
  101. /// Construct with frustum and query parameters.
  102. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  103. unsigned viewMask = DEFAULT_VIEWMASK) :
  104. OctreeQuery(result, drawableFlags, viewMask),
  105. frustum_(frustum)
  106. {
  107. }
  108. /// Intersection test for an octant.
  109. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  110. {
  111. if (inside)
  112. return INSIDE;
  113. else
  114. return frustum_.IsInside(box);
  115. }
  116. /// Intersection test for drawables.
  117. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  118. {
  119. while (start != end)
  120. {
  121. Drawable* drawable = *start;
  122. unsigned char flags = drawable->GetDrawableFlags();
  123. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && drawable->IsVisible() &&
  124. (drawable->GetViewMask() & viewMask_))
  125. {
  126. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  127. result_.Push(drawable);
  128. }
  129. ++start;
  130. }
  131. }
  132. /// Frustum.
  133. Frustum frustum_;
  134. };
  135. /// %Frustum octree query with occlusion.
  136. class OccludedFrustumOctreeQuery : public OctreeQuery
  137. {
  138. public:
  139. /// Construct with frustum, occlusion buffer and query parameters.
  140. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  141. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  142. OctreeQuery(result, drawableFlags, viewMask),
  143. frustum_(frustum),
  144. buffer_(buffer)
  145. {
  146. }
  147. /// Intersection test for an octant.
  148. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  149. {
  150. if (inside)
  151. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  152. else
  153. {
  154. Intersection result = frustum_.IsInside(box);
  155. if (result != OUTSIDE && !buffer_->IsVisible(box))
  156. result = OUTSIDE;
  157. return result;
  158. }
  159. }
  160. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  161. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  162. {
  163. while (start != end)
  164. {
  165. Drawable* drawable = *start;
  166. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->IsVisible() &&
  167. (drawable->GetViewMask() & viewMask_))
  168. {
  169. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  170. result_.Push(drawable);
  171. }
  172. ++start;
  173. }
  174. }
  175. /// Frustum.
  176. Frustum frustum_;
  177. /// Occlusion buffer.
  178. OcclusionBuffer* buffer_;
  179. };
  180. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  181. {
  182. View* view = reinterpret_cast<View*>(item->aux_);
  183. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  184. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  185. OcclusionBuffer* buffer = view->occlusionBuffer_;
  186. const Matrix3x4& viewMatrix = view->camera_->GetInverseWorldTransform();
  187. while (start != end)
  188. {
  189. Drawable* drawable = *start++;
  190. drawable->UpdateBatches(view->frame_);
  191. // If draw distance non-zero, check it
  192. float maxDistance = drawable->GetDrawDistance();
  193. if ((maxDistance <= 0.0f || drawable->GetDistance() <= maxDistance) && (!buffer || !drawable->IsOccludee() ||
  194. buffer->IsVisible(drawable->GetWorldBoundingBox())))
  195. {
  196. drawable->MarkInView(view->frame_);
  197. // For geometries, clear lights, find new zone if necessary and calculate view space Z range
  198. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  199. {
  200. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  201. Vector3 center = geomBox.Center();
  202. float viewCenterZ = viewMatrix.m20_ * center.x_ + viewMatrix.m21_ * center.y_ + viewMatrix.m22_ * center.z_ +
  203. viewMatrix.m23_;
  204. Vector3 edge = geomBox.Size() * 0.5f;
  205. float viewEdgeZ = fabsf(viewMatrix.m20_) * edge.x_ + fabsf(viewMatrix.m21_) * edge.y_ + fabsf(viewMatrix.m22_) *
  206. edge.z_;
  207. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  208. drawable->ClearLights();
  209. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  210. view->FindZone(drawable, threadIndex);
  211. }
  212. }
  213. }
  214. }
  215. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  216. {
  217. View* view = reinterpret_cast<View*>(item->aux_);
  218. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  219. view->ProcessLight(*query, threadIndex);
  220. }
  221. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  222. {
  223. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  224. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  225. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  226. while (start != end)
  227. {
  228. Drawable* drawable = *start;
  229. drawable->UpdateGeometry(frame);
  230. ++start;
  231. }
  232. }
  233. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  234. {
  235. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  236. queue->SortFrontToBack();
  237. }
  238. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  239. {
  240. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  241. queue->SortBackToFront();
  242. }
  243. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  244. {
  245. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  246. start->litBatches_.SortFrontToBack();
  247. }
  248. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  249. {
  250. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  251. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  252. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  253. }
  254. OBJECTTYPESTATIC(View);
  255. View::View(Context* context) :
  256. Object(context),
  257. graphics_(GetSubsystem<Graphics>()),
  258. renderer_(GetSubsystem<Renderer>()),
  259. octree_(0),
  260. camera_(0),
  261. cameraZone_(0),
  262. farClipZone_(0),
  263. renderTarget_(0)
  264. {
  265. frame_.camera_ = 0;
  266. // Create octree query vector for each thread
  267. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  268. }
  269. View::~View()
  270. {
  271. }
  272. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  273. {
  274. Scene* scene = viewport->GetScene();
  275. Camera* camera = viewport->GetCamera();
  276. if (!scene || !camera || !camera->GetNode())
  277. return false;
  278. // If scene is loading asynchronously, it is incomplete and should not be rendered
  279. if (scene->IsAsyncLoading())
  280. return false;
  281. Octree* octree = scene->GetComponent<Octree>();
  282. if (!octree)
  283. return false;
  284. renderMode_ = renderer_->GetRenderMode();
  285. octree_ = octree;
  286. camera_ = camera;
  287. cameraNode_ = camera->GetNode();
  288. renderTarget_ = renderTarget;
  289. // Get active post-processing effects on the viewport
  290. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  291. postProcesses_.Clear();
  292. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  293. {
  294. PostProcess* effect = i->Get();
  295. if (effect && effect->IsActive())
  296. postProcesses_.Push(*i);
  297. }
  298. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  299. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  300. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  301. const IntRect& rect = viewport->GetRect();
  302. if (rect != IntRect::ZERO)
  303. {
  304. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  305. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  306. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  307. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  308. }
  309. else
  310. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  311. viewSize_ = IntVector2(viewRect_.right_ - viewRect_.left_, viewRect_.bottom_ - viewRect_.top_);
  312. rtSize_ = IntVector2(rtWidth, rtHeight);
  313. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  314. #ifdef USE_OPENGL
  315. if (renderTarget_)
  316. {
  317. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  318. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  319. }
  320. #endif
  321. drawShadows_ = renderer_->GetDrawShadows();
  322. materialQuality_ = renderer_->GetMaterialQuality();
  323. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  324. // Set possible quality overrides from the camera
  325. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  326. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  327. materialQuality_ = QUALITY_LOW;
  328. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  329. drawShadows_ = false;
  330. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  331. maxOccluderTriangles_ = 0;
  332. return true;
  333. }
  334. void View::Update(const FrameInfo& frame)
  335. {
  336. if (!camera_ || !octree_)
  337. return;
  338. frame_.camera_ = camera_;
  339. frame_.timeStep_ = frame.timeStep_;
  340. frame_.frameNumber_ = frame.frameNumber_;
  341. frame_.viewSize_ = viewSize_;
  342. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  343. // Clear screen buffers, geometry, light, occluder & batch lists
  344. screenBuffers_.Clear();
  345. geometries_.Clear();
  346. shadowGeometries_.Clear();
  347. lights_.Clear();
  348. zones_.Clear();
  349. occluders_.Clear();
  350. baseQueue_.Clear(maxSortedInstances);
  351. preAlphaQueue_.Clear(maxSortedInstances);
  352. gbufferQueue_.Clear(maxSortedInstances);
  353. alphaQueue_.Clear(maxSortedInstances);
  354. postAlphaQueue_.Clear(maxSortedInstances);
  355. vertexLightQueues_.Clear();
  356. // Do not update if camera projection is illegal
  357. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  358. if (!camera_->IsProjectionValid())
  359. return;
  360. // Set automatic aspect ratio if required
  361. if (camera_->GetAutoAspectRatio())
  362. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  363. GetDrawables();
  364. GetBatches();
  365. UpdateGeometries();
  366. }
  367. void View::Render()
  368. {
  369. if (!octree_ || !camera_)
  370. return;
  371. // Allocate screen buffers for post-processing and blitting as necessary
  372. AllocateScreenBuffers();
  373. // Forget parameter sources from the previous view
  374. graphics_->ClearParameterSources();
  375. // If stream offset is supported, write all instance transforms to a single large buffer
  376. // Else we must lock the instance buffer for each batch group
  377. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  378. PrepareInstancingBuffer();
  379. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  380. // again to ensure correct projection will be used
  381. if (camera_->GetAutoAspectRatio())
  382. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  383. graphics_->SetColorWrite(true);
  384. // Bind the face selection and indirection cube maps for point light shadows
  385. if (renderer_->GetDrawShadows())
  386. {
  387. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  388. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  389. }
  390. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  391. // ie. when using deferred rendering and/or doing post-processing
  392. if (renderTarget_)
  393. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  394. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  395. // as a render texture produced on Direct3D9
  396. #ifdef USE_OPENGL
  397. if (renderTarget_)
  398. camera_->SetFlipVertical(true);
  399. #endif
  400. // Render
  401. if (renderMode_ == RENDER_FORWARD)
  402. RenderBatchesForward();
  403. else
  404. RenderBatchesDeferred();
  405. #ifdef USE_OPENGL
  406. camera_->SetFlipVertical(false);
  407. #endif
  408. graphics_->SetViewTexture(0);
  409. graphics_->SetScissorTest(false);
  410. graphics_->SetStencilTest(false);
  411. graphics_->ResetStreamFrequencies();
  412. // Run post-processes or framebuffer blitting now
  413. if (screenBuffers_.Size())
  414. {
  415. if (postProcesses_.Size())
  416. RunPostProcesses();
  417. else
  418. BlitFramebuffer();
  419. }
  420. // If this is a main view, draw the associated debug geometry now
  421. if (!renderTarget_)
  422. {
  423. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  424. if (debug)
  425. {
  426. debug->SetView(camera_);
  427. debug->Render();
  428. }
  429. }
  430. // "Forget" the camera, octree and zone after rendering
  431. camera_ = 0;
  432. octree_ = 0;
  433. cameraZone_ = 0;
  434. farClipZone_ = 0;
  435. occlusionBuffer_ = 0;
  436. frame_.camera_ = 0;
  437. }
  438. void View::GetDrawables()
  439. {
  440. PROFILE(GetDrawables);
  441. WorkQueue* queue = GetSubsystem<WorkQueue>();
  442. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  443. // Get zones and occluders first
  444. {
  445. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE);
  446. octree_->GetDrawables(query);
  447. }
  448. highestZonePriority_ = M_MIN_INT;
  449. int bestPriority = M_MIN_INT;
  450. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  451. // Get default zone first in case we do not have zones defined
  452. Zone* defaultZone = renderer_->GetDefaultZone();
  453. cameraZone_ = farClipZone_ = defaultZone;
  454. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  455. {
  456. Drawable* drawable = *i;
  457. unsigned char flags = drawable->GetDrawableFlags();
  458. if (flags & DRAWABLE_ZONE)
  459. {
  460. Zone* zone = static_cast<Zone*>(drawable);
  461. zones_.Push(zone);
  462. int priority = zone->GetPriority();
  463. if (priority > highestZonePriority_)
  464. highestZonePriority_ = priority;
  465. if (zone->IsInside(cameraPos) && priority > bestPriority)
  466. {
  467. cameraZone_ = zone;
  468. bestPriority = priority;
  469. }
  470. }
  471. else
  472. occluders_.Push(drawable);
  473. }
  474. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  475. cameraZoneOverride_ = cameraZone_->GetOverride();
  476. if (!cameraZoneOverride_)
  477. {
  478. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  479. bestPriority = M_MIN_INT;
  480. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  481. {
  482. int priority = (*i)->GetPriority();
  483. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  484. {
  485. farClipZone_ = *i;
  486. bestPriority = priority;
  487. }
  488. }
  489. }
  490. if (farClipZone_ == defaultZone)
  491. farClipZone_ = cameraZone_;
  492. // If occlusion in use, get & render the occluders
  493. occlusionBuffer_ = 0;
  494. if (maxOccluderTriangles_ > 0)
  495. {
  496. UpdateOccluders(occluders_, camera_);
  497. if (occluders_.Size())
  498. {
  499. PROFILE(DrawOcclusion);
  500. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  501. DrawOccluders(occlusionBuffer_, occluders_);
  502. }
  503. }
  504. // Get lights and geometries. Coarse occlusion for octants is used at this point
  505. if (occlusionBuffer_)
  506. {
  507. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  508. DRAWABLE_LIGHT);
  509. octree_->GetDrawables(query);
  510. }
  511. else
  512. {
  513. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  514. octree_->GetDrawables(query);
  515. }
  516. // Check drawable occlusion and find zones for moved drawables in worker threads
  517. {
  518. WorkItem item;
  519. item.workFunction_ = CheckVisibilityWork;
  520. item.aux_ = this;
  521. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  522. while (start != tempDrawables.End())
  523. {
  524. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  525. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  526. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  527. item.start_ = &(*start);
  528. item.end_ = &(*end);
  529. queue->AddWorkItem(item);
  530. start = end;
  531. }
  532. queue->Complete();
  533. }
  534. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  535. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  536. sceneBox_.defined_ = false;
  537. minZ_ = M_INFINITY;
  538. maxZ_ = 0.0f;
  539. const Matrix3x4& view = camera_->GetInverseWorldTransform();
  540. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  541. {
  542. Drawable* drawable = tempDrawables[i];
  543. if (!drawable->IsInView(frame_))
  544. continue;
  545. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  546. {
  547. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  548. if (drawable->GetType() != Skybox::GetTypeStatic())
  549. {
  550. sceneBox_.Merge(drawable->GetWorldBoundingBox());
  551. minZ_ = Min(minZ_, drawable->GetMinZ());
  552. maxZ_ = Max(maxZ_, drawable->GetMaxZ());
  553. }
  554. geometries_.Push(drawable);
  555. }
  556. else
  557. {
  558. Light* light = static_cast<Light*>(drawable);
  559. // Skip lights which are so dim that they can not contribute to a rendertarget
  560. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  561. lights_.Push(light);
  562. }
  563. }
  564. if (minZ_ == M_INFINITY)
  565. minZ_ = 0.0f;
  566. // Sort the lights to brightest/closest first
  567. for (unsigned i = 0; i < lights_.Size(); ++i)
  568. {
  569. Light* light = lights_[i];
  570. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  571. light->SetLightQueue(0);
  572. }
  573. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  574. }
  575. void View::GetBatches()
  576. {
  577. WorkQueue* queue = GetSubsystem<WorkQueue>();
  578. PODVector<Light*> vertexLights;
  579. // Process lit geometries and shadow casters for each light
  580. {
  581. PROFILE(ProcessLights);
  582. lightQueryResults_.Resize(lights_.Size());
  583. WorkItem item;
  584. item.workFunction_ = ProcessLightWork;
  585. item.aux_ = this;
  586. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  587. {
  588. LightQueryResult& query = lightQueryResults_[i];
  589. query.light_ = lights_[i];
  590. item.start_ = &query;
  591. queue->AddWorkItem(item);
  592. }
  593. // Ensure all lights have been processed before proceeding
  594. queue->Complete();
  595. }
  596. // Build light queues and lit batches
  597. {
  598. PROFILE(GetLightBatches);
  599. // Preallocate light queues: per-pixel lights which have lit geometries
  600. unsigned numLightQueues = 0;
  601. unsigned usedLightQueues = 0;
  602. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  603. {
  604. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  605. ++numLightQueues;
  606. }
  607. lightQueues_.Resize(numLightQueues);
  608. maxLightsDrawables_.Clear();
  609. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  610. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  611. {
  612. LightQueryResult& query = *i;
  613. // If light has no affected geometries, no need to process further
  614. if (query.litGeometries_.Empty())
  615. continue;
  616. Light* light = query.light_;
  617. // Per-pixel light
  618. if (!light->GetPerVertex())
  619. {
  620. unsigned shadowSplits = query.numSplits_;
  621. // Initialize light queue and store it to the light so that it can be found later
  622. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  623. light->SetLightQueue(&lightQueue);
  624. lightQueue.light_ = light;
  625. lightQueue.shadowMap_ = 0;
  626. lightQueue.litBatches_.Clear(maxSortedInstances);
  627. lightQueue.volumeBatches_.Clear();
  628. // Allocate shadow map now
  629. if (shadowSplits > 0)
  630. {
  631. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  632. // If did not manage to get a shadow map, convert the light to unshadowed
  633. if (!lightQueue.shadowMap_)
  634. shadowSplits = 0;
  635. }
  636. // Setup shadow batch queues
  637. lightQueue.shadowSplits_.Resize(shadowSplits);
  638. for (unsigned j = 0; j < shadowSplits; ++j)
  639. {
  640. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  641. Camera* shadowCamera = query.shadowCameras_[j];
  642. shadowQueue.shadowCamera_ = shadowCamera;
  643. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  644. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  645. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  646. // Setup the shadow split viewport and finalize shadow camera parameters
  647. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  648. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  649. // Loop through shadow casters
  650. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  651. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  652. {
  653. Drawable* drawable = *k;
  654. if (!drawable->IsInView(frame_, false))
  655. {
  656. drawable->MarkInView(frame_, false);
  657. shadowGeometries_.Push(drawable);
  658. }
  659. Zone* zone = GetZone(drawable);
  660. const Vector<SourceBatch>& batches = drawable->GetBatches();
  661. for (unsigned l = 0; l < batches.Size(); ++l)
  662. {
  663. const SourceBatch& srcBatch = batches[l];
  664. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  665. if (!srcBatch.geometry_ || !tech)
  666. continue;
  667. Pass* pass = tech->GetPass(PASS_SHADOW);
  668. // Skip if material has no shadow pass
  669. if (!pass)
  670. continue;
  671. Batch destBatch(srcBatch);
  672. destBatch.pass_ = pass;
  673. destBatch.camera_ = shadowCamera;
  674. destBatch.zone_ = zone;
  675. destBatch.lightQueue_ = &lightQueue;
  676. AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech);
  677. }
  678. }
  679. }
  680. // Process lit geometries
  681. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  682. {
  683. Drawable* drawable = *j;
  684. drawable->AddLight(light);
  685. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  686. if (!drawable->GetMaxLights())
  687. GetLitBatches(drawable, lightQueue);
  688. else
  689. maxLightsDrawables_.Insert(drawable);
  690. }
  691. // In deferred modes, store the light volume batch now
  692. if (renderMode_ != RENDER_FORWARD)
  693. {
  694. Batch volumeBatch;
  695. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  696. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  697. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  698. volumeBatch.camera_ = camera_;
  699. volumeBatch.lightQueue_ = &lightQueue;
  700. volumeBatch.distance_ = light->GetDistance();
  701. volumeBatch.material_ = 0;
  702. volumeBatch.pass_ = 0;
  703. volumeBatch.zone_ = 0;
  704. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  705. lightQueue.volumeBatches_.Push(volumeBatch);
  706. }
  707. }
  708. // Per-vertex light
  709. else
  710. {
  711. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  712. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  713. {
  714. Drawable* drawable = *j;
  715. drawable->AddVertexLight(light);
  716. }
  717. }
  718. }
  719. }
  720. // Process drawables with limited per-pixel light count
  721. if (maxLightsDrawables_.Size())
  722. {
  723. PROFILE(GetMaxLightsBatches);
  724. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  725. {
  726. Drawable* drawable = *i;
  727. drawable->LimitLights();
  728. const PODVector<Light*>& lights = drawable->GetLights();
  729. for (unsigned i = 0; i < lights.Size(); ++i)
  730. {
  731. Light* light = lights[i];
  732. // Find the correct light queue again
  733. LightBatchQueue* queue = light->GetLightQueue();
  734. if (queue)
  735. GetLitBatches(drawable, *queue);
  736. }
  737. }
  738. }
  739. // Build base pass batches
  740. {
  741. PROFILE(GetBaseBatches);
  742. hasZeroLightMask_ = false;
  743. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  744. {
  745. Drawable* drawable = *i;
  746. Zone* zone = GetZone(drawable);
  747. const Vector<SourceBatch>& batches = drawable->GetBatches();
  748. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  749. if (!drawableVertexLights.Empty())
  750. drawable->LimitVertexLights();
  751. for (unsigned j = 0; j < batches.Size(); ++j)
  752. {
  753. const SourceBatch& srcBatch = batches[j];
  754. // Check here if the material refers to a rendertarget texture with camera(s) attached
  755. // Only check this for the main view (null rendertarget)
  756. if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  757. CheckMaterialForAuxView(srcBatch.material_);
  758. // If already has a lit base pass, skip (forward rendering only)
  759. if (j < 32 && drawable->HasBasePass(j))
  760. continue;
  761. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  762. if (!srcBatch.geometry_ || !tech)
  763. continue;
  764. Batch destBatch(srcBatch);
  765. destBatch.camera_ = camera_;
  766. destBatch.zone_ = zone;
  767. destBatch.isBase_ = true;
  768. destBatch.pass_ = 0;
  769. destBatch.lightMask_ = GetLightMask(drawable);
  770. // In deferred modes check for G-buffer and material passes first
  771. if (renderMode_ == RENDER_PREPASS)
  772. {
  773. destBatch.pass_ = tech->GetPass(PASS_PREPASS);
  774. if (destBatch.pass_)
  775. {
  776. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  777. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  778. hasZeroLightMask_ = true;
  779. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  780. AddBatchToQueue(gbufferQueue_, destBatch, tech, destBatch.lightMask_ == (zone->GetLightMask() & 0xff));
  781. destBatch.pass_ = tech->GetPass(PASS_MATERIAL);
  782. }
  783. }
  784. if (renderMode_ == RENDER_DEFERRED)
  785. destBatch.pass_ = tech->GetPass(PASS_DEFERRED);
  786. // Next check for forward unlit base pass
  787. if (!destBatch.pass_)
  788. destBatch.pass_ = tech->GetPass(PASS_BASE);
  789. if (destBatch.pass_)
  790. {
  791. // Check for vertex lights (both forward unlit, light pre-pass material pass, and deferred G-buffer)
  792. if (!drawableVertexLights.Empty())
  793. {
  794. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  795. // them to prevent double-lighting
  796. if (renderMode_ != RENDER_FORWARD && destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  797. {
  798. vertexLights.Clear();
  799. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  800. {
  801. if (drawableVertexLights[i]->GetPerVertex())
  802. vertexLights.Push(drawableVertexLights[i]);
  803. }
  804. }
  805. else
  806. vertexLights = drawableVertexLights;
  807. if (!vertexLights.Empty())
  808. {
  809. // Find a vertex light queue. If not found, create new
  810. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  811. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  812. if (i == vertexLightQueues_.End())
  813. {
  814. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  815. i->second_.light_ = 0;
  816. i->second_.shadowMap_ = 0;
  817. i->second_.vertexLights_ = vertexLights;
  818. }
  819. destBatch.lightQueue_ = &(i->second_);
  820. }
  821. }
  822. // Check whether batch is opaque or transparent
  823. if (destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  824. {
  825. if (destBatch.pass_->GetType() != PASS_DEFERRED)
  826. AddBatchToQueue(baseQueue_, destBatch, tech);
  827. else
  828. {
  829. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  830. AddBatchToQueue(gbufferQueue_, destBatch, tech, destBatch.lightMask_ == (destBatch.zone_->GetLightMask() & 0xff));
  831. }
  832. }
  833. else
  834. {
  835. // Transparent batches can not be instanced
  836. AddBatchToQueue(alphaQueue_, destBatch, tech, false);
  837. }
  838. continue;
  839. }
  840. // If no pass found so far, finally check for pre-alpha / post-alpha custom passes
  841. destBatch.pass_ = tech->GetPass(PASS_PREALPHA);
  842. if (destBatch.pass_)
  843. {
  844. AddBatchToQueue(preAlphaQueue_, destBatch, tech);
  845. continue;
  846. }
  847. destBatch.pass_ = tech->GetPass(PASS_POSTALPHA);
  848. if (destBatch.pass_)
  849. {
  850. // Post-alpha pass is treated similarly as alpha, and is not instanced
  851. AddBatchToQueue(postAlphaQueue_, destBatch, tech, false);
  852. continue;
  853. }
  854. }
  855. }
  856. }
  857. }
  858. void View::UpdateGeometries()
  859. {
  860. PROFILE(SortAndUpdateGeometry);
  861. WorkQueue* queue = GetSubsystem<WorkQueue>();
  862. // Sort batches
  863. {
  864. WorkItem item;
  865. item.workFunction_ = SortBatchQueueFrontToBackWork;
  866. item.start_ = &baseQueue_;
  867. queue->AddWorkItem(item);
  868. item.start_ = &preAlphaQueue_;
  869. queue->AddWorkItem(item);
  870. if (renderMode_ != RENDER_FORWARD)
  871. {
  872. item.start_ = &gbufferQueue_;
  873. queue->AddWorkItem(item);
  874. }
  875. item.workFunction_ = SortBatchQueueBackToFrontWork;
  876. item.start_ = &alphaQueue_;
  877. queue->AddWorkItem(item);
  878. item.start_ = &postAlphaQueue_;
  879. queue->AddWorkItem(item);
  880. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  881. {
  882. item.workFunction_ = SortLightQueueWork;
  883. item.start_ = &(*i);
  884. queue->AddWorkItem(item);
  885. if (i->shadowSplits_.Size())
  886. {
  887. item.workFunction_ = SortShadowQueueWork;
  888. queue->AddWorkItem(item);
  889. }
  890. }
  891. }
  892. // Update geometries. Split into threaded and non-threaded updates.
  893. {
  894. nonThreadedGeometries_.Clear();
  895. threadedGeometries_.Clear();
  896. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  897. {
  898. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  899. if (type == UPDATE_MAIN_THREAD)
  900. nonThreadedGeometries_.Push(*i);
  901. else if (type == UPDATE_WORKER_THREAD)
  902. threadedGeometries_.Push(*i);
  903. }
  904. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  905. {
  906. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  907. if (type == UPDATE_MAIN_THREAD)
  908. nonThreadedGeometries_.Push(*i);
  909. else if (type == UPDATE_WORKER_THREAD)
  910. threadedGeometries_.Push(*i);
  911. }
  912. if (threadedGeometries_.Size())
  913. {
  914. WorkItem item;
  915. item.workFunction_ = UpdateDrawableGeometriesWork;
  916. item.aux_ = const_cast<FrameInfo*>(&frame_);
  917. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  918. while (start != threadedGeometries_.End())
  919. {
  920. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  921. if (end - start > DRAWABLES_PER_WORK_ITEM)
  922. end = start + DRAWABLES_PER_WORK_ITEM;
  923. item.start_ = &(*start);
  924. item.end_ = &(*end);
  925. queue->AddWorkItem(item);
  926. start = end;
  927. }
  928. }
  929. // While the work queue is processed, update non-threaded geometries
  930. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  931. (*i)->UpdateGeometry(frame_);
  932. }
  933. // Finally ensure all threaded work has completed
  934. queue->Complete();
  935. }
  936. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  937. {
  938. Light* light = lightQueue.light_;
  939. Zone* zone = GetZone(drawable);
  940. const Vector<SourceBatch>& batches = drawable->GetBatches();
  941. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  942. // Shadows on transparencies can only be rendered if shadow maps are not reused
  943. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  944. bool allowLitBase = light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  945. for (unsigned i = 0; i < batches.Size(); ++i)
  946. {
  947. const SourceBatch& srcBatch = batches[i];
  948. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  949. if (!srcBatch.geometry_ || !tech)
  950. continue;
  951. // Do not create pixel lit forward passes for materials that render into the G-buffer
  952. if ((renderMode_ == RENDER_PREPASS && tech->HasPass(PASS_PREPASS)) || (renderMode_ == RENDER_DEFERRED &&
  953. tech->HasPass(PASS_DEFERRED)))
  954. continue;
  955. Batch destBatch(srcBatch);
  956. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  957. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  958. if (i < 32 && allowLitBase)
  959. {
  960. destBatch.pass_ = tech->GetPass(PASS_LITBASE);
  961. if (destBatch.pass_)
  962. {
  963. destBatch.isBase_ = true;
  964. drawable->SetBasePass(i);
  965. }
  966. else
  967. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  968. }
  969. else
  970. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  971. // Skip if material does not receive light at all
  972. if (!destBatch.pass_)
  973. continue;
  974. destBatch.camera_ = camera_;
  975. destBatch.lightQueue_ = &lightQueue;
  976. destBatch.zone_ = zone;
  977. // Check from the ambient pass whether the object is opaque or transparent
  978. Pass* ambientPass = tech->GetPass(PASS_BASE);
  979. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  980. AddBatchToQueue(lightQueue.litBatches_, destBatch, tech);
  981. else
  982. {
  983. // Transparent batches can not be instanced
  984. AddBatchToQueue(alphaQueue_, destBatch, tech, false, allowTransparentShadows);
  985. }
  986. }
  987. }
  988. void View::RenderBatchesForward()
  989. {
  990. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  991. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  992. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  993. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  994. // If not reusing shadowmaps, render all of them first
  995. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  996. {
  997. PROFILE(RenderShadowMaps);
  998. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  999. {
  1000. if (i->shadowMap_)
  1001. RenderShadowMap(*i);
  1002. }
  1003. }
  1004. graphics_->SetRenderTarget(0, renderTarget);
  1005. graphics_->SetDepthStencil(depthStencil);
  1006. graphics_->SetViewport(viewRect_);
  1007. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1008. // Render opaque object unlit base pass
  1009. if (!baseQueue_.IsEmpty())
  1010. {
  1011. PROFILE(RenderBase);
  1012. baseQueue_.Draw(graphics_, renderer_);
  1013. }
  1014. // Render shadow maps + opaque objects' additive lighting
  1015. if (!lightQueues_.Empty())
  1016. {
  1017. PROFILE(RenderLights);
  1018. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1019. {
  1020. // If reusing shadowmaps, render each of them before the lit batches
  1021. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1022. {
  1023. RenderShadowMap(*i);
  1024. graphics_->SetRenderTarget(0, renderTarget);
  1025. graphics_->SetDepthStencil(depthStencil);
  1026. graphics_->SetViewport(viewRect_);
  1027. }
  1028. i->litBatches_.Draw(i->light_, graphics_, renderer_);
  1029. }
  1030. }
  1031. graphics_->SetScissorTest(false);
  1032. graphics_->SetStencilTest(false);
  1033. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1034. graphics_->SetBlendMode(BLEND_REPLACE);
  1035. graphics_->SetColorWrite(true);
  1036. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1037. graphics_->SetDepthWrite(false);
  1038. graphics_->SetScissorTest(false);
  1039. graphics_->SetStencilTest(false);
  1040. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1041. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1042. graphics_->ClearParameterSource(SP_MATERIAL);
  1043. DrawFullscreenQuad(camera_, false);
  1044. // Render pre-alpha custom pass
  1045. if (!preAlphaQueue_.IsEmpty())
  1046. {
  1047. PROFILE(RenderPreAlpha);
  1048. preAlphaQueue_.Draw(graphics_, renderer_);
  1049. }
  1050. // Render transparent objects (both base passes & additive lighting)
  1051. if (!alphaQueue_.IsEmpty())
  1052. {
  1053. PROFILE(RenderAlpha);
  1054. alphaQueue_.Draw(graphics_, renderer_, true);
  1055. }
  1056. // Render post-alpha custom pass
  1057. if (!postAlphaQueue_.IsEmpty())
  1058. {
  1059. PROFILE(RenderPostAlpha);
  1060. postAlphaQueue_.Draw(graphics_, renderer_);
  1061. }
  1062. // Resolve multisampled backbuffer now if necessary
  1063. if (resolve)
  1064. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  1065. }
  1066. void View::RenderBatchesDeferred()
  1067. {
  1068. // If not reusing shadowmaps, render all of them first
  1069. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1070. {
  1071. PROFILE(RenderShadowMaps);
  1072. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1073. {
  1074. if (i->shadowMap_)
  1075. RenderShadowMap(*i);
  1076. }
  1077. }
  1078. bool hwDepth = graphics_->GetHardwareDepthSupport();
  1079. // In light prepass mode the albedo buffer is used for light accumulation instead
  1080. Texture2D* albedoBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1081. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1082. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  1083. Graphics::GetLinearDepthFormat());
  1084. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  1085. RenderSurface* depthStencil = hwDepth ? depthBuffer->GetRenderSurface() : renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  1086. if (renderMode_ == RENDER_PREPASS)
  1087. {
  1088. graphics_->SetRenderTarget(0, normalBuffer);
  1089. if (!hwDepth)
  1090. graphics_->SetRenderTarget(1, depthBuffer);
  1091. }
  1092. else
  1093. {
  1094. graphics_->SetRenderTarget(0, renderTarget);
  1095. graphics_->SetRenderTarget(1, albedoBuffer);
  1096. graphics_->SetRenderTarget(2, normalBuffer);
  1097. if (!hwDepth)
  1098. graphics_->SetRenderTarget(3, depthBuffer);
  1099. }
  1100. graphics_->SetDepthStencil(depthStencil);
  1101. graphics_->SetViewport(viewRect_);
  1102. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1103. // Render G-buffer batches
  1104. if (!gbufferQueue_.IsEmpty())
  1105. {
  1106. PROFILE(RenderGBuffer);
  1107. gbufferQueue_.Draw(graphics_, renderer_, false, true);
  1108. }
  1109. // Clear the light accumulation buffer (light pre-pass only.) However, skip the clear if the first light is a directional
  1110. // light with full mask
  1111. RenderSurface* lightRenderTarget = renderMode_ == RENDER_PREPASS ? albedoBuffer->GetRenderSurface() : renderTarget;
  1112. if (renderMode_ == RENDER_PREPASS)
  1113. {
  1114. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  1115. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  1116. graphics_->SetRenderTarget(0, lightRenderTarget);
  1117. graphics_->ResetRenderTarget(1);
  1118. graphics_->SetDepthStencil(depthStencil);
  1119. graphics_->SetViewport(viewRect_);
  1120. if (!optimizeLightBuffer)
  1121. graphics_->Clear(CLEAR_COLOR);
  1122. }
  1123. else
  1124. {
  1125. graphics_->ResetRenderTarget(1);
  1126. graphics_->ResetRenderTarget(2);
  1127. graphics_->ResetRenderTarget(3);
  1128. }
  1129. // Render shadow maps + light volumes
  1130. if (!lightQueues_.Empty())
  1131. {
  1132. PROFILE(RenderLights);
  1133. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1134. {
  1135. // If reusing shadowmaps, render each of them before the lit batches
  1136. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1137. {
  1138. RenderShadowMap(*i);
  1139. graphics_->SetRenderTarget(0, lightRenderTarget);
  1140. graphics_->SetDepthStencil(depthStencil);
  1141. graphics_->SetViewport(viewRect_);
  1142. }
  1143. if (renderMode_ == RENDER_DEFERRED)
  1144. graphics_->SetTexture(TU_ALBEDOBUFFER, albedoBuffer);
  1145. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  1146. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  1147. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1148. {
  1149. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1150. i->volumeBatches_[j].Draw(graphics_, renderer_);
  1151. }
  1152. }
  1153. }
  1154. graphics_->SetTexture(TU_ALBEDOBUFFER, 0);
  1155. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  1156. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  1157. if (renderMode_ == RENDER_PREPASS)
  1158. {
  1159. graphics_->SetRenderTarget(0, renderTarget);
  1160. graphics_->SetDepthStencil(depthStencil);
  1161. graphics_->SetViewport(viewRect_);
  1162. }
  1163. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1164. graphics_->SetBlendMode(BLEND_REPLACE);
  1165. graphics_->SetColorWrite(true);
  1166. graphics_->SetDepthTest(CMP_ALWAYS);
  1167. graphics_->SetDepthWrite(false);
  1168. graphics_->SetScissorTest(false);
  1169. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  1170. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1171. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1172. graphics_->ClearParameterSource(SP_MATERIAL);
  1173. DrawFullscreenQuad(camera_, false);
  1174. // Render opaque objects with deferred lighting result (light pre-pass only)
  1175. if (!baseQueue_.IsEmpty())
  1176. {
  1177. PROFILE(RenderBase);
  1178. graphics_->SetTexture(TU_LIGHTBUFFER, renderMode_ == RENDER_PREPASS ? albedoBuffer : 0);
  1179. baseQueue_.Draw(graphics_, renderer_);
  1180. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1181. }
  1182. // Render pre-alpha custom pass
  1183. if (!preAlphaQueue_.IsEmpty())
  1184. {
  1185. PROFILE(RenderPreAlpha);
  1186. preAlphaQueue_.Draw(graphics_, renderer_);
  1187. }
  1188. // Render transparent objects (both base passes & additive lighting)
  1189. if (!alphaQueue_.IsEmpty())
  1190. {
  1191. PROFILE(RenderAlpha);
  1192. alphaQueue_.Draw(graphics_, renderer_, true);
  1193. }
  1194. // Render post-alpha custom pass
  1195. if (!postAlphaQueue_.IsEmpty())
  1196. {
  1197. PROFILE(RenderPostAlpha);
  1198. postAlphaQueue_.Draw(graphics_, renderer_);
  1199. }
  1200. }
  1201. void View::AllocateScreenBuffers()
  1202. {
  1203. unsigned neededBuffers = 0;
  1204. #ifdef USE_OPENGL
  1205. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1206. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1207. if (renderMode_ != RENDER_FORWARD && (!renderTarget_ || (renderMode_ == RENDER_DEFERRED &&
  1208. renderTarget_->GetParentTexture()->GetFormat() != Graphics::GetRGBAFormat())))
  1209. neededBuffers = 1;
  1210. #endif
  1211. unsigned postProcessPasses = 0;
  1212. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1213. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1214. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1215. if (postProcessPasses)
  1216. neededBuffers = Min((int)postProcessPasses, 2);
  1217. unsigned format = Graphics::GetRGBFormat();
  1218. #ifdef USE_OPENGL
  1219. if (renderMode_ == RENDER_DEFERRED)
  1220. format = Graphics::GetRGBAFormat();
  1221. #endif
  1222. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1223. for (unsigned i = 0; i < neededBuffers; ++i)
  1224. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true));
  1225. }
  1226. void View::BlitFramebuffer()
  1227. {
  1228. // Blit the final image to destination rendertarget
  1229. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1230. graphics_->SetBlendMode(BLEND_REPLACE);
  1231. graphics_->SetDepthTest(CMP_ALWAYS);
  1232. graphics_->SetDepthWrite(true);
  1233. graphics_->SetScissorTest(false);
  1234. graphics_->SetStencilTest(false);
  1235. graphics_->SetRenderTarget(0, renderTarget_);
  1236. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1237. graphics_->SetViewport(viewRect_);
  1238. String shaderName = "CopyFramebuffer";
  1239. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1240. float rtWidth = (float)rtSize_.x_;
  1241. float rtHeight = (float)rtSize_.y_;
  1242. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1243. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1244. #ifdef USE_OPENGL
  1245. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1246. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1247. #else
  1248. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1249. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1250. #endif
  1251. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1252. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1253. DrawFullscreenQuad(camera_, false);
  1254. }
  1255. void View::RunPostProcesses()
  1256. {
  1257. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1258. // Ping-pong buffer indices for read and write
  1259. unsigned readRtIndex = 0;
  1260. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1261. graphics_->SetBlendMode(BLEND_REPLACE);
  1262. graphics_->SetDepthTest(CMP_ALWAYS);
  1263. graphics_->SetScissorTest(false);
  1264. graphics_->SetStencilTest(false);
  1265. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1266. {
  1267. PostProcess* effect = postProcesses_[i];
  1268. // For each effect, rendertargets can be re-used. Allocate them now
  1269. renderer_->SaveScreenBufferAllocations();
  1270. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1271. HashMap<StringHash, Texture2D*> renderTargets;
  1272. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1273. renderTargetInfos.End(); ++j)
  1274. {
  1275. unsigned width = j->second_.size_.x_;
  1276. unsigned height = j->second_.size_.y_;
  1277. if (j->second_.sizeDivisor_)
  1278. {
  1279. width = viewSize_.x_ / width;
  1280. height = viewSize_.y_ / height;
  1281. }
  1282. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1283. }
  1284. // Run each effect pass
  1285. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1286. {
  1287. PostProcessPass* pass = effect->GetPass(j);
  1288. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1289. bool swapBuffers = false;
  1290. // Write depth on the last pass only
  1291. graphics_->SetDepthWrite(lastPass);
  1292. // Set output rendertarget
  1293. RenderSurface* rt = 0;
  1294. String output = pass->GetOutput().ToLower();
  1295. if (output == "viewport")
  1296. {
  1297. if (!lastPass)
  1298. {
  1299. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1300. swapBuffers = true;
  1301. }
  1302. else
  1303. rt = renderTarget_;
  1304. graphics_->SetRenderTarget(0, rt);
  1305. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1306. graphics_->SetViewport(viewRect_);
  1307. }
  1308. else
  1309. {
  1310. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1311. if (k != renderTargets.End())
  1312. rt = k->second_->GetRenderSurface();
  1313. else
  1314. continue; // Skip pass if rendertarget can not be found
  1315. graphics_->SetRenderTarget(0, rt);
  1316. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1317. graphics_->SetViewport(IntRect(0, 0, rt->GetWidth(), rt->GetHeight()));
  1318. }
  1319. // Set shaders, shader parameters and textures
  1320. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1321. renderer_->GetPixelShader(pass->GetPixelShader()));
  1322. const HashMap<StringHash, Vector4>& globalParameters = effect->GetShaderParameters();
  1323. for (HashMap<StringHash, Vector4>::ConstIterator k = globalParameters.Begin(); k != globalParameters.End(); ++k)
  1324. graphics_->SetShaderParameter(k->first_, k->second_);
  1325. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1326. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1327. graphics_->SetShaderParameter(k->first_, k->second_);
  1328. float rtWidth = (float)rtSize_.x_;
  1329. float rtHeight = (float)rtSize_.y_;
  1330. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1331. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1332. #ifdef USE_OPENGL
  1333. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1334. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1335. #else
  1336. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1337. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1338. #endif
  1339. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1340. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1341. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1342. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator k = renderTargetInfos.Begin(); k !=
  1343. renderTargetInfos.End(); ++k)
  1344. {
  1345. String invSizeName = k->second_.name_ + "InvSize";
  1346. String offsetsName = k->second_.name_ + "Offsets";
  1347. float width = (float)renderTargets[k->first_]->GetWidth();
  1348. float height = (float)renderTargets[k->first_]->GetHeight();
  1349. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1350. #ifdef USE_OPENGL
  1351. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1352. #else
  1353. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1354. #endif
  1355. }
  1356. const String* textureNames = pass->GetTextures();
  1357. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1358. {
  1359. if (!textureNames[k].Empty())
  1360. {
  1361. // Texture may either refer to a rendertarget or to a texture resource
  1362. if (!textureNames[k].Compare("viewport", false))
  1363. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1364. else
  1365. {
  1366. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1367. if (l != renderTargets.End())
  1368. graphics_->SetTexture(k, l->second_);
  1369. else
  1370. {
  1371. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1372. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1373. if (texture)
  1374. graphics_->SetTexture(k, texture);
  1375. else
  1376. pass->SetTexture((TextureUnit)k, String());
  1377. }
  1378. }
  1379. }
  1380. }
  1381. DrawFullscreenQuad(camera_, false);
  1382. // Swap the ping-pong buffer sides now if necessary
  1383. if (swapBuffers)
  1384. Swap(readRtIndex, writeRtIndex);
  1385. }
  1386. // Forget the rendertargets allocated during this effect
  1387. renderer_->RestoreScreenBufferAllocations();
  1388. }
  1389. }
  1390. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1391. {
  1392. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1393. float halfViewSize = camera->GetHalfViewSize();
  1394. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1395. Vector3 cameraPos = camera->GetNode()->GetWorldPosition();
  1396. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1397. {
  1398. Drawable* occluder = *i;
  1399. bool erase = false;
  1400. if (!occluder->IsInView(frame_, false))
  1401. occluder->UpdateBatches(frame_);
  1402. // Check occluder's draw distance (in main camera view)
  1403. float maxDistance = occluder->GetDrawDistance();
  1404. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1405. {
  1406. // Check that occluder is big enough on the screen
  1407. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1408. float diagonal = box.Size().Length();
  1409. float compare;
  1410. if (!camera->IsOrthographic())
  1411. compare = diagonal * halfViewSize / occluder->GetDistance();
  1412. else
  1413. compare = diagonal * invOrthoSize;
  1414. if (compare < occluderSizeThreshold_)
  1415. erase = true;
  1416. else
  1417. {
  1418. // Store amount of triangles divided by screen size as a sorting key
  1419. // (best occluders are big and have few triangles)
  1420. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1421. }
  1422. }
  1423. else
  1424. erase = true;
  1425. if (erase)
  1426. i = occluders.Erase(i);
  1427. else
  1428. ++i;
  1429. }
  1430. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1431. if (occluders.Size())
  1432. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1433. }
  1434. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1435. {
  1436. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1437. buffer->Clear();
  1438. for (unsigned i = 0; i < occluders.Size(); ++i)
  1439. {
  1440. Drawable* occluder = occluders[i];
  1441. if (i > 0)
  1442. {
  1443. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1444. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1445. continue;
  1446. }
  1447. // Check for running out of triangles
  1448. if (!occluder->DrawOcclusion(buffer))
  1449. break;
  1450. }
  1451. buffer->BuildDepthHierarchy();
  1452. }
  1453. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1454. {
  1455. Light* light = query.light_;
  1456. LightType type = light->GetLightType();
  1457. const Frustum& frustum = camera_->GetFrustum();
  1458. // Check if light should be shadowed
  1459. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1460. // If shadow distance non-zero, check it
  1461. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1462. isShadowed = false;
  1463. // OpenGL ES can not support point light shadows
  1464. #ifdef GL_ES_VERSION_2_0
  1465. if (isShadowed && type == LIGHT_POINT)
  1466. isShadowed = false;
  1467. #endif
  1468. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1469. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1470. query.litGeometries_.Clear();
  1471. switch (type)
  1472. {
  1473. case LIGHT_DIRECTIONAL:
  1474. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1475. {
  1476. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1477. query.litGeometries_.Push(geometries_[i]);
  1478. }
  1479. break;
  1480. case LIGHT_SPOT:
  1481. {
  1482. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1483. octree_->GetDrawables(octreeQuery);
  1484. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1485. {
  1486. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1487. query.litGeometries_.Push(tempDrawables[i]);
  1488. }
  1489. }
  1490. break;
  1491. case LIGHT_POINT:
  1492. {
  1493. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1494. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1495. octree_->GetDrawables(octreeQuery);
  1496. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1497. {
  1498. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1499. query.litGeometries_.Push(tempDrawables[i]);
  1500. }
  1501. }
  1502. break;
  1503. }
  1504. // If no lit geometries or not shadowed, no need to process shadow cameras
  1505. if (query.litGeometries_.Empty() || !isShadowed)
  1506. {
  1507. query.numSplits_ = 0;
  1508. return;
  1509. }
  1510. // Determine number of shadow cameras and setup their initial positions
  1511. SetupShadowCameras(query);
  1512. // Process each split for shadow casters
  1513. query.shadowCasters_.Clear();
  1514. for (unsigned i = 0; i < query.numSplits_; ++i)
  1515. {
  1516. Camera* shadowCamera = query.shadowCameras_[i];
  1517. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1518. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1519. // For point light check that the face is visible: if not, can skip the split
  1520. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1521. continue;
  1522. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1523. if (type == LIGHT_DIRECTIONAL)
  1524. {
  1525. if (minZ_ > query.shadowFarSplits_[i])
  1526. continue;
  1527. if (maxZ_ < query.shadowNearSplits_[i])
  1528. continue;
  1529. }
  1530. // Reuse lit geometry query for all except directional lights
  1531. if (type == LIGHT_DIRECTIONAL)
  1532. {
  1533. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1534. camera_->GetViewMask());
  1535. octree_->GetDrawables(query);
  1536. }
  1537. // Check which shadow casters actually contribute to the shadowing
  1538. ProcessShadowCasters(query, tempDrawables, i);
  1539. }
  1540. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1541. // only cost has been the shadow camera setup & queries
  1542. if (query.shadowCasters_.Empty())
  1543. query.numSplits_ = 0;
  1544. }
  1545. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1546. {
  1547. Light* light = query.light_;
  1548. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1549. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1550. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1551. const Matrix4& lightProj = shadowCamera->GetProjection();
  1552. LightType type = light->GetLightType();
  1553. query.shadowCasterBox_[splitIndex].defined_ = false;
  1554. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1555. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1556. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1557. Frustum lightViewFrustum;
  1558. if (type != LIGHT_DIRECTIONAL)
  1559. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1560. else
  1561. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1562. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1563. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1564. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1565. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1566. return;
  1567. BoundingBox lightViewBox;
  1568. BoundingBox lightProjBox;
  1569. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1570. {
  1571. Drawable* drawable = *i;
  1572. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1573. // Check for that first
  1574. if (!drawable->GetCastShadows())
  1575. continue;
  1576. // For point light, check that this drawable is inside the split shadow camera frustum
  1577. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1578. continue;
  1579. // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several
  1580. // times. However, this should not cause problems as no scene modification happens at this point.
  1581. if (!drawable->IsInView(frame_, false))
  1582. drawable->UpdateBatches(frame_);
  1583. // Check shadow distance
  1584. float maxShadowDistance = drawable->GetShadowDistance();
  1585. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1586. continue;
  1587. // Check shadow mask
  1588. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1589. continue;
  1590. // Project shadow caster bounding box to light view space for visibility check
  1591. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1592. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1593. {
  1594. // Merge to shadow caster bounding box and add to the list
  1595. if (type == LIGHT_DIRECTIONAL)
  1596. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1597. else
  1598. {
  1599. lightProjBox = lightViewBox.Projected(lightProj);
  1600. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1601. }
  1602. query.shadowCasters_.Push(drawable);
  1603. }
  1604. }
  1605. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1606. }
  1607. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1608. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1609. {
  1610. if (shadowCamera->IsOrthographic())
  1611. {
  1612. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1613. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1614. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1615. }
  1616. else
  1617. {
  1618. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1619. if (drawable->IsInView(frame_))
  1620. return true;
  1621. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1622. Vector3 center = lightViewBox.Center();
  1623. Ray extrusionRay(center, center.Normalized());
  1624. float extrusionDistance = shadowCamera->GetFarClip();
  1625. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1626. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1627. float sizeFactor = extrusionDistance / originalDistance;
  1628. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1629. // than necessary, so the test will be conservative
  1630. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1631. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1632. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1633. lightViewBox.Merge(extrudedBox);
  1634. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1635. }
  1636. }
  1637. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1638. {
  1639. unsigned width = shadowMap->GetWidth();
  1640. unsigned height = shadowMap->GetHeight();
  1641. int maxCascades = renderer_->GetMaxShadowCascades();
  1642. // Due to instruction count limits, deferred modes in SM2.0 can only support up to 3 cascades
  1643. #ifndef USE_OPENGL
  1644. if (renderMode_ != RENDER_FORWARD && !graphics_->GetSM3Support())
  1645. maxCascades = Max(maxCascades, 3);
  1646. #endif
  1647. switch (light->GetLightType())
  1648. {
  1649. case LIGHT_DIRECTIONAL:
  1650. if (maxCascades == 1)
  1651. return IntRect(0, 0, width, height);
  1652. else if (maxCascades == 2)
  1653. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1654. else
  1655. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1656. (splitIndex / 2 + 1) * height / 2);
  1657. case LIGHT_SPOT:
  1658. return IntRect(0, 0, width, height);
  1659. case LIGHT_POINT:
  1660. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1661. (splitIndex / 2 + 1) * height / 3);
  1662. }
  1663. return IntRect();
  1664. }
  1665. void View::SetupShadowCameras(LightQueryResult& query)
  1666. {
  1667. Light* light = query.light_;
  1668. LightType type = light->GetLightType();
  1669. int splits = 0;
  1670. if (type == LIGHT_DIRECTIONAL)
  1671. {
  1672. const CascadeParameters& cascade = light->GetShadowCascade();
  1673. float nearSplit = camera_->GetNearClip();
  1674. float farSplit;
  1675. while (splits < renderer_->GetMaxShadowCascades())
  1676. {
  1677. // If split is completely beyond camera far clip, we are done
  1678. if (nearSplit > camera_->GetFarClip())
  1679. break;
  1680. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1681. if (farSplit <= nearSplit)
  1682. break;
  1683. // Setup the shadow camera for the split
  1684. Camera* shadowCamera = renderer_->GetShadowCamera();
  1685. query.shadowCameras_[splits] = shadowCamera;
  1686. query.shadowNearSplits_[splits] = nearSplit;
  1687. query.shadowFarSplits_[splits] = farSplit;
  1688. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1689. nearSplit = farSplit;
  1690. ++splits;
  1691. }
  1692. }
  1693. if (type == LIGHT_SPOT)
  1694. {
  1695. Camera* shadowCamera = renderer_->GetShadowCamera();
  1696. query.shadowCameras_[0] = shadowCamera;
  1697. Node* cameraNode = shadowCamera->GetNode();
  1698. Node* lightNode = light->GetNode();
  1699. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1700. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1701. shadowCamera->SetFarClip(light->GetRange());
  1702. shadowCamera->SetFov(light->GetFov());
  1703. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1704. splits = 1;
  1705. }
  1706. if (type == LIGHT_POINT)
  1707. {
  1708. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1709. {
  1710. Camera* shadowCamera = renderer_->GetShadowCamera();
  1711. query.shadowCameras_[i] = shadowCamera;
  1712. Node* cameraNode = shadowCamera->GetNode();
  1713. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1714. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1715. cameraNode->SetDirection(directions[i]);
  1716. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1717. shadowCamera->SetFarClip(light->GetRange());
  1718. shadowCamera->SetFov(90.0f);
  1719. shadowCamera->SetAspectRatio(1.0f);
  1720. }
  1721. splits = MAX_CUBEMAP_FACES;
  1722. }
  1723. query.numSplits_ = splits;
  1724. }
  1725. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1726. {
  1727. Node* shadowCameraNode = shadowCamera->GetNode();
  1728. Node* lightNode = light->GetNode();
  1729. float extrusionDistance = camera_->GetFarClip();
  1730. const FocusParameters& parameters = light->GetShadowFocus();
  1731. // Calculate initial position & rotation
  1732. Vector3 lightWorldDirection = lightNode->GetWorldRotation() * Vector3::FORWARD;
  1733. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1734. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1735. // Calculate main camera shadowed frustum in light's view space
  1736. farSplit = Min(farSplit, camera_->GetFarClip());
  1737. // Use the scene Z bounds to limit frustum size if applicable
  1738. if (parameters.focus_)
  1739. {
  1740. nearSplit = Max(minZ_, nearSplit);
  1741. farSplit = Min(maxZ_, farSplit);
  1742. }
  1743. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1744. Polyhedron frustumVolume;
  1745. frustumVolume.Define(splitFrustum);
  1746. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1747. if (parameters.focus_)
  1748. {
  1749. BoundingBox litGeometriesBox;
  1750. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1751. {
  1752. Drawable* drawable = geometries_[i];
  1753. // Skip skyboxes as they have undefinedly large bounding box size
  1754. if (drawable->GetType() == Skybox::GetTypeStatic())
  1755. continue;
  1756. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1757. (GetLightMask(drawable) & light->GetLightMask()))
  1758. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1759. }
  1760. if (litGeometriesBox.defined_)
  1761. {
  1762. frustumVolume.Clip(litGeometriesBox);
  1763. // If volume became empty, restore it to avoid zero size
  1764. if (frustumVolume.Empty())
  1765. frustumVolume.Define(splitFrustum);
  1766. }
  1767. }
  1768. // Transform frustum volume to light space
  1769. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1770. frustumVolume.Transform(lightView);
  1771. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1772. BoundingBox shadowBox;
  1773. if (!parameters.nonUniform_)
  1774. shadowBox.Define(Sphere(frustumVolume));
  1775. else
  1776. shadowBox.Define(frustumVolume);
  1777. shadowCamera->SetOrthographic(true);
  1778. shadowCamera->SetAspectRatio(1.0f);
  1779. shadowCamera->SetNearClip(0.0f);
  1780. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1781. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1782. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1783. }
  1784. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1785. const BoundingBox& shadowCasterBox)
  1786. {
  1787. const FocusParameters& parameters = light->GetShadowFocus();
  1788. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1789. LightType type = light->GetLightType();
  1790. if (type == LIGHT_DIRECTIONAL)
  1791. {
  1792. BoundingBox shadowBox;
  1793. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1794. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1795. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1796. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1797. // Requantize and snap to shadow map texels
  1798. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1799. }
  1800. if (type == LIGHT_SPOT)
  1801. {
  1802. if (parameters.focus_)
  1803. {
  1804. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1805. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1806. float viewSize = Max(viewSizeX, viewSizeY);
  1807. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1808. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1809. float quantize = parameters.quantize_ * invOrthoSize;
  1810. float minView = parameters.minView_ * invOrthoSize;
  1811. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1812. if (viewSize < 1.0f)
  1813. shadowCamera->SetZoom(1.0f / viewSize);
  1814. }
  1815. }
  1816. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1817. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1818. if (shadowCamera->GetZoom() >= 1.0f)
  1819. {
  1820. if (light->GetLightType() != LIGHT_POINT)
  1821. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1822. else
  1823. {
  1824. #ifdef USE_OPENGL
  1825. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1826. #else
  1827. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1828. #endif
  1829. }
  1830. }
  1831. }
  1832. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1833. const BoundingBox& viewBox)
  1834. {
  1835. Node* shadowCameraNode = shadowCamera->GetNode();
  1836. const FocusParameters& parameters = light->GetShadowFocus();
  1837. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1838. float minX = viewBox.min_.x_;
  1839. float minY = viewBox.min_.y_;
  1840. float maxX = viewBox.max_.x_;
  1841. float maxY = viewBox.max_.y_;
  1842. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1843. Vector2 viewSize(maxX - minX, maxY - minY);
  1844. // Quantize size to reduce swimming
  1845. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1846. if (parameters.nonUniform_)
  1847. {
  1848. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1849. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1850. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1851. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1852. }
  1853. else if (parameters.focus_)
  1854. {
  1855. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1856. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1857. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1858. viewSize.y_ = viewSize.x_;
  1859. }
  1860. shadowCamera->SetOrthoSize(viewSize);
  1861. // Center shadow camera to the view space bounding box
  1862. Vector3 pos(shadowCameraNode->GetWorldPosition());
  1863. Quaternion rot(shadowCameraNode->GetWorldRotation());
  1864. Vector3 adjust(center.x_, center.y_, 0.0f);
  1865. shadowCameraNode->Translate(rot * adjust);
  1866. // If the shadow map viewport is known, snap to whole texels
  1867. if (shadowMapWidth > 0.0f)
  1868. {
  1869. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  1870. // Take into account that shadow map border will not be used
  1871. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1872. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1873. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1874. shadowCameraNode->Translate(rot * snap);
  1875. }
  1876. }
  1877. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1878. {
  1879. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1880. int bestPriority = M_MIN_INT;
  1881. Zone* newZone = 0;
  1882. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  1883. // (possibly incorrect) and must be re-evaluated on the next frame
  1884. bool temporary = !camera_->GetFrustum().IsInside(center);
  1885. // First check if the last zone remains a conclusive result
  1886. Zone* lastZone = drawable->GetLastZone();
  1887. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1888. lastZone->GetPriority() >= highestZonePriority_)
  1889. newZone = lastZone;
  1890. else
  1891. {
  1892. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1893. {
  1894. Zone* zone = *i;
  1895. int priority = zone->GetPriority();
  1896. if (zone->IsInside(center) && (drawable->GetZoneMask() & zone->GetZoneMask()) && priority > bestPriority)
  1897. {
  1898. newZone = zone;
  1899. bestPriority = priority;
  1900. }
  1901. }
  1902. }
  1903. drawable->SetZone(newZone, temporary);
  1904. }
  1905. Zone* View::GetZone(Drawable* drawable)
  1906. {
  1907. if (cameraZoneOverride_)
  1908. return cameraZone_;
  1909. Zone* drawableZone = drawable->GetZone();
  1910. return drawableZone ? drawableZone : cameraZone_;
  1911. }
  1912. unsigned View::GetLightMask(Drawable* drawable)
  1913. {
  1914. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1915. }
  1916. unsigned View::GetShadowMask(Drawable* drawable)
  1917. {
  1918. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1919. }
  1920. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1921. {
  1922. unsigned long long hash = 0;
  1923. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1924. hash += (unsigned long long)(*i);
  1925. return hash;
  1926. }
  1927. Technique* View::GetTechnique(Drawable* drawable, Material* material)
  1928. {
  1929. if (!material)
  1930. {
  1931. const Vector<TechniqueEntry>& techniques = renderer_->GetDefaultMaterial()->GetTechniques();
  1932. return techniques.Size() ? techniques[0].technique_ : (Technique*)0;
  1933. }
  1934. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1935. // If only one technique, no choice
  1936. if (techniques.Size() == 1)
  1937. return techniques[0].technique_;
  1938. else
  1939. {
  1940. float lodDistance = drawable->GetLodDistance();
  1941. // Check for suitable technique. Techniques should be ordered like this:
  1942. // Most distant & highest quality
  1943. // Most distant & lowest quality
  1944. // Second most distant & highest quality
  1945. // ...
  1946. for (unsigned i = 0; i < techniques.Size(); ++i)
  1947. {
  1948. const TechniqueEntry& entry = techniques[i];
  1949. Technique* tech = entry.technique_;
  1950. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1951. continue;
  1952. if (lodDistance >= entry.lodDistance_)
  1953. return tech;
  1954. }
  1955. // If no suitable technique found, fallback to the last
  1956. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  1957. }
  1958. }
  1959. void View::CheckMaterialForAuxView(Material* material)
  1960. {
  1961. const SharedPtr<Texture>* textures = material->GetTextures();
  1962. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1963. {
  1964. // Have to check cube & 2D textures separately
  1965. Texture* texture = textures[i];
  1966. if (texture)
  1967. {
  1968. if (texture->GetType() == Texture2D::GetTypeStatic())
  1969. {
  1970. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1971. RenderSurface* target = tex2D->GetRenderSurface();
  1972. if (target)
  1973. {
  1974. Viewport* viewport = target->GetViewport();
  1975. if (viewport->GetScene() && viewport->GetCamera())
  1976. renderer_->AddView(target, viewport);
  1977. }
  1978. }
  1979. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1980. {
  1981. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1982. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1983. {
  1984. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1985. if (target)
  1986. {
  1987. Viewport* viewport = target->GetViewport();
  1988. if (viewport->GetScene() && viewport->GetCamera())
  1989. renderer_->AddView(target, viewport);
  1990. }
  1991. }
  1992. }
  1993. }
  1994. }
  1995. // Set frame number so that we can early-out next time we come across this material on the same frame
  1996. material->MarkForAuxView(frame_.frameNumber_);
  1997. }
  1998. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  1999. {
  2000. if (!batch.material_)
  2001. batch.material_ = renderer_->GetDefaultMaterial();
  2002. // Convert to instanced if possible
  2003. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  2004. batch.geometryType_ = GEOM_INSTANCED;
  2005. if (batch.geometryType_ == GEOM_INSTANCED)
  2006. {
  2007. HashMap<BatchGroupKey, BatchGroup>* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_;
  2008. BatchGroupKey key(batch);
  2009. HashMap<BatchGroupKey, BatchGroup>::Iterator i = groups->Find(key);
  2010. if (i == groups->End())
  2011. {
  2012. // Create a new group based on the batch
  2013. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2014. BatchGroup newGroup(batch);
  2015. newGroup.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2016. groups->Insert(MakePair(key, newGroup));
  2017. }
  2018. else
  2019. i->second_.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2020. }
  2021. else
  2022. {
  2023. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2024. batch.CalculateSortKey();
  2025. batchQueue.batches_.Push(batch);
  2026. }
  2027. }
  2028. void View::PrepareInstancingBuffer()
  2029. {
  2030. PROFILE(PrepareInstancingBuffer);
  2031. unsigned totalInstances = 0;
  2032. totalInstances += baseQueue_.GetNumInstances(renderer_);
  2033. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  2034. if (renderMode_ != RENDER_FORWARD)
  2035. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  2036. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2037. {
  2038. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2039. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  2040. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  2041. }
  2042. // If fail to set buffer size, fall back to per-group locking
  2043. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2044. {
  2045. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2046. unsigned freeIndex = 0;
  2047. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  2048. if (lockedData)
  2049. {
  2050. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2051. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2052. if (renderMode_ != RENDER_FORWARD)
  2053. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2054. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2055. {
  2056. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2057. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2058. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2059. }
  2060. instancingBuffer->Unlock();
  2061. }
  2062. }
  2063. }
  2064. void View::SetupLightVolumeBatch(Batch& batch)
  2065. {
  2066. Light* light = batch.lightQueue_->light_;
  2067. LightType type = light->GetLightType();
  2068. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2069. float lightDist;
  2070. // Use replace blend mode for the first pre-pass light volume, and additive for the rest
  2071. graphics_->SetBlendMode(renderMode_ == RENDER_PREPASS && light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  2072. graphics_->SetDepthWrite(false);
  2073. if (type != LIGHT_DIRECTIONAL)
  2074. {
  2075. if (type == LIGHT_POINT)
  2076. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2077. else
  2078. lightDist = light->GetFrustum().Distance(cameraPos);
  2079. // Draw front faces if not inside light volume
  2080. if (lightDist < camera_->GetNearClip() * 2.0f)
  2081. {
  2082. renderer_->SetCullMode(CULL_CW, camera_);
  2083. graphics_->SetDepthTest(CMP_GREATER);
  2084. }
  2085. else
  2086. {
  2087. renderer_->SetCullMode(CULL_CCW, camera_);
  2088. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2089. }
  2090. }
  2091. else
  2092. {
  2093. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2094. // refresh the directional light's model transform before rendering
  2095. light->GetVolumeTransform(camera_);
  2096. graphics_->SetCullMode(CULL_NONE);
  2097. graphics_->SetDepthTest(CMP_ALWAYS);
  2098. }
  2099. graphics_->SetScissorTest(false);
  2100. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2101. }
  2102. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  2103. {
  2104. Light* quadDirLight = renderer_->GetQuadDirLight();
  2105. Matrix3x4 model(quadDirLight->GetDirLightTransform(camera, nearQuad));
  2106. graphics_->SetCullMode(CULL_NONE);
  2107. graphics_->SetShaderParameter(VSP_MODEL, model);
  2108. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  2109. graphics_->ClearTransformSources();
  2110. renderer_->GetLightGeometry(quadDirLight)->Draw(graphics_);
  2111. }
  2112. void View::RenderShadowMap(const LightBatchQueue& queue)
  2113. {
  2114. PROFILE(RenderShadowMap);
  2115. Texture2D* shadowMap = queue.shadowMap_;
  2116. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2117. graphics_->SetColorWrite(false);
  2118. graphics_->SetStencilTest(false);
  2119. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2120. graphics_->SetDepthStencil(shadowMap);
  2121. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2122. graphics_->Clear(CLEAR_DEPTH);
  2123. // Set shadow depth bias
  2124. BiasParameters parameters = queue.light_->GetShadowBias();
  2125. // Adjust the light's constant depth bias according to global shadow map resolution
  2126. /// \todo Should remove this adjustment and find a more flexible solution
  2127. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2128. if (shadowMapSize <= 512)
  2129. parameters.constantBias_ *= 2.0f;
  2130. else if (shadowMapSize >= 2048)
  2131. parameters.constantBias_ *= 0.5f;
  2132. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2133. // Render each of the splits
  2134. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2135. {
  2136. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2137. if (!shadowQueue.shadowBatches_.IsEmpty())
  2138. {
  2139. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2140. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  2141. // However, do not do this for point lights, which need to render continuously across cube faces
  2142. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  2143. if (queue.light_->GetLightType() != LIGHT_POINT)
  2144. {
  2145. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  2146. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  2147. graphics_->SetScissorTest(true, zoomRect, false);
  2148. }
  2149. else
  2150. graphics_->SetScissorTest(false);
  2151. // Draw instanced and non-instanced shadow casters
  2152. shadowQueue.shadowBatches_.Draw(graphics_, renderer_);
  2153. }
  2154. }
  2155. graphics_->SetColorWrite(true);
  2156. graphics_->SetDepthBias(0.0f, 0.0f);
  2157. }
  2158. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2159. {
  2160. // If using the backbuffer, return the backbuffer depth-stencil
  2161. if (!renderTarget)
  2162. return 0;
  2163. // Then check for linked depth-stencil
  2164. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2165. // Finally get one from Renderer
  2166. if (!depthStencil)
  2167. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2168. return depthStencil;
  2169. }